2.1.1 指数幂及其运算性质
2.1.1指数与指数幂的运算 指数幂及其运算性质

【例 3】
1
已知 a 2
+
1
a2
=3,求下列各式的值.
(1)a+a-1; (2)a2+a-2;
解:(1)将
1
a2
+
1
a2
=3
两边平方,
得 a+a-1+2=9,即 a+a-1=7. (2)将a+a-1=7两边平方,得a2+a-2+2=49, 所以a2+a-2=47.
3
3
(3) a2 a 2 .
1
1
知识探究
n am
1
m
an 0
没有意义
探究
1:整数指数幂表示的是相同因式的连乘积,那么分数指数幂
m
an
能否理解为
m
n
个 a 相乘(a>0,m,n∈N*,且 n>1),该式有何规定?
m
答案:不能.分数指数幂是根式的另一种写法,规定 a n = n am .
2.有理数指数幂的运算性质
(1)aras= ar+s
(4)常用的变换方法有: ①把小数化为分数,把根式化为分数指数幂; ②若指数是负数,则对调底数的分子和分母并将负指数化为正指数; ③把分数指数幂、负指数幂看成一个整体,借助有理式中的乘法公式及因式 分解进行变形. (5)注意灵活运用分式化简的方法和技巧.例如,①把分子、分母分解因式,可 约分的先约分;②利用分式的基本性质化繁分式为简分式,化异分母为同分母; ③把适当的几个分式先化简,各个击破;④适当利用换元法.
题型四
1
易错辨析——忽略 a n有意义出错
11
【例 4】 化简:(1-a)[(a-1)-2(-a )2 ]2 .
高中数学:第二章 2.1.1 指数与指数幂的运算 (1)

指数函数2.1.1指数与指数幂的运算预习课本P48~53,思考并完成以下问题(1)n次方根是怎样定义的?(2)根式的定义是什么?它有哪些性质?(3)有理数指数幂的含义是什么?怎样理解分数指数幂?(4)根式与分数指数幂的互化遵循哪些规律?(5)如何利用分数指数幂的运算性质进行化简?[新知初探]1.n次方根定义一般地,如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*个数n是奇数a>0 x>0x仅有一个值,记为naa<0x<0n是偶数a>0x有两个值,且互为相反数,记为±n aa<0x不存在*.2.根式(1)定义:式子na叫做根式,这里n叫做根指数,a叫做被开方数.(2)性质:(n>1,且n∈N*)①(na)n=a.②na n=⎩⎪⎨⎪⎧a,n为奇数,|a|,n为偶数.[点睛](n a)n中当n为奇数时,a∈R;n为偶数时,a≥0,而n a n中a∈R.3.分数指数幂的意义分数指幂正分数指数幂规定:amn=n a m(a>0,m,n∈N*,且n>1)负分数指数幂规定:a-mn=1amn=1n a m(a>0,m,n∈N*,且n>1)0的分数指数幂0的正分数指数幂等于0,0的负分数指数幂没有意义[点睛]分数指数幂amn不可以理解为mn个a相乘.4.有理数指数幂的运算性质(1)a r a s=a r+s(a>0,r,s∈Q).(2)(a r)s=a rs(a>0,r,s∈Q).(3)(ab)r=a r b r(a>0,b>0,r∈Q).5.无理数指数幂一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)任意实数的奇次方根只有一个.()(2)正数的偶次方根有两个且互为相反数.()(3)(π-4)2=4-π.()(4)分数指数幂a mn可以理解为mn个a相乘.()(5)0的任何指数幂都等于0.()-=答案=-:(1)√(2)√(3)√(4)×(5)×2.5a-2可化为()A.a2-5B.a52C.a25D..-a 52-=答案=-:A3.化简2532的结果是()A.5 B.15 C.25 D..125 -=答案=-:D4.计算:π0+2-2×⎝⎛⎭⎫21412=________.-=答案=-:118[例1] 化简: (1)n(x -π)n (x <π,n ∈N *);(2)64a 2-4a +1⎝⎛⎭⎫a ≤12. [解] (1)∵x <π,∴x -π<0. 当n 为偶数时, n(x -π)n =|x -π|=π-x ;当n 为奇数时, n(x -π)n =x -π.根式的化简与求值综上可知,n(x -π)n =⎩⎪⎨⎪⎧π-x ,n 为偶数,n ∈N *,x -π,n 为奇数,n ∈N *.(2)∵a ≤12,∴1-2a ≥0,∴64a 2-4a +1=6(2a -1)2=6(1-2a )2=31-2a .根式化简应遵循的3个原则(1)被开方数中不能含有能开得尽方的因数或因式. (2)被开方数是带分数的要化成假分数.(3)被开方数中不能含有分母;使用ab =a ·b (a ≥0,b ≥0)化简时,被开方数如果不是乘积形式必须先化成乘积的形式.[活学活用]1.