概率的基本性质教案
数学教案:概率的基本性质

数学教案:概率的基本性质数学教案:概率的基本性质在教学工作者开展教学活动前,总不可避免地需要编写教案,教案是教学活动的总的组织纲领和行动方案。
快来参考教案是怎么写的吧!下面是店铺为大家整理的数学教案:概率的基本性质,希望能够帮助到大家。
一、教材分析1、教材所处的地位和作用本节课主要包含了两部分内容:一是事件的关系与运算,二是概率的基本性质,多以基本概念和性质为主。
它是本册第二章统计的延伸,又是后面"古典概型"及"几何概型"的基础。
在整个教学中起到承上启下的作用。
同时也是新课改以来考查的热点之一。
2、教学的重点和难点重点:概率的加法公式及其应用;事件的关系与运算。
难点:互斥事件与对立事件的区别与联系二、教学目标分析1.知识与技能目标⑴了解随机事件间的基本关系与运算;⑵掌握概率的几个基本性质,并会用其解决简单的概率问题。
2、过程与方法:⑴通过观察、类比、归纳培养学生运用数学知识的综合能力;⑵通过学生自主探究,合作探究培养学生的动手探索的能力。
3、情感态度与价值观:通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。
三、教法分析采用实验观察、质疑启发、类比联想、探究归纳的教学方法。
四、教学过程分析1、创设情境,引入新课在掷骰子的试验中,我们可以定义许多事件,如:c1=﹛出现的点数=1﹜,c2=﹛出现的点数=2﹜c3=﹛出现的点数=3﹜,c4=﹛出现的点数=4﹜c5=﹛出现的点数=5﹜,c6=﹛出现的点数=6﹜D1=﹛出现的点数不大于1﹜D2=﹛出现的点数大于3﹜D3=﹛出现的点数小于5﹜,E=﹛出现的点数小于7﹜f=﹛出现的点数大于6﹜,G=﹛出现的点数为偶数﹜H=﹛出现的点数为奇数﹜⑴以引入例中的.事件c1和事件H,事件c1和事件D1为例讲授事件之的包含关系和相等关系。
⑵从以上两个关系学生不难发现事件间的关系与集合间的关系相类似。
教学设计 选修4-5-《概率的基本性质》教学设计

教学设计选修4-5-《概率的基本性质》教学设计一、教学目标通过本课程的研究,使学生能够:1.了解概率的基本概念和性质;2.掌握概率的计算方法,并能够应用到现实生活中;3.培养学生的逻辑思维和数学推理能力;4.培养学生的团队合作和沟通能力。
二、教学内容和安排本课程的教学内容和安排如下:第一课时:概率的基本概念理解概率的定义和意义;了解事件、样本空间和样本点等基本概念;掌握概率的基本性质。
第二课时:概率的计算方法研究概率的计算方法:频率法、古典概型法和几何法;进行实际案例分析,运用概率计算方法解决问题。
第三课时:概率的应用研究如何将概率应用到现实生活中;分析概率在统计学、金融学等领域的应用。
第四课时:概率的数学推理掌握概率的数学推理方法;研究如何使用条件概率、全概率公式和贝叶斯定理等推理方法。
三、教学方法本课程采用以下教学方法:课堂讲授:通过讲解概念、公式和实例,引导学生理解概率的基本性质和计算方法;小组讨论:组织学生进行小组讨论,解决概率问题,培养学生的团队合作和沟通能力;实践应用:通过案例分析和实际问题解决,使学生能够将概率应用到实际生活中。
四、评估方法为了评估学生对《概率的基本性质》的掌握程度,采用以下评估方法:课堂表现:评估学生的课堂参与度、教学互动能力和问题解决能力;小组讨论报告:评估学生在小组讨论中的表现和贡献;作业和考试:通过作业和考试评估学生对概率的理解和应用能力。
五、教学资源为了辅助教学,《概率的基本性质》课程将使用以下教学资源:教科书:《概率与统计》(作者:XXX);多媒体教学课件:包括概念解释、公式推导和实例演示等;案例分析资料:提供实际问题和案例,供学生进行分析和解决。
以上是《概率的基本性质》教学设计的内容和安排,希望学生们能够通过本课程的学习,掌握概率的基本概念和性质,并能够应用到实际生活中。
任何问题请随时向我提问。
数学教案:概率的基本性质

