热 统复习

合集下载

热力统计物理复习PPT课件

热力统计物理复习PPT课件

第22页/共28页
2.已知在体积保持不变时,一气体的压强正比于其绝对温度。证明在温度 保持不变时,该气体的熵随体积而增加。
第23页/共28页
3.求V=L3内在Px到Px+dPx, Py到Py+dPy, Pz到Pz+dPz间的自由粒子的量子态数与态密度。
在能级密集的假设下,令n连续
dnx
L
2
dpx
第1页/共28页
4.其它热力学函数

H U pV
自由能
F U TS
等温等容下,自由能永不增加
吉布斯函数 G U TS pV 等温等压下,吉布斯函数永不
增加
第2页/共28页
第二章
1.热力学函数 热力学基本方程 dU TdS pdV
H U pV
dH TdS Vdp
F U TS
dF SdT pdV
l
al
l
l
e l 1
巨配分函数 l
1 e l l
l
l
平均总粒子数 N ln
(费米)
l
1 e l l
l
l
内能
U ln
广义力
Y 1 ln
y
p 1 ln
V

S
k
ln
ln
ln
S
k
ln
2.玻色-爱因斯坦凝聚 P230 了解
第13页/共28页
dnx dny dnz
4V
h
p2dp
将 p2 代入上式,得:
2m
4V
h3
p2dp
4V
h3
1
2md (2m )2
2V
h3

考研_热统重点复习试题及解答

考研_热统重点复习试题及解答

热统重点复习题2005一、名词解释:1、状态函数:任何一个物理量,只要它是描述状态的,是状态参量的单值函数,则该物理量就是状态函数。

2、内能:系统处于一定状态下是具有一定能量的,这种由系统热运动的宏观状态所决定的能量,就叫做内能。

3、自由能判据:对只有体积变化作功的系统,若体积、温度不变,则△F≤0该式表明:等温等容过程中自由能不增加,系统中发生的过程总是向着自由能减少的方向进行,平衡态时自由能最小。

4、吉布斯函数:1.定义G=U-TS+PV2.性质①是态函数,单位焦耳(J),广延量。

②由熵增加原理可知在等温等容过程中,有GA-GB≥W即等温等压过程中,除体积变化功外,系统对外作的功不大于吉布斯函数的减少。

即等温等压过程中,吉布斯函数的减少等于系统对外作的最大非膨胀功(最大功原理).5、吉布斯判据:等温等压系统处在稳定平衡态的必要和充分条件是△G>0平衡态的吉布斯函数极小。

对等温等压系统中进行的过程,系统的吉布斯函数不增加,系统中发生的过程是向着吉布斯函数减少的方向进行,平衡态时,吉布斯函数最小(吉布斯判据);6、黑体辐射:若一个物体在任何温度下都能将投射到它上面的电磁波全部吸收而无反射,则这种物体叫黑体,黑体的辐射叫黑体辐射。

7、熵判据:孤立系统处在稳定平衡态的必要和充分条件为△S<0平衡态熵极大。

8、自由能判据:等温等容系统稳定平衡态的必要和充分条件为△F> 0平衡态的自由能极小。

9、玻尔兹曼分布:玻尔兹曼分布是玻尔兹曼系统处于平衡态时的最概然(即最可几)分布,按照等概率原理,也就是系统微观状态数最多的分布。

10、玻尔兹曼关系:ΩSK=ln该式表明:熵是系统混乱程度(即无序度)的定量表示,它等于玻尔兹曼常数K乘以系统微观状态数的对数。

11、系综:系综是指由大量结构完全相同、处于给定的相同宏观条件下彼此独立的假想系统的集合,其中每一个系综都与实际讨论的真实系统有相同的哈密顿,但有不同的微观状态,这种系统的集合叫统计系综(简称系综)。