若xy ≠0,则使4x 2y 2=-2xy 成立的条件可能是( ) A .x >0,y >0 B .x >0,y <0 C .x ≥0,y ≥0D .x <0,y <0解析:选B ∵4x 2y 2=2|xy |=-2xy ,∴xy ≤0. 又∵xy ≠0,∴xy <0,故选B.2.若(2a -1)2=3(1-2a )3,则实数a 的取值范围为________. 解析:(2a -1)2=|2a -1|,3(1-2a )3=1-2a .因为|2a -1|=1-2a , 故2a -1≤0,所以a ≤12.-=答案=-:⎝⎛⎦⎤-∞,12根式与分数指数幂的互化[例2] 用分数指数幂的形式表示下列各式(式中字母都是正数): (1)13a 2;(2)a 3·3a 2;(3)3b -a 2. [解] (1)13a2=12123a =a2-3. (2)a 3·3a 2=a 3·a 23=a 3+23=a113.(3) 3b -a 2=⎝⎛⎭⎫b -a 213=b 13·⎝⎛⎭⎫-1a 213=b 13·(-a -2) 13=-b 13a2-3根式与分数指数幂互化的规律(1)根指数 化为 分数指数的分母,被开方数(式)的指数 化为 分数指数的分子. (2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算性质解题.[活学活用]3.下列根式与分数指数幂的互化正确的是( ) A .-x =(-x )12(x >0) B.6y 2=y 13(y <0)C .x -34=4⎝⎛⎭⎫1x 3(x >0)D .x -13=-3x (x ≠0)解析:选C -x =-x 12(x >0);6y 2=[(y )2]16=-y 13(y <0);x -34=(x -3)14= 4⎝⎛⎭⎫1x 3(x >0); x 1-3=⎝⎛⎭⎫1x —13=31x(x ≠0). 4.将下列根式与分数指数幂进行互化: ①a4-3;②3a a (a >0);③a 3a ·5a 4(a >0).解:①a4-3=14a 3.②3a a =a 13·a 16=a 12.③原式=a 3·a1-2·a4-5=a143--25=a1710.[例3] 计算下列各式:(1)⎝⎛⎭⎫2350+2-2×⎝⎛⎭⎫214-12-0.010.5; (2)0.0641-3-⎝⎛⎭⎫-780+[(-2)3] 4-3+16-0.75;(3)⎝⎛⎭⎫141-223320.1()a b -- (a >0,b >0).3-2指数幂的运算[解] (1)原式=1+14×⎝⎛⎭⎫4912-⎝⎛⎭⎫110012=1+16-110=1615. (2)原式=0.4-1-1+(-2)-4+2-3=52-1+116+18=2716.(3)原式=g 132244100·a 32·a 123-2·b3-2·b 32=425a 0b 0=425.利用指数幂的运算性质化简求值的方法(1)进行指数幂的运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.(2)在明确根指数的奇偶(或具体次数)时,若能明确被开方数的符号,则可以对根式进行化简运算.(3)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示. [活学活用] 5.计算:(1)0.02713-⎝⎛⎭⎫61412+25634+(22)23-3-1+π0; (2)(a -2b -3)·(-4a -1b )÷(12a -4b -2c ); (3)23a ÷46a ·b ·3b 3.解:(1)原式=(0.33) 13-⎣⎡⎦⎤⎝⎛⎭⎫52212+(44) 34+(223)23-13+1=0.3-52+43+2-13+1=64715.(2)原式=-4a -2-1b -3+1÷(12a -4b -2c ) =-13a -3-(-4)b -2-(-2)c -1=-13ac -1=-a 3c.(3)原式=2a 13÷(4a 16b 16)·(3b 32) =12a 11-36b1-6·3b 32=32a 16b 43.[例4]已知a 12+a1-2=5,求下列各式的值:(1)a+a-1;(2)a2+a-2.[解](1)将a 12+a1-2=5两边平方,得a+a-1+2=5,即a+a-1=3.(2)将a+a-1=3两边平方,得a2+a-2+2=9,∴a2+a-2=7.[一题多变]1.[变结论]在本例条件下,则a2-a-2=________.解析:令y=a2-a-2,两边平方,得y2=a4+a-4-2=(a2+a-2)2-4=72-4=45,∴y =±35,即a2-a-2=±3 5.-=答案=-:±3 52.[变条件]若本例变为:已知a,b分别为x2-12x+9=0的两根,且a<b,求112211 22-a b a b+值.