数学教案:概率的基本性质一、教学目标1. 让学生理解概率的定义和基本性质。
2. 培养学生运用概率知识解决实际问题的能力。
3. 引导学生掌握概率的计算方法,提高运算能力。
二、教学内容1. 概率的定义:必然事件、不可能事件、随机事件。
2. 概率的基本性质:互斥事件、独立事件。
3. 概率的计算方法:排列组合、概率公式。
三、教学重点与难点1. 重点:概率的定义、基本性质及计算方法。
2. 难点:概率公式的运用和复杂事件的概率计算。
四、教学方法1. 采用讲授法讲解概率的基本概念和性质。
2. 运用案例分析法引导学生运用概率知识解决实际问题。
3. 利用互动教学法激发学生的学习兴趣,提高参与度。
4. 练习法:通过课堂练习和课后作业巩固所学知识。
五、教学过程1. 导入新课:通过讲解骰子游戏引出概率的概念。
2. 讲解概率的定义:必然事件、不可能事件、随机事件。
3. 讲解概率的基本性质:互斥事件、独立事件。
4. 讲解概率的计算方法:排列组合、概率公式。
5. 案例分析:运用概率知识分析实际问题,如抽奖活动、概率游戏等。
6. 课堂练习:布置相关题目,让学生运用所学知识解决问题。
7. 总结与拓展:对本节课内容进行总结,并提出课后思考题,引导学生深入思考。
8. 课后作业:布置适量作业,巩固所学知识。
六、教学评估1. 课堂问答:通过提问检查学生对概率基本概念的理解。
2. 课堂练习:评估学生的练习情况,检查对概率计算方法的掌握。
3. 课后作业:分析作业完成情况,评估学生对概率知识的掌握程度。
4. 小组讨论:观察学生在小组内的交流与合作,了解他们的学习效果。
七、教学资源1. 教学PPT:提供清晰的概率概念和计算方法的演示。
2. 骰子、卡片等教具:用于直观展示概率实验。
3. 案例资料:提供多种实际问题,供学生分析与讨论。
4. 练习题库:准备不同难度的练习题,满足不同学生的学习需求。
八、教学进度安排1. 第1周:讲解概率的定义及基本性质。
数学教案:概率的基本性质

数学教案:概率的基本性质教学目标:1. 理解概率的定义和基本性质;2. 学会计算简单事件的概率;3. 能够应用概率的基本性质解决实际问题。
教学重点:1. 概率的定义和基本性质;2. 计算简单事件的概率;3. 应用概率解决实际问题。
教学准备:1. 教学PPT或者黑板;2. 教学素材和练习题。
教学过程:一、导入(5分钟)1. 引入概率的概念,让学生回顾之前学过的随机事件和必然事件的定义;2. 提问:什么是概率?概率有哪些基本性质?二、概率的定义(10分钟)1. 讲解概率的定义:概率是衡量一个随机事件发生的可能性大小的数值;2. 强调概率的取值范围:概率的取值范围在0到1之间,即0≤P(A)≤1;3. 举例说明概率的计算方法。
三、计算简单事件的概率(10分钟)1. 讲解如何计算简单事件的概率:如果一个事件有n个等可能的结果,且这些结果都是互斥的,这个事件的概率就是1/n;2. 举例说明如何计算抛硬币、掷骰子等简单事件的概率;3. 让学生尝试计算一些简单事件的概率,并给予解答和反馈。
四、概率的基本性质(10分钟)1. 讲解概率的基本性质:互补性、独立性和全概率公式;2. 互补性:如果事件A和事件B是互斥的,事件A和事件B的概率之和为1,即P(A)+P(B)=1;3. 独立性:如果事件A和事件B是独立的,事件A和事件B发生的概率等于事件A的概率乘以事件B的概率,即P(A∩B)=P(A)×P(B);4. 全概率公式:如果有一系列互斥的事件{B1,B2,…,Bn},它们的概率之和为1,任意事件A的概率可以表示为P(A)=P(A∩B1)+P(A∩B2)+…+P(A∩Bn)。
五、应用概率解决实际问题(10分钟)1. 讲解如何应用概率解决实际问题,如概率论在赌博、保险、统计学等领域中的应用;2. 举例说明如何应用概率解决实际问题,如计算赌徒获胜的概率、保险公司赔付的概率等;3. 让学生尝试解决一些实际问题,并给予解答和反馈。