(完整版)热力学与统计复习题

(完整版)热力学与统计复习题

复习提纲一、填空题:1.特性函数是指在________选择自变量的情况下,能够表达系统_________的函数。

2.能量均分定理说:对于处在温度为T 的平衡状态的经典系统,粒子能量函数中的每一个________的平均值等于___________。

3.自然界的一切实际宏观过程都是_________过程,无摩擦的准静态过程是______ _过程。

4.熵增加原理是说,对于绝热过程,系统的熵_____________。

5.卡诺定理指出:工作于相同的高温热源和相同的低温热源之间的一切可逆机,其效率都____________, 与______________无关。

6.绝对零度时电子的最大能量称为___________________。

7.孤立系统经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。

8.内能是 函数。

9.一般工作于两个一定温度热源之间的热机效率不大于 。

10.TH V P ∂⎛⎫= ⎪∂⎝⎭ 。

11.三维自由粒子的μ空间是 维空间。

12.体积V 内,能量在d εεε-+范围内自由粒子的可能状态数为 。

13.多元单相系的化学反应平衡条件是 。

14.克拉伯龙方程的表达式为 。

15.玻色系统中粒子的最概然分布为 。

二、选择题:1. 假设全同近独立子系统只有2个粒子,3个个体量子态。

那么下面说法错误的是:( )A. 如果该系统是玻尔兹曼系统,那么该系统共有9个系统微观状态。

B. 如果该系统是费米系统,那么该系统共有6个系统微观状态。

C. 如果该系统是费米系统,那么该系统共有3个系统微观状态。

D. 如果该系统是玻色系统,那么该系统共有6个系统微观状态。

2.关于热力学和统计物理平衡态说法错误的是: ( )A. 一个宏观的平衡状态包含了大量的系统的微观状态。

B. 它是一个动态的平衡,宏观量存在涨落,但是热力学理论不能够考虑涨落。

C. 宏观量都有对应的微观量。

D. 虽然系统的宏观量不随时间发生变化,但是它不一定就是一个平衡态。

热力学统计物理总复习知识点

热力学统计物理总复习知识点

热力学统计物理总复习知识点热力学部分第一章热力学的基本规律1、热力学和统计物理学研究的对象是由大量微观粒子组成的宏观物质系统。

这些系统可以分为三类:孤立系、闭系和开系。

2、热力学系统平衡状态的四种参量是几何参量、力学参量、化学参量和电磁参量。

3、一个物理性质均匀的热力学系统称为相。

相的数量决定了系统是单相系还是复相系。

4、热平衡定律(热力学第零定律)表明,如果两个物体各自与第三个物体达到热平衡,那么它们彼此也处于热平衡。

5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。

6、XXX方程是对理想气体状态方程作了修正之后的实际气体的物态方程,考虑了气体分子之间的相互作用力(排斥力和吸引力)。

7、准静态过程是由无限靠近平衡态组成的过程。

在准静态过程中,系统每一步都处于平衡态。

8、准静态过程外界对气体所做的功可以表示为:dW=-pdV。

外界对气体所做的功是一个过程量。

9、绝热过程是系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响的过程。

在绝热过程中,内能U 是一个态函数,可以表示为W=U_B-U_A。

10、热力学第一定律(能量守恒定律)表明,任何形式的能量都不能消失或创造,只能从一种形式转换成另一种形式,能量的总量保持恒定。

它的热力学表达式是U_B-U_A=W+Q,微分形式是dU=dQ+dW。

11、焓是一个态函数,可以表示为H=U+pV。

在等压过程中,焓的变化量等于内能的变化量加上压强与体积的乘积。

等压过程系统从外界吸收的热量等于焓的增加量。