解:11221122-a ba b+=1122211112222--a ba b a b+()()()=12+-2-a b aba b()(). ①∵a+b=12,ab=9,②∴(a-b)2=(a+b)2-4ab=122-4×9=108.∵a<b,∴a-b=-6 3. ③条件求值问题将②③代入①,得11221122-a ba b+=129=-33.条件求值的步骤层级一 学业水平达标1.下列各式既符合分数指数幂的定义,值又相等的是( ) A .(-1)13和(-1)26B .0-2和012C .212和414D . 43-2和⎝⎛⎭⎫ 1 2 -3解析:选C 选项A 中,(-1) 13和(-1)26均符合分数指数幂的定义,但(-1) 13=3-1-1,(-1)26=6(-1)2=1,故A 不满足题意;选项B 中,0的负分数指数幂没有意义,故B 不满足题意;选项D 中,43-2和⎝⎛⎭⎫12-3虽符合分数指数幂的定义,但值不相等,故D 不满足题意;选项C 中,212=2,414=422=212=2,满足题意.故选C.2.已知:n ∈N ,n >1,那么2n(-5)2n 等于( ) A .5 B .-5 C .-5或5D .不能确定解析:选A2n(-5)2n =2n52n =5.3.计算⎝⎛⎭⎫8116-14的结果为( )A.23B.32 C .-23 D .-32解析:选A ⎝⎛⎭⎫8116-14=⎣⎡⎦⎤⎝⎛⎭⎫324-14=⎝⎛⎭⎫32-1=23.4.化简[3(-5)2]34的结果为( )A .5 B. 5 C .- 5 D ..-5解析:选B [3(-5)2]34=[(-5)23]34=512= 5.5.计算(2a -3b -23)·(-3a -1b )÷(4a -4b -53)得( )A .-32b 2 B.32b 2 C .-32b 73 D.32b 73解析:选A 原式=-4-464a b a b-133-5=-32b 2.6.若x ≠0,则|x |-x 2+x 2|x |=________. 解析:∵x ≠0,∴原式=|x |-|x |+|x ||x |=1.-=答案=-:1 7.若x 2+2x +1+y 2+6y +9=0,则(x 2 019)y =___________________.解析:因为 x 2+2x +1+y 2+6y +9=0,所以(x +1)2+ (y +3)2=|x +1|+|y +3|=0,所以x =-1,y =-3.所以(x 2 019)y =[(-1)2 019]-3=(-1)-3=-1. -=答案=-:-1 8.614- 3338+30.125 的值为________. 解析:原式= ⎝⎛⎭⎫522- 3⎝⎛⎭⎫323+ 3⎝⎛⎭⎫123=52-32+12=32. -=答案=-:329.计算下列各式(式中字母都是正数): (1)⎝⎛⎭⎫2a 23b 12⎝⎛-6a 12b 13)÷⎝⎛⎭⎫-3a 16b 56 ; (2)(m 14n -38)8.解:(1)原式=[2×(-6)÷(-3)]a 23+12-16b 12+13-56=4ab 0=4a . (2)原式=(m 14)8(n3-8)8=m 2n -3=m 2n3.10.已知4a 4+4b 4=-a -b ,求4(a +b )4+3(a +b )3的值. 解:因为4a 4+4b 4=-a -B. 所以4a 4=-a ,4b 4=-b , 所以a ≤0,b ≤0,所以a +b ≤0,所以原式=|a +b |+a +b =-(a +b )+a +b =0.层级二 应试能力达标1.计算(2n +1)2·⎝⎛⎭⎫122n +14n ·8-2(n ∈N *)的结果为( ) A.164 B .22n +5 C .2n 2-2n +6D.⎝⎛⎭⎫122n -7解析:选D 原式=22n +2·2-2n -1(22)n ·(23)-2=2122n -6=27-2n =⎝⎛⎭⎫122n -7. 2.1⎛⎫ ⎪⎝⎭12 0-(1-0.5-2)÷⎝⎛⎭⎫27823的值为( )A .-13 B.13 C.43 D.73解析:选D 原式=1-(1-22)÷⎝⎛⎭⎫322=1-(-3)×49=73.故选D. 3.设a >0,将a 2a ·3a 2表示成分数指数幂的形式,其结果是( )A .a 23B .a 55C .a 76D ..a 32解析:选Ca 2a ·3a 2=a 2a ·a 23=2=212a a ⨯53=a 2·a -56=a 2-56=a 76.4.设x ,y 是正数,且x y =y x ,y =9x ,则x 的值为( ) A.19B.43 C .1 D.39解析:选B ∵x 9x =(9x )x ,(x 9)x =(9x )x ,∴x 9=9x . ∴x 8=9.∴x =89=43.5.