《概率的基本性质》优质课比赛教案及教学反思

概率的基本性质一、教材分析1、教材的地位和作用(1)教材内容《概率的基本性质》是人教版数学必修3第三章第三节的内容,本节课主要包含了两部分:一是事件的关系与运算,二是概率的基本性质。
(2)地位作用它是本册第二章“统计”的延伸,又是后面学习“古典概型”及“几何概型”的基础。
在整个教学中起到承上启下的作用。
同时也是新课改以来考查的热点之一。
2、教学目标由新课标的要求和学生的认知水平,确定了本节课的教学目标。
知识目标:1.了解随机事件间的关系与运算;2.掌握概率的几个基本性质,并能灵活运用解决实际问题;3.正确理解互斥事件、对立事件的区别与联系。
能力目标:通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生类比归纳的数学思想。
情感目标:通过数学活动,让学生了解数学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的兴趣。
3、教学重点和难点重点:事件间的关系,概率的加法公式。
难点:互斥事件与对立事件的区别与联系。
二、教学方法1、引导发现法主要采用启发、引导的方法,创设各种问题情境,使学生带着问题去主动思考、动手操作、交流合作,进而达到对知识的“发现”和接受,使书本知识成为自己的知识。
它符合辩证唯物主义外因和内因相互作用的关系,也符合教学论中学生主体地位和教师主导作用相统一的原则,它还能充分调动学生的主动性和积极性。
2、探索讨论法让学生独立思考、互相讨论、交流合作;能够使学生在探索讨论的过程中,寻找解决问题的方法。
它有利于学生对知识的主动建构,有利于突出重点、突破难点,有利于发挥学生的探索意识和创新意识。
3、教具准备:多媒体课件、实物投影仪使用意图:增加课堂容量,提高课堂效率。
三、学情分析知识准备:学生在必修一中已经掌握了集合的关系及运算;前两节学习了概率的定义及意义,对概率有了一定的了解,但是对概率的具体性质,还比较模糊。
能力储备:学生经过一学期高中的数学学习,已经基本掌握了高中的数学学习特点,数学思维也逐步向理性层次跃进,但学生自主探究问题的能力及合作交流的意识还不够理想.四、学法指导1、联想类比引导学生借鉴已有的知识和经验,通过分析、类比得出新知识,有利于培养学生的数学情感,提高学生的学习兴趣,更有助于学生对知识的理解和掌握。
高中数学教案:概率的基本性质

高中数学教案:概率的基本性质教案主题:概率的基本性质教学目标:1. 理解概率的基本概念和意义;2. 掌握概率的基本性质;3. 能够运用概率的基本性质解决实际问题。
教学重点:1. 概率的基本概念;2. 概率的加法性质;3. 概率的乘法性质。
教学难点:1. 概率的乘法性质的运用;2. 结合实际问题运用概率的基本性质。
教学准备:1. 教师:概率的基本概念、加法性质和乘法性质的教学材料;2. 学生:教材、课本、作业纸、计算器等。
教学过程:一、导入(5分钟)教师通过提问和讲解引导学生回顾和复习上节课的内容,铺垫本节课的主题。
二、概率的基本概念(10分钟)1. 教师讲解概率的基本概念:试验、随机事件、样本空间、事件的概率等。
2. 教师通过例题引导学生理解概率的基本概念,并与学生进行互动讨论。
三、概率的加法性质(15分钟)1. 教师讲解概率的加法性质,并通过例题说明。
2. 学生进行课堂练习,巩固概率的加法性质的运用。
四、概率的乘法性质(15分钟)1. 教师讲解概率的乘法性质,并通过例题说明。
2. 学生进行课堂练习,巩固概率的乘法性质的运用。
五、实际问题的解决(10分钟)1. 教师提供一些实际问题,并引导学生运用概率的基本性质解决问题。
2. 学生进行小组讨论,然后进行汇报和讨论。
六、拓展延伸(5分钟)教师与学生一起总结本节课的内容,提出一些拓展延伸的问题,激发学生思考和探索的兴趣。