12、焦耳定律表明,气体的内能只是温度的函数,与体积无关,即U=U(T)。

13、定压热容比和定容热容比分别表示为:C_p=(∂H/∂T)/(∂U/∂T)和C_V=(∂U/∂T)/(∂V/∂T)。

迈耶公式表明,定压热容比和定容热容比之差等于气体摩尔热容与气体摩尔气体常数之积:C_p-C_V=nR。

14、绝热过程的状态方程可以表示为pV=const,TV=const,γ=const。

考研_热统重点复习试题及解答

考研_热统重点复习试题及解答

热统重点复习题2005一、名词解释:1、状态函数:任何一个物理量,只要它是描述状态的,是状态参量的单值函数,则该物理量就是状态函数。

2、内能:系统处于一定状态下是具有一定能量的,这种由系统热运动的宏观状态所决定的能量,就叫做内能。

3、自由能判据:对只有体积变化作功的系统,若体积、温度不变,则△F≤0该式表明:等温等容过程中自由能不增加,系统中发生的过程总是向着自由能减少的方向进行,平衡态时自由能最小。

4、吉布斯函数:1.定义G=U-TS+PV2.性质①是态函数,单位焦耳(J),广延量。

②由熵增加原理可知在等温等容过程中,有GA-GB≥W即等温等压过程中,除体积变化功外,系统对外作的功不大于吉布斯函数的减少。

即等温等压过程中,吉布斯函数的减少等于系统对外作的最大非膨胀功(最大功原理).5、吉布斯判据:等温等压系统处在稳定平衡态的必要和充分条件是△G>0平衡态的吉布斯函数极小。

对等温等压系统中进行的过程,系统的吉布斯函数不增加,系统中发生的过程是向着吉布斯函数减少的方向进行,平衡态时,吉布斯函数最小(吉布斯判据);6、黑体辐射:若一个物体在任何温度下都能将投射到它上面的电磁波全部吸收而无反射,则这种物体叫黑体,黑体的辐射叫黑体辐射。

7、熵判据:孤立系统处在稳定平衡态的必要和充分条件为△S<0平衡态熵极大。

8、自由能判据:等温等容系统稳定平衡态的必要和充分条件为△F> 0平衡态的自由能极小。

9、玻尔兹曼分布:玻尔兹曼分布是玻尔兹曼系统处于平衡态时的最概然(即最可几)分布,按照等概率原理,也就是系统微观状态数最多的分布。

10、玻尔兹曼关系:ΩSK=ln该式表明:熵是系统混乱程度(即无序度)的定量表示,它等于玻尔兹曼常数K乘以系统微观状态数的对数。

11、系综:系综是指由大量结构完全相同、处于给定的相同宏观条件下彼此独立的假想系统的集合,其中每一个系综都与实际讨论的真实系统有相同的哈密顿,但有不同的微观状态,这种系统的集合叫统计系综(简称系综)。

热力学与统计物理期末复习笔记

热力学与统计物理期末复习笔记

《热力学统计物理》期末复习一、简答题1、写出焓、自由能、吉布斯函数的定义式及微分表达式(只考虑体积变化功)答:焓的定义H=U+PV焓的全微分dH=TdS+Vdp自由能的定义F=U-TS,自由能的全微分dF=-SdT-PdV;吉布斯函数的定义G=U-TS+PV吉布斯函数的全微分dG二SdT+VdP2、什么是近独立粒子和全同粒子?描写近独立子系统平衡态分布有哪几种?答:近独立子系统指的是粒子之间的相互作用很弱,相互作用的平均能量远小于单个粒子的平均能量,因而可以忽略粒子之间的相互作用。

全同粒子组成的系统就是由具有完全相同的属性(相同的质量、电荷、自旋等)的同类粒子组成的系统。

描写近独立子系统平衡态分布有费米-狄拉克分布、玻色-爱因斯坦分布、玻耳兹曼分布。

3、简述平衡态统计物理的基本假设。

答:平衡态统计物理的基本假设是等概率原理。

等概率原理认为,对于处于平衡状态的孤立系统,系统各个可能的微观状态出现的概率是相等的。

它是统计物理的基本假设,它的正确性由它的种种推论都与客观实际相符而得到肯定。

4、什么叫特性函数?请写出简单系统的特性函数。

答:马休在1869年证明,如果适当选择独立变量(称为自然变量),只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。