如果a =3,b =384,那么a [()]b a17n -3=________.解析:a [()]b a 17n -3=3384[()]317n -3=3[(128)17]n -3=3×2n -3. -=答案=-:3×2n -36.设α,β是方程5x 2+10x +1=0的两个根,则2α·2β=________,(2α)β=________. 解析:由根与系数的关系得α+β=-2,αβ=15.则2α·2β=2α+β=2-2=14,(2α)β=2αβ=215.-=答案=-:14 2157.化简求值:(1)⎛⎫ ⎪⎝⎭792 0.5+0.1-2+⎛⎫ ⎪⎝⎭10272-23-3π0+3748;(2)823-(0.5)-3+⎝⎛⎭⎫13-6×⎝⎛⎭⎫81163-4;(3)⎛⎫ ⎪⎝⎭383-23+(0.002)-12-10(5-2)-1+(2-3)0. 解:(1)原式=⎝⎛⎭⎫25912+10.12+⎝⎛⎭⎫64272-3-3+3748=53+100+916-3+3748=100. (2)823-(0.5)-3+⎝⎛⎭⎫13-6×⎝⎛⎭⎫81163-4=(23)23-(2-1)-3+(3-12)-6×⎣⎡⎦⎤⎝⎛⎭⎫3243-4=22-23+33×⎝⎛⎭⎫32-3=4-8+27×827=4. (3)原式=(-1)-23×⎛⎫ ⎪⎝⎭383-23+⎝⎛⎭⎫1500-12-105-2+1 =⎝⎛⎭⎫278-23+(500)12-10(5+2)+1=49+105-105-20+1=-1679.8.已知a =3,求11+a14+11-a14+11+a12+41+a的值. 解:11+a14+11-a14+11+a 12+41+a =2(1+)(1-)a a 1144+21+a12+41+a=21-a12+21+a12+41+a=4(1-)(1+)a a 1122+41+a=41-a +41+a =81-a 2=-1.。
2.1.1有理指数幂及其运算 优秀教学设计

2.1.1有理指数幂及其运算【课题】有理指数幂及其运算【教学目标】:(1)能用数学符号正确表示分数指数幂的意义;(2)明确分数指数幂的引入使指数概念由整数指数扩充到有理指数;(3)能用数学符号正确表示有理指数幂的三条运算性质;(4)能根据幂的运算性质熟练地进行分数指数幂和根式的运算.(5)培养学生猜想归纳的能力和转化能力.【教学重点】分数指数幂和根式的运算和应用【教学难点】分数指数幂的意义【教学过程设计】教学环节教学活动设计意图一、教学概念引入1、练习猜想归纳(负整数指数幂)练习________)(5=ab________)(32=a_______35=aa猜想1)_________53==aa2)与有何关系? =________与呢?2-a2a2-a na-n a归纳1)=_________na-)0(≠a2)=_________a)0(≠a2、观察归纳(分数指数幂)观察:假如我们规定:21aa=)0(≥a313aa=那么你能够把下列的根式可表为:________=n a)0(≥a________54=________53=-________)5(44=________)5(44=-________)5(33=________)5(33=-猜想归纳:通过练习猜想,归纳,帮助学生梳理知识,构建知识体系.________)(=n n a ⎩⎨⎧==_______________________________nn a ________=nm a )0(≥a 3、总结(有理数指数幂及其运算律)指数有理指数幂意义(a 的取值)运算律正整数an n a a a a 个⋅=负整数=-n a )0___(a 奇次根式=na 1偶次根式=na 1)0___(a 正有理数 =nm a)0(≥a 负有理数=nm a_)0___(a 1)2)3)二、例题讲解 例题1 用分数指数幂表示下列各式1)____13=a2)__________322=+n m 例题2 化简1) ____222284=⋅⋅2)_________)5()51(22=-x x 3)_______________221211=+++--mmm m 通过例题的讲解,进一步熟悉有理指数幂的运算性质,培养学生猜想归纳的能力和转化能力.例题3 求值(1)已知是方程的两个实数根,求2121,βα01632=+-x x 值βα+(2)已知,求的值32121=+-xx 110232322++++--xx x x 二、知识的应用通过题组训练,检查学生掌握有理指数幂的运算情况,对学生中尚存的问题及时进行补救.对习题按ABC 三个不同层次进行分类练习,适应学生不同的能力水平。
高一数学指数与指数幂的运算2(1)

4. 例题与练习:
例1 求值:
2
83 ,
1
100 2 ,
( 1 )3 ,
(
16
)
3 4
.