七、作业布置(5分钟)教师布置相应的作业,要求学生运用概率的基本性质解决相关问题。
教学反思:本节课通过讲解概率的基本性质和运用,引导学生理解和掌握概率的基本概念和性质。
同时,通过解决实际问题的训练,培养学生运用概率的能力。
在教学过程中,教师可以通过提问、讲解和示范等方式,激发学生的学习兴趣和思考能力。
在布置作业时,可以设计一些开放性的问题,培养学生的探究能力。
概率的基本性质说课稿

概率的基本性质说课稿尊敬的各位评委老师:大家好!今天我说课的内容是“概率的基本性质”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“概率的基本性质”是高中数学必修 3 第三章概率的重要内容。
在此之前,学生已经学习了随机事件的概率,为本节课的学习奠定了基础。
本节课主要介绍了概率的基本性质,包括概率的取值范围、互斥事件和对立事件的概率加法公式等,这些性质不仅是进一步学习概率的计算和应用的基础,也为后续学习统计学等相关知识提供了重要的理论支持。
二、学情分析在知识方面,学生已经初步了解了概率的概念,但对于概率的基本性质的理解和应用还存在一定的困难。
在能力方面,学生具备了一定的逻辑思维能力和抽象概括能力,但在运用数学知识解决实际问题时,还需要进一步的引导和训练。
在心理方面,高中生思维活跃,好奇心强,具有较强的求知欲,但在学习过程中容易出现注意力不集中、缺乏耐心等问题。
三、教学目标基于以上的教材分析和学情分析,我制定了以下的教学目标:1、知识与技能目标(1)理解概率的基本性质,包括概率的取值范围、概率的加法公式等。
(2)能够运用概率的基本性质解决简单的概率问题。
2、过程与方法目标(1)通过观察、分析、归纳等活动,培养学生的逻辑思维能力和抽象概括能力。
(2)通过实际问题的解决,培养学生运用数学知识解决实际问题的能力。
3、情感态度与价值观目标(1)让学生在学习过程中体验数学的严谨性和科学性,培养学生的数学素养。
(2)激发学生学习数学的兴趣,培养学生勇于探索、敢于创新的精神。
四、教学重难点1、教学重点(1)概率的基本性质,特别是互斥事件和对立事件的概率加法公式。
(2)运用概率的基本性质解决实际问题。
2、教学难点(1)对互斥事件和对立事件概念的理解。
(2)灵活运用概率的基本性质解决复杂的概率问题。
五、教法与学法1、教法为了实现教学目标,突破教学重难点,我将采用以下的教学方法:(1)讲授法:通过讲解概率的基本性质,让学生系统地掌握知识。
概率的基本性质教案

概率的基本性质教案教学目标:1. 理解概率的定义和基本性质;2. 学会计算简单事件的概率;3. 能够应用概率解决实际问题。
教学内容:一、概率的定义1. 引入概率的概念,解释概率的含义;2. 举例说明概率的计算方法。
二、概率的基本性质1. 介绍概率的基本性质,包括互斥事件、独立事件等;2. 通过示例讲解和练习,使学生掌握概率的基本性质。
三、计算简单事件的概率1. 介绍计算简单事件概率的方法;2. 通过示例和练习,使学生能够计算简单事件的概率。
四、应用概率解决实际问题1. 介绍应用概率解决实际问题的方法;2. 通过示例和练习,使学生能够应用概率解决实际问题。
五、总结与评价1. 总结概率的基本性质和计算方法;2. 评价学生的学习效果。
教学资源:1. 教学PPT;2. 练习题和答案;3. 教学视频或动画辅助讲解。
教学步骤:一、概率的定义1. 引入概率的概念,解释概率的含义;2. 举例说明概率的计算方法。
二、概率的基本性质1. 介绍概率的基本性质,包括互斥事件、独立事件等;2. 通过示例讲解和练习,使学生掌握概率的基本性质。
三、计算简单事件的概率1. 介绍计算简单事件概率的方法;2. 通过示例和练习,使学生能够计算简单事件的概率。
四、应用概率解决实际问题1. 介绍应用概率解决实际问题的方法;2. 通过示例和练习,使学生能够应用概率解决实际问题。
五、总结与评价1. 总结概率的基本性质和计算方法;2. 评价学生的学习效果。