这个热力学函数称为特性函数。

简单系统的特性函数有内能U=U(S、V),焓H=H(S、P),自由能F=F(T、V),吉布斯函数G=G(T、P)。

5、什么是卩空间?并简单介绍粒子运动状态的经典描述。

答:为了形象的描述粒子的运动状态,用6,…,q r ; P i,…,P r共2r个变量为直角坐标,构成一个2r维空间,称为卩空间。

粒子在某—时刻的力学运动状态q i / ,q r;P i / , P r可用a空间的一个点表示。

6、试说明应用经典能量均分定理求得的理想气体的内能和热容量中哪些结论与实验不符(至少例举三项)。

完整版热统知识点总结

完整版热统知识点总结

第一类知识点1.大量微观粒子的无规则运动称作物质的热运动.2.宏观物理量是微观物理量的统计平均值.3.熵增加原理可表述为:系统经绝热过程由初态变到终态,它的熵永不减小.系统经可逆绝热过程后熵不变.系统经不可逆绝热过程后熵增加.孤立系中所发生的不可逆过程总是朝着熵增加的方向进行.4.在某一过程中,系统内能的增量等于外界对系统所做的功与系统从外界吸收的热量之和.5.在等温等容条件下,系统的自由能永不增加.在等温等压条件下,系统的吉布斯函数永不增加.6.理想气体的内能只是温度的函数,与体积无关,这个结论称为焦耳定律. 8.户[/回(3 V ) T {d T ) V9.彦1 1(s P) I。