4 81
4. 例题与练习: 例2 用分数指数幂的形式表示下列各式 (其中a>0):
a2 a; a3 3 a2; a a .
4. 例题与练习: 例2 用分数指数幂的形式表示下列各式 (其中a>0):
an
| a
|
a(a 0) a(a 0).
复习引入
2. 根式的运算性质:
① 当n为奇数时, n a n a;
当n为偶数时, n
an
| a
|
a(a 0) a(a 0).
② 当n为任意正整数时,
复习引入
2. 根式的运算性质:
① 当n为奇数时, n a n a;
2.1.1指数与指数幂 的运算
主讲老师:
复习引入
1. 整数指数幂的运算性质:
复习引入
1. 整数指数幂的运算性质:
a m a n a mn (m, n Z ), (a m )n amn (m, n Z ), (ab)n a n bn (n Z ).
复习引入
2. 根式的运算性质:
4. 例题与练习:
例4
已 知x
x 1
1
3,求x 2
x
1
2的
值.
课堂小结
1. 分数指数幂的意义; 2. 分数指数幂与根式的互化; 3. 有理数指数幂的运算性质.
课后作业
1.阅读教材P.50-P.52; 2.《习案》作业十六.
;佳境配资 佳境配资 ;
2.1.1指数与指数运算(分式)

回顾:运算性质
am an amn(m,n Z) (a m )n a mn (m, n Z ) (ab)n an bn(n Z )
推广:正数指数幂推广到有理数指数幂。原有整 数指数幂的运算性质对有理数指数幂仍然适用。
2 1 11 1 5
2 (6) (3)(a3 a2 a6 )(b2 b3 b6 )
2
(m
1 4
3
n8
)8
(m
1 4
)8
3
(n 8
)8
211 115
2 (6) (3) a3 2 6b2 3 6
4ab0 方法:将系数和同底
4a
(23)3 2 3
22 4
1
25 2
(52
1
)2Βιβλιοθήκη 2*(1 )5 2 51
1
5
( 1 )5 (21)5 25 32
2
3
3
4
(16) (2)
4( )
4 ( 2)3 ( 3)3 27
81 3
3
2
8
P82A1
例3、用分数指数幂的形式表示下列根式:
例: 当a 0, n N*, n 1时,n an a,
10
5 a10 5 (a2 )5 a2 a 5
12
(1)3 a12 _3_(a_4_)3 __a_4 _ _a__3_
被开方数的 指数/ 根指数
2 3
a2
3
2
(a 3 )3
2.1.1 指数与指数幂的运算

(
1
6000
) 5730
,
2
(
1
10000
) 5730
,
2
(
1
100000
) 5730
,
.
2
(3)由以上的实例来推断关系式应该是什么?
P
(
1 2
)
t 5730
.
考古学家根据上式可以知道, 生物死亡t年 后,体内碳14的含量P的值.