教学评价:1. 课堂练习题的完成情况;2. 学生能够应用概率解决实际问题的能力;3. 学生对概率的理解程度和掌握情况。
概率的基本性质教案教学目标:1. 理解概率的定义和基本性质;2. 学会计算简单事件的概率;3. 能够应用概率解决实际问题。
教学内容:六、条件概率1. 引入条件概率的概念,解释条件概率的含义;2. 通过示例讲解和练习,使学生掌握条件概率的计算方法。
七、概率的加法法则1. 介绍概率的加法法则,解释其应用;2. 通过示例讲解和练习,使学生能够运用概率的加法法则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率的基本性质》教案
使用教材:人教版数学必修3
教学内容:1、事件间的关系及运算 2、概率的基本性质
教学目标:1、了解事件间各种关系的概念,会判断事件间的关系;
2、了解两个互斥事件的概率加法公式,知道对立事件的公式,会用公式进行简
单的概率计算;
3、通过学习,进一步体会概率思想方法应用于实际问题的重要性。
教学的重点:事件间的关系,概率的加法公式。
教学的难点:互斥事件与对立事件的区别与联系。
教学的具体过程:
引入:上一次课我们学习了概率的意义,举了生活中与概率知识有关的许多实例。
今天我们要来研究概率的基本性质。
在研究性质之前,我们先来一起研究一下事件之间有什么关系。
一、事件的关系与运算
老师做掷骰子的实验,学生思考,回答该试验包含了哪些事件(即可能出现的结果) 学生可能回答:﹛出现的点数=1﹜记为C 1, ﹛出现的点数=2﹜记为C 2, ﹛出现的点数=3﹜记为C 3, ﹛出现的点数=4﹜记为C 4, ﹛出现的点数=5﹜记为C 5, ﹛出现的点数=6﹜记为C 6.
老师:是不是只有这6个事件呢?请大家思考,﹛出现的点数不大于1﹜(记为D 1)是不是该试验的事件?(学生回答:是)类似的,﹛出现的点数大于3﹜记为D 2,﹛出现的点数小于5﹜记为D 3,﹛出现的点数小于7﹜记为E ,﹛出现的点数大于6﹜记为F ,﹛出现的点数为偶数﹜记为G ,﹛出现的点数为奇数﹜记为H ,等等都是该试验的事件。
那么大家思考一下这些事件之间有什么样的关系呢?
1、 学生思考若事件C 1发生(即出现点数为1),那么事件H 是否一定也发生?
学生回答:是,因为1是奇数
我们把这种两个事件中如果一事件发生,则另一事件一定发生的关系,称为包含关系。
具体说:一般地,对于事件A 和事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作B A ⊇(或A B ⊆)
特殊地,不可能事件记为 ∅,任何事件都包含 ∅。
练习:写出 D 3与E 的包含关系(D 3 ⊆E )
2、再来看一下C 1和D 1间的关系:先考虑一下它们之间有没有包含关系?即若C 1发生,D 1 是否发生?(是,即C 1 ⊆D 1);又若D 1发生,C 1是否发生?(是,即D 1⊆ C 1)
两个事件A ,B 中,若A B B A ⊇⊇,且,那么称事件A 与事件B 相等,记作A =B 。
所以C 1 和D 1相等。
“下面有同学已经发现了,事件的包含关系和相等关系与集合的这两种关系很相似,很好,下面我们就一起来考虑一下能不能把事件与集合做对比。
”
试验的可能结果的全体 ←→ 全集
↓ ↓
每一个事件 ←→ 子集
这样我们就把事件和集合对应起来了,用已有的集合间关系来分析事件间的关系。
3、集合之间除了有包含和相等的关系以外,还有集合的并,由此可以推出相应的,事件A 和事件B 的并事件,记作A ∪B ,从运算的角度说,并事件也叫做和事件,可以记为A+B 。
我们知道并集A ∪B 中的任一个元素或者属于集合A 或者属于集合B ,类似的事件A ∪B 发生等
价于或者事件A发生或者事件B发生。
练习:G∪D3=?G=﹛2,4,6﹜,D3=﹛1,2,3,4﹜,所以G∪D3=﹛1,2,3,4,6﹜。