S JS p10.户1 二—巨1(s P J T (s T J11. dU = TdS—pdV12. dH = TdS + Vdp13. dF = - SdT—pdV14. dG = - SdT + Vdp15.由dU = TdS - pdV可得,T =(吆'(s S JV16.由dH = TdS + Vdp可得,V =[里, (s P )S17.单元复相系达到平衡所要满足的热平衡条件为各相温度相等.18.单元复相系达到平衡所要满足的力学平衡条件为各相压强相等.19.单元复相系达到平衡所要满足的相变平衡条件为各相化学势相等.20.对于一级相变,在相变点两相的化学势相等.在相变点两相化学势的一阶偏导数不相等.21.对于二级相变,在相变点两相的化学势相等.在相变点两相化学势的一阶偏导数相等.在相变点两相化学势的二阶偏导数不相等.22.汽化线有一终止点c,称为临界点.汽化线、熔解线、升华线交于一点,名为三相点.23.根据能氏定理:lim]生]=0. lim]更]=0.T-0(S p ) T,S V )T T24.盐的水溶液单相存在时,其自由度数为3.25.盐的水溶液与水蒸气平衡时,该系统的自由度数为(2 ).5.盐的水溶液、水蒸气和冰三相平衡共存时,该系统的自由度数为1.26. k元甲相系的自由度数为(k—①+ 2).27.凝聚系的熵在等温过程中的改变随绝对温度趋于0.28.热力学第三定律可以表述为:不可能通过有限的步骤使一个物体冷却到绝对温度的零度.29.当两相用固定的半透膜隔开时,达到平衡时两相的温度必须相等.达到平衡时两相的压强不必相等.30.如果某一能级的量子状态不止一个,该能级就是简并的.一个能级的量子态数称为该能级的简并度.31.线性谐振子的能级是等间距的,相邻两能级的能量差取决于振子的圆频率.32.由玻色子组成的复合粒子是玻色子.33.由偶数个费米子组成的复合粒子是玻色子.34.由奇数个费米子组成的复合粒子是费米子.35.自然界中的〃基本”微观粒子可分为两类,称为玻色子和费米子.36.平衡态统计物理的基本假设是等概率原理.37.等概率原理认为,对于处在平衡状态的孤立系统,系统各个可能的微观状态出现的概率是相等的.38.对于处在平衡状态的孤立系统,微观状态数最多的分布,出现的概率最大,称为最概然分布.39. 一般情形下气体满足经典极限条件,遵从玻耳兹曼分布.40.定域系统遵从玻耳兹曼分布.41.固体中原子的热运动可以看成3N个振子的振动.42.对于处在温度为T的平衡状态的经典系统,粒子能量中每一个平方项的平均值等于1 kT.243.由能量均分定理可知:温度为T的N个单原子分子组成的理想气体的内能是3— NkT.244.由能量均分定理可知:温度为T的N个刚性双原子分子组成的理想气体的内能是5 NkT.245.根据能量均分定理,温度为T时,单原子分子的平均能量为3kT .246.根据能量均分定理,温度为T时,刚性双原子分子的平均能量为5 kT .247.在无穷小的准静态过程中系统从外界吸收的热量等于粒子在各能级重新分布所增加的内能.48.顺磁性固体可以看作是由定域近独立的磁性离子组成的系统,遵从玻耳兹曼分布.49.光子气体遵从玻色分布.50.金属中的自由电子遵从费米分布.51.满足经典极限条件的玻色系统遵从玻耳兹曼分布.52.空腔内的电磁辐射可看作光子气体.53.玻耳兹曼关系表明,某个宏观状态对应的微观状态数愈多,它的混乱度就愈大,熵也愈大.54.满足经典极限条件的费米系统遵从玻耳兹曼分布.55.光子的能量动量关系为£= cp.56.光子的自旋量子数为1.57.平衡辐射的内能密度与绝对温度的四次方成正比.58.普朗克在推导普朗克公式时,第一次引入了能量量子化的概念,这是物理概念的革命性飞跃.普朗克公式的建立是量子物理学的起点.59.描写N个单原子分子组成的理想气体状态的4空间是6维的.60.描写N个单原子分子组成的理想气体状态的「空间是6 N维的.61.由N个单原子分子组成的理想气体,该系统任一微观状态在4空间由N个点表示.62.由N个单原子分子组成的理想气体,该系统任一微观状态在「空间由1个点表示.63.粒子在某一时刻的力学运动状态可以用R空间中的1个点表示.64.在统计物理学中,应用系综理论可以研究互作用粒子组成的系统.65.设想有大量结构完全相同的系统,处在相同的宏观条件下,我们把这大量系统的集合称为统计系综.66.具有确定的N,匕T值的系统的分布函数,这个分布称为正则分布.67.具有确定的匕T, R值的系统的分布函数,这个分布称为巨正则分布.68.具有确定的N,匕E值的系统的分布函数,这个分布称为微正则分布.第二类知识点1.体胀系数a为:L[空]V(S T)p2.压强系数p为:1 f^P]P(3T)V3.等温压缩系数上为—▲(空,T V(S p )T4.在只有体积变化功的条件下,当系统在准静态过程中有体积变化”时,外界对系统所作的功为-pdV5.热力学第二定律的数学表述为dS > dQ T6.焦耳系数为f空](3 V)U7.焦耳定律可用式子表示为f3U} = 0(3 V )T8. n摩尔理想气体的物态方程为pV = nRT9.n摩尔范氏气体的物态方程为(V _nb)= nRT10.