(4)我们已经知道 1 2,1 22,1 23, ...是正整数指
二、分数指数
• 规定: 1、正数的正分数指数幂的意义为:
m
a n n am (a 0, m, n N *, n 1)
2、正数的负分数指数幂的意义与负整数幂的意义相同
即:a
m n
1
m
an
1 n am
(a 0, m, n N *, n 1)
3、0的正分数指数幂等于0,0的负分数指数幂无意义
我们可以先来考虑这样的问题:
(1)当生物体死亡了5730, 5730×2, 5730×3,… 年后,它体内碳14的含量P分别为原来的多少?
1,
( 1 )2 ,
2
2
(
1 2
)3
,
.
(2) 当 生 物 体 死 亡 了 6000 年 ,10000 年 ,100000 年 后,它体内碳14的含量P分别为原来的多少?
………………………………………… 通过类比方法,可得n次方根的定义.
2n = a xn =a
2叫a的n次方根; x叫a的n次方根.
1.方根的定义 如果xn=a,那么x叫做 a 的n次方根(n th root),
2.1.1 指数幂及其运算

先将根式化为分数指数幂的形式,再运用分数指数幂的运算性
质进行化简.
11
11
7
【解析】(1)原式=a3 ·a4 =a3 +4 =a12 .
111
111
7
(2)原式=a2 ·a4 ·a8 =a2 +4 +8 =a8 .
23
23
13
(3)原式=a3 ·a2 =a3 +2 =a 6 .
1
1
2 13
213
73
了灵活运用运算法则外还要关注条件中的字母是否有隐含的条
件.
1
【正解】由(-a)2 知-a≥0,故 a-1<0.
11
∴(1-a)[(a-1)-2(-a)2 ]2
=(1-a)(1-a)-1·(-a)14=(-a)14 .
【警示】在利用指数幂的运算性质时,要关注条件中有无
隐含条件,在出现根式时要注意是否为偶次方根,被开方数是
(1)4 2+1·23-2 2·64-3 ;
11
(2)
a-b
1
1
-a+b1-2a21 ·b2
a2 +b2
a2 -b2
【解析】(1)原式=22 2+2·23-2 2·2-4=21=2.
1
1
1
1
1
1
(2)原式=a2
+b2 ·a2 a21+b12
-b2
-a21 a2
-b2
1
-b2
2
1
=a2
1
-b2
- a 1 2
方法二:a2+a-2=a2+2aa-1+a-2-2aa-1
=(a+a-1)2-2=25-2=23.
1
1
(2)∵(a2 -a-2 )2=a+a-1-2=5-2=3,
2.1.1指数与指数幂的运算(一)

(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a . ②当n为偶数时:正数的n次方根有 两个(互为相反数).
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a . ②当n为偶数时:正数的n次方根有 两个(互为相反数). 记作:
a b c
4. 计算 5 2 6 .
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数.
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数.
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作:
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a .
( 8 ) ;
3
( 2)
4
( 10) ;
2
4
(3 ) ;
( 4)
(a b) (a b).
2
例2 求下列各式的值:
(1) ( 2)
(3)
7
( 2 ) ;
7
4
( 3a 3) ;
4
3
(8) (3 2) (2 3 ) .
3 4 4 3 3
例3 求出使下列各式成立的x的取值范围:
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a . ②当n为偶数时:正数的n次方根有 两个(互为相反数). 记作: x a .
n
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a . ②当n为偶数时:正数的n次方根有 两个(互为相反数). 记作: x a . ③负数没有偶次方根.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二课时指数幂及其运算性质
1.用分数指数幂的形式表示a3·(a>0)的结果是( B )
(A)(B)(C)a4(D)
解析:因为a>0,所以a3·=a3·==.故选B.
2.下列运算结果中,正确的是( D )
(A)a2·a3=a6(B)(-a2)3=(-a3)2
(C)(+1)0=0 (D)(-a2)3=-a6
解析:a2·a3=a2+3=a5,A错;
(-a2)3=(-1)3×a2×3=-a6,(-a3)2=(-1)2×a3×2=a6,B错;(+1)0=1,C错,故选D.
3.下列各式中成立的一项是( D )
(A)()7=n7(B)=
(C)=(x+y(D)=
解析:A中()7=n7m-7,故A错;B中的===,故B错;C中
不可进行化简运算;D中的=(=(=,故D正确.
4.化简()(-3)÷()等于( C )
(A)6a (B)-a (C)-9a (D)9a
解析:原式=(-3×3)=-9a.故选C.