若出现的点数为1,则D3发生,G不发生;若出现的点数为4,则D3和G均发生;若出现的点数为6,则D3不发生,G发生。
由此我们可以推出事件A+B发生有三种情况:A发生,B不发生;A不发生,B发生;A 和B都发生。
4、集合之间的交集A∩B,类似地有事件A和事件B的交事件,记为A∩B,从运算的角度说,交事件也叫做积事件,记作AB。
我们知道交集A∩B中的任意元素属于集合A且属于集合B,类似地,事件A∩B发生等价于事件A发生且事件B发生。
练习:D2∩H=?(﹛大于3的奇数﹜=C5)
5、事件A与事件B的交事件的特殊情况,当A∩B=∅(不可能事件)时,称事件A与事件B互斥。
(即两事件不能同时发生)
6、在两事件互斥的条件上,再加上事件A∪事件B为必然事件,则称事件A与事件B为对立事件。
(即事件A和事件B有且只有一个发生)
练习:⑴请在掷骰子试验的事件中,找到两个事件互为对立事件。
(G,H)
⑵不可能事件的对立事件
7、集合间的关系可以用Venn图来表示,类似事件间的关系我们也可以用图形来表示。
⊇:A=B:
B A
A∪B: A∩B:
A、B互斥: A、B对立:
8、区别互斥事件与对立事件:从图像上我们也可以看出对立事件是互斥事件的特例,但互斥事件并非都是对立事件。
练习:⑴书P121练习题目4、5
⑵判断下列事件是不是互斥事件?是不是对立事件?
①某射手射击一次,命中的环数大于8与命中的环数小于8;
②统计一个班级数学期末考试成绩,平均分不低于75分与平均分不高于75分;
③从装有3个红球和3个白球的口袋内任取2个球,至少有一个白球和都是红球。
答案:①是互斥事件但不是对立事件;②既不是互斥事件也不是对立事件
③既是互斥事件有是对立事件。
二、概率的基本性质:
提问:频率=频数\试验的次数。
我们知道当试验次数足够大时,用频率来估计概率,由于频率在0~1之间,所以,可以得到概率的基本性质:
1、任何事件的概率P(A),0≦P(A)≦1
2、那大家思考,什么事件发生的概率为1,对,记必然事件为E ,P(E)=1
3、记不可能事件为F ,P(F)=0
4、当A 与B 互斥时,A ∪B 发生的频数等于A 发生的频数加上B 发生的频数,所以 A f =A f +B f ,所以P (A ∪B )=P(A)+P(B)。
5、特别地,若A 与B 为对立事件,则A ∪B 为必然事件,P(A ∪B)=1=P(A)+P(B)→P(A)=1-P(B)。
例题:教材P121例 练习:由经验得知,在某建设银行营业窗口排队等候存取款的人数及其概率如下: 排队人数
0 ~ 10 人 11 ~ 20 人 21 ~ 30 人 31 ~ 40 人 41人以上 概率 0.12 0.27 0.30 0.23 0.08 计算:(1)至多20人排队的概率;
(2)至少11人排队的概率。
三、课堂小结:
1、把事件与集合对应起来,掌握事件间的关系,总结如下表
符号
Venn 图 概率论 集合论 Ω
必然事件
全集 ∅ 不可能事件
空集 A
事件
子集 A B ⊆
事件B 包含事件A
(事件A 发生,则B 一定发生)
集合B 包含集合A
A = B
事件A 与事件B 相等 集合A 与集合B 相等 A ∪B
(A+B )
事件A 与事件B 的并事件 (或者事件A 发生,或者事件B 发生) 集合A 与集合B 的并 A ∩B
(AB )
事件A 与事件B 的交事件 (事件A 发生,且事件B 发生) 集合A 与集合B 的交
A ∩
B =∅
事件A 与事件B 互斥 (事件A 和事件B 不能同时发生) 集合A 与集合B 不相交 A ∩B =∅
A ∪
B =Ω
事件A 与事件B 对立 (事件A 与事件B 有且仅有一个发生) 集合A 与集合B 不相交 2、概率的基本性质:(1)0≦P(A)≦1 (2)概率的加法公式
四、课后思考:概率的基本性质4,若把互斥条件去掉,即任意事件A 、B ,则P (A ∪B )=P(A)+P(B)-P (AB )。