摄氏温度/与热力学温度T之间的数值关系为t = T - 273.1511.可逆绝热过程中,系统温度随压强的变化,可用偏导数表示为[9[ s12.气体经节流过程H不变.13.节流过程的重要特点是焓不变.14.平衡辐射的辐射压强p与辐射能量密度u之间的关系为p = 1 u 315.均匀系统热动平衡的稳定性条件为C > 0 [2]< 0V(3 V )T16.对于均匀系统,有如下方程:dU = TdS—pdVdF =—SdT—pdVdH = TdS + VdpdG =—SdT + Vdp17.焦-汤系数为(空'13P人H18.熵判据的适用条件是:孤立系统19.自由能判据的适用条件是:温度和体积不变20.吉布斯函数判据的适用条件是:温度和压强不变21.对于单元系相图,其中OS段曲线为升华曲线,OC段曲线为汽化曲线,OL 段曲线为熔解曲线.卜p22.对于范氏气体的理论等温线,其中BN段为过饱和蒸气.AJ段为过热液体. OB段为气态.AR段为液态.23.不考虑粒子的自旋,在x f x + dx,y T y + dy,z - z + dz,p - p + dp,p y T p y+dp y,p z T p z+ dp z内,自由粒子可能的量子态数为dxdydzdp dp dph 324.不考虑粒子的自旋,在体积v内,动量在p T p + dp,p T p+dp,p z T p^ + dp z内,自由粒子可能的量子态数为VdPx;3y dp25.不考虑粒子的自旋,在体积V内,动量大小在p T p + dp,动量方向在0T O+d6中一①+d①的范围内,自由粒子可能的量子态数为v2sin0即d0的h 3 26.不考虑粒子的自旋,在体积V内,动量大小在p T p + dp的范围内(动量方向为任意),自由粒子可能的量子态数为4n Vp 2即h 327 .不考虑粒子的自旋,在体积V 内,在£ -£ + d £的能量范围内,自由粒子可能的量子态数为需(2m )2 £ 2d28 .经典极限条件为e a >> 1玻色分布为aI费米分布为30 .对于玻耳兹曼系统,与分布a }相应的系统的微观状态数为YN-! n w^iI31 . Maxwe 〃速度分布律为-n (—m —)32e - 2kT 32+v2+ v2)dv dv dv2 冗 kTxy32 . Maxwell 速率分布律为(B ) f (v )dv - 4兀n (—m — )32e -2K kT33 .根据能量均分定理,在温度为T 时,刚性双原子分子的平均能量为5 3e - 5 kT ,单原子分子的平均能量为e - 3 kT ,非刚性双原子分子的平均能量2 2 为 £-7 kT2 34.由能量均分定理求得1摩尔单原子分子理想气体的内能为U - 3RT ,单原m 2子分子理想气体的定容摩尔热容为C - 3R .V , m 229.玻耳兹曼分布为 a =① e -a-Pe Im . 2kT Vv 2dv35.在量子统计理论中,理想气体熵函数的统计表达式为( S S )S = Nk In Z -P--In Z -k In N!I 1 S P 1J36.设爱因斯坦固体由N个原子组成,在高温极限情况下,该系统的热容量为37.对于玻色系统,与分布%}相应的系统的微观状态数为n皆" l l l38.对于费米系统,与分布蒋}相应的系统的微观状态数为n「Ji i a !(攻-a )!39.费米系统在最概然分布下,处在能量为s的量子态s上的平均粒子数为1e a+俄s +140.玻色系统在最概然分布下,处在能量为s的量子态s上的平均粒子数为e a+Ps s -141.玻耳兹曼系统在最概然分布下,处在能量为s的量子态s上的平均粒子数为s42 .在低频极限的情况下,辐射场的内能按频率的分布为V ,U (T ,3)d 3 = kT3 2 d 3兀 2 C 343.在高频极限的情况下,辐射场的内能按频率的分布为V 岫U (T, 3)d 3 = ------- 方 3 3 e一kT d 344.对于玻色系统,内能的表达式为:U = --ln己印兀 2 C 345.对于玻色系统,平均总粒子数N可通过ln己表示为N = --ln己S a46.对于玻色系统,广义力丫的表达式为y =—101口三P办47.含有氧气、一氧化碳和二氧化碳的混合气体是三元系.48.糖的水溶液和水蒸气共存是二元二相系.49.当温度趋于绝对零度时,物质的体膨胀系数a f 050.当温度趋于绝对零度时,物质的压强系数P t 051.根据多兀复相系的热力学方程dU - TdS - pdV + 2L \x dn可得:i i_( du\1 s ,V ,n j52.粒子数为N的玻耳兹曼系统,当外参量y改变时,外界对系统的广义作用力丫的表达式为Y = - —^-InZP dy i53.粒子数为N的玻耳兹曼系统,内能的表达式为U=-N — \nZ Sp 154.玻耳兹曼关系为S = —nQ55.对于费米系统,内能的表达式为° = —&1口己56.对于费米系统,燧的表达式为S = k InH - oi - p -^-InESa SBio。