5.若-=m,则等于( C )
(A)m2-2 (B)2-m2
(C)m2+2 (D)m2
解析:将-=m两边平方,得a-2+a-1=m2,即a+a-1=m2+2,
所以原式=a+=m2+2.故选C.
6.设a>0,将表示成分数指数幂的形式,其结果是( C )
(A)(B)(C)(D)
解析:====a2·=,故选C.
7.若a>1,b>0,a b+a-b=2,则a b-a-b等于( D )
(A) (B)2或-2 (C)-2 (D)2
解析:因为a>1,b>0,所以a b>a-b,(a b-a-b)2=(a b+a-b)2-4=(2)2-4=4,
所以a b-a-b=2.故选D.
8.设x,y是正数,且x y=y x,y=9x,则x的值为( B )
(A)(B) (C)1 (D)
解析:依题意得x9x=(9x)x,(x9)x=(9x)x,所以x9=9x.所以x8=9,所以x==.故选B.
9.-+的值为.
解析:原式=-+=-+=.
-=答案=-:
10.2+1-()-2-()= .
解析:原式=(33+()-4-[()3]=9+-4-=3.
-=答案=-:3
11.若10x=3,10y=4,则102x-y= .
解析:102x-y=102x÷10y===.
-=答案=-:
12.若a=2+,b=2-,则(a+1)-2+(b+1)-2= . 解析:原式=(3+)-2+(3-)-2
=()2+()2
=.
-=答案=-:
13.计算:
(1)(2)0+2-2·(2)+()0.5+;
(2)(·()÷.
解:(1)原式=1+·()++2
=1+++2=4.
(2)原式=×()×()
=2×()
=2×()4
=.
14.当a=4,b=27时,求下列各式的值.
(1)+;
(2)÷().
解:(1)因为====. 又因为=,
所以原式=+,
故当a=4,b=27时,原式=+2=+(33=+9=.
(2)因为原式
=÷()=÷(·=b÷(ab)=.
所以原式==(22=.
15.化简求值:
(1)2×(×)6+(-4×()-×80.25+(-2 005)0;
(2)(2)(-6)÷(-3).
解:(1)原式=2×(×)6+(×-4×-×+1=2×22×33+2-3-2+1=214. (2)原式=[2×(-6)÷(-3)]
=4ab0
=4a.
16.若=9,则3-x的值为( D )
(A)3 (B)(C)81 (D)
解析:将=9两边平方,得3x=81,所以3-x=.故选D.
17.已知a+=3(a>0),下列各式正确的个数为( C )
①a2+a-2=7;②a3+a-3=18;③+=±;④a+=2.
(A)1 (B)2 (C)3 (D)4
解析:将a+=3两边平方,得a2++2=9,
所以a2+a-2=7,故①正确;
将a+=3两边立方,得a3++3a+=27,
所以a3+a-3=18,故②正确;
a++2=(+)2=5,又因为>0,>0,
所以+=,故③错误;
a+=(+)(a+a-1-1)=(3-1)=2,故④正确.故选C.
18.计算:(+2)2 016(2-)2 017= .
解析:原式=(+2)2 016(2-)2 016(2-)
=[(2+)(2-)]2 016(2-)
=2-.
-=答案=-:2-
19.已知函数f(x)=则f()-f(5+)的值为.
解析:因为=<1,而5+>1,
所以f()-f(5+)=·-(5+-5)2+3=-+3=3.
-=答案=-:3
20.已知函数f(x)=,g(x)=.分别计算f(4)-5f(2)g(2)和f(9)-5f(3)g(3)的值,由此概括出涉及函数f(x)和g(x)的对所有不等于零的实数x都成立的一个等式,并加以证明.
名师点拨:由于-与+的乘积恰好为平方差公式的变形.先根据已知条件中解析式的特征计算f(x)·g(x)的值,并结合f(4),f(9)的值计算f(4)-5f(2)g(2)与f(9)-5f(3)g(3)的值均为0,并且由解析式可知f(x2)恰好等于5f(x)g(x),由此可概括出一般的等式f(x2)-5f(x)g(x)=0.
解:由f(x)=,g(x)=,
得
f(4)-5f(2)g(2)=-5××=-
=-=0,
f(9)-5f(3)g(3)=-5××=-=0.
由此得出x≠0时有f(x2)-5f(x)g(x)=0.
证明:f(x2)-5f(x)g(x)
=-5××=-
=-
=0.。