热力学与统计物理 总复习提要

热力学与统计物理 总复习提要

复习提要第一章 热力学的基本规律热力学的状态描述和物态方程:⎧⎧⎪⎪⎧⎪⎨⎨⎨⎪⎩⎩⎪⎪⎩孤立系统: 系统闭系非孤立系统开系外界⎧⎪⎧⎪⎪⎪⎪⎪⇒⇒→⎨⎨⎪⎪⎪⎪⎩⎪⎪⎩静态(稳恒态) 热平衡力学平衡平衡态热力学平衡热动平衡相平衡化学平衡非平衡态⎧⎫⎪⇒⎨⎬⎪⎭⎩内参量状态参量相互之间的关系物态方程外参量 ⎧⎫⎪⎪⇒⎨⎬⎪⎪⎭⎩膨胀系数压力系数引进了循环公式压缩系数 §2 热力学第零定律−−−−→→→+物态方程第零定律温度温度计温标(三个要素)§3 热力学第一定律()⇒功的概念两个例子活塞做功、电场做功i dX ⇒∑i i外界对系统做功的广义公式dw=Y ↔功:外界系统的能量交换(单位:焦耳)热量的概念:系统与系统之间传递的能量,单位为卡。

是一个过程量,不属于某一个系统。

绝热过程:系统与外界没有热量交换的过程。

内能:系统内无规热运动能量的度量。

是指在绝热过程中,外界对系统做功的多少仅与系统的初态和终态有关,与过程的路径无关。

n T ⎧⎪⎪⎨⎪⎪⎩(1):表示系统内无规热运动能量的度量 (2):是相对量,可表示为给定能量值加一个常数U+U 内能(四点)(3):是系统的状态函数,简称态函数 (4):过程中系统的内能可表示和的函数(公式1.21)⎧⎪⎨⎪⎩能量转化和守恒定律热力学第一定律两种表述数学表达式(dU=dQ+dW)§4 热容量、焓、绝热方程、卡诺循环⎧⎪⎧⎫⎨⎨⎬⎪⎩⎭⎩定义和数学表达式热容量定容热容量是一个过程量他们之间的关系定压热容量H=U+pV ⎧⎪⎨⎪⎩物理意义焓焓的定义式:是状态函数⎧⎨⎩焓是定压条件下引入的概念 内能是在绝热过程引入的概念 绝热方程:P V C C r C ⎛⎫== ⎪⎝⎭rPV , 物态方程:PV RT ='2:T ηη⎧⎪⎪⎪⎨⎪⎪=⎪⎩12112定义T -T 卡诺循环热机效率:=T 逆卡诺循环的工作系数T -T§5 热力学第二定律⎧⎨⎩系统状态变化方向定律热力学第二定律开氏描述和克劳休斯描述 卡诺定理和卡诺热机及其效率:121T T T η-=(理想气体)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压缩时) 。 4. 温度(温度表征物体的冷热程度) ,物态方程:主要掌握理想气体 的物态方程(物态方程是温度与状态参量之间的函数关系。对于 简单系统:有 f(P,V,T)=0,理想气体的物态方程为������������ = ������������������) 。 5. 热容量 (一个系统在某一过程中温度升高 1K 所吸收的热量称作系 统在该过程的热容量)和焓(在等压过程中系统从外界吸收的热 量等于态函数焓的增加值,������ = ������ + ������������) 。 二.对定律的理解 1.热力学第零定律:两个物体达到热平衡时具有相同的温度。 2.热力学第一定律:定义式(��; ������) ,物理意义(自然 界一切物质都具有能量, 能量有各种不同的形式, 可以从一种形式转 化为另一种形式, 从一个物体传递到另一个物体, 在传递与转化中能 量的数量不变) 。理想气体的内能。 3 热力学第二定律:表述(克氏表述:不可能把热量从低温物体传到 高温物体而不引起其他变化;开氏表述:不可能从单一热源吸热使 之完全变成有用的功而不引起其他变化) ,应用(卡诺定理:所有工 作于两个一定温度之间的热机,以可逆机的效率为最高) 。可逆过程 (如果一个过程发生后,用一定的方法可能把它留下的后果完全消 除而使一切恢复原状,这个过程称为可逆过程) ,不可逆过程(如果 一个过程发生后,不论用任何曲折复杂的方法都不可能把它留下的 后果完全消除而使一切恢复原状,这个过程称为不可逆过程)的理 解,熵的增加原理的理解(经绝热过程后,系统的熵永不减少;系
热统
第一章:热力学的基本规律
一.基本概念: 1. 热力学的平衡态:概念(在不受外界影响的条件下,系统的性质 不随时间变化的状态为热力学平衡态) ,特点(1.驰豫时间 2.不受 外界条件影响 3.热动平衡 4.非孤立系的平衡态 5.宏观系统不考虑 涨落)等。 2. 热力学系统分类(孤立系、闭系、开系)及对各系统的理解
有无能量交换 无 有 有 有无物质交换 无 无 有 系统种类 孤立系 闭系 开系
3. 状态参量(足以确定系统的平衡状态的自变量,包括几何参量、 力学参量、化学参量和电磁参量等) 。准静态过程(1.系统从一个 状态(平衡态或非平衡态)变化到另一个状态的过程叫热力学过 程 2.准静态过程:过程由无限靠近的平衡态组成,过程进行的每 一步,系统都处于平衡态。3.近似的准静态过程:是一个理想的极 限概念。4.准静态过程的判据和重要性质:a 驰豫时间判据:系统 的体积改变所需要的时间远大于驰豫时间,则在改变过程中气体 有足够时间恢复平衡。则可看作准静态过程。b 对于无摩擦阻力 系统,外界作用力可用平衡态状态参量来表示,如准静态膨胀或
1.内能、焓、自由能和吉布斯函数的全微分 2.麦式关系的简单应用。
第三章:单元系的相变
1.热动平衡判据。 2.开系的热力学基本方程(化学势)
3.单元系的复相平衡条件。 第六章.近独立粒子的最概然分布
1.粒子和系统微观状态的描述以及 空间的概念的理解 2.态密度重要概念;及计算,玻尔兹曼系统、玻色系统、费米系统的 区别与联系。 3.等概率原理; 4.玻尔兹曼分布、波色分布、费米分布的推导和物理意义,三种分布 的关系。
统经可逆绝热过程后熵不变,经不可逆绝热过程后熵增加,在绝热 条件下熵减少的过程是不可能实现的) 。 4.热力学第三定律(不可能通过有限的步骤使一个物体冷却到绝对温 度的零度,即绝对零度不能达到) 。 三.应用 1.会计算准静态过程的功。 2.会计算理想气体的熵变。 3.熵增加原理。
第二章均匀物质的热力学性质
第七章:玻尔兹曼统计
1.玻尔兹曼分布的热力学公式,玻尔兹曼关系;
2.麦克斯韦速度分布律,能量均分定理 3.理想气体的内能和热容量,熵。 4.固体热容的爱因斯坦理论;
第八章:玻色统计和费米统计
1 玻色分布和费米分布热力学量的统计表达式 2 光子气体的性质 3 玻色——爱因斯坦凝聚现象 4 金属中的自由电子气体的性质。
相关文档
最新文档