1数值计算方法1解析
数值计算方法和应用

数值计算方法和应用数值计算方法是指将数学问题转化为计算机程序来求解的一种方法。
随着计算机技术的不断发展,数值计算方法已经成为解决各种实际问题的重要手段。
在这篇文章中,我们将介绍数值计算方法的基础知识和应用。
一、基础知识1.1 数值解数值解是指通过数值计算方法得到的近似解。
对于某些复杂的数学问题,很难得到精确解,这时就需要采用数值计算方法来求解。
数值解的精度取决于算法本身的精度以及所使用的计算机的精度。
1.2 常用数值计算方法常用的数值计算方法包括求解方程、插值和拟合、微积分等。
其中,求解方程是数值计算方法中应用最广泛的一种方法。
通过数值计算方法求解方程的思路是将方程转化为一个数值逼近问题,然后采用数值计算方法求解出近似解。
插值和拟合是另外一种常用的数值计算方法,它们主要用于分析和处理实验数据,用来预测未知变量的值。
1.3 数值稳定性在进行数值计算时,数值稳定性是非常重要的一方面。
数值稳定性指的是计算结果受到输入数据误差的影响程度。
如果计算结果对输入数据的微小变化非常敏感,那么该算法就是不稳定的。
否则,该算法就是稳定的。
在选择数值计算方法时,需要考虑计算结果的稳定性。
二、应用2.1 工程计算数值计算方法在工程计算中也得到了广泛的应用。
工程计算包括结构分析、流体力学等领域。
在这些领域中,需要对各种物理现象进行数值模拟和分析。
利用数值计算方法可以得到复杂系统的数值解,帮助工程师掌握系统的性能和行为规律,做出正确的决策。
2.2 金融计算金融计算是另外一种需要应用数值计算方法的领域。
金融计算通常涉及大量的金融数据,例如股票价格、汇率等。
利用数值计算方法可以对这些数据进行分析,预测未来的价格趋势,提高投资的成功率。
2.3 数据科学数据科学是近年来兴起的一种新兴领域。
数据科学利用大数据分析技术,对各种数据进行分析,预测未来的趋势,挖掘出隐藏在数据背后的信息。
数值计算方法是数据科学中最基础的方法之一,无论是数据采集、数据处理还是数据分析,都需要通过数值计算方法得到精确的数据结果。
数值方法和解析方法

数值方法和解析方法数值方法和解析方法是数学中常用的两种求解问题的方法。
它们分别适用于不同类型的问题,有着各自的优势和局限性。
本文将介绍数值方法和解析方法的基本概念、特点和应用领域,并比较它们之间的差异。
一、数值方法数值方法是通过近似计算来求解数学问题的方法。
它基于一系列数值计算的步骤和算法,通过迭代逼近的方式得到问题的数值解。
数值方法的特点是通过有限的计算步骤来逼近问题的解,因此可以处理复杂的问题,并且在实际应用中具有较高的效率和精度。
数值方法的应用领域非常广泛,例如在求解微分方程、积分、线性方程组、优化问题等方面有着重要的应用。
由于数值方法是通过逼近求解问题,所以在一些情况下可能会引入误差,因此在使用数值方法时需要注意误差控制和精度要求。
二、解析方法解析方法是通过推导和求解数学方程式来得到问题的解的方法。
它基于数学分析和推理,通过符号计算的方式得到问题的解析解。
解析方法的特点是通过数学公式和推导来得到问题的解,因此可以给出精确的解析解。
解析方法的应用范围主要包括代数方程、微分方程、积分、概率统计等方面。
解析方法在一些简单和规则的问题中有着明显的优势,可以给出精确的解析解。
然而,解析方法并不适用于所有问题,对于复杂和非线性的问题,往往需要借助于数值方法来求解。
三、数值方法与解析方法的比较数值方法和解析方法各有优劣,具体选择哪种方法要根据问题的性质和要求来决定。
1. 精度要求:解析方法可以给出精确的解析解,而数值方法是通过逼近求解,会引入一定的误差。
因此,在对精度要求较高的问题中,解析方法更为适用。
2. 复杂度:数值方法适用于处理复杂的问题,例如非线性方程组、多维积分等,而解析方法在处理简单和规则的问题时更为高效。
3. 可行性:对于一些无法直接求解的问题,例如无法用解析方法求解的积分或微分方程,数值方法是唯一可行的选择。
4. 可视化:解析方法可以给出解析解的表达式,便于理解和可视化;而数值方法只能给出数值解,难以直观地理解问题。
计算方法(1)-数值计算中的误差

* r
(
x)
1)乘方运算结果的相对误差增大为原值 x的p倍,降低精度.
2)开方运算结果的相对误差缩小为原值
x的1/q倍,精度得到提高.
三.算例的误差分析
x
3
2 2
1 1
24
§6 算法的数值稳定性
一.算法稳定性的概念
凡一种算法的计算结果受舍入误差的影 响小者称它为数值稳定的算法.
例4 解方程 x2 (109 1)x 109 0
方程精确解: x1 10 9 , x2 1
利用求根公式
x1,2
b
b2 4ac 2a
x1 10 9 , x2 0
25
当多个数在计算机中相加时,最好从
绝对值最小的数到绝对值最大的数依次相
加,可使和的误差减小.
二.算法的改进
2 2
1 1
3
计算结 果
2 7/5
2 17 /12
1 ( 2 1)6
2 6
0.0040960
5
6
0.00523278
5
12
2 99 70 2
1
1 0.16666667
6
3
6
1
5
6
0.00523278
12 6
计算方法
1
第一章 数值计算中的误差
§1 引言 §2 误差的种类及其来源 §3 绝对误差和相对误差 §4 有效数字及其与误差的关系 §5 误差的传播与估计 §6 算法的数值稳定性
数值计算方法

数值计算方法数值计算方法是一种通过使用数字和计算机来解决数学问题的方法。
它使用数值近似和算法来处理复杂的数学运算,从而帮助人们在实际应用中获得准确和可靠的结果。
在本文中,我将介绍数值计算方法的基本原理、常见的数值计算方法以及其在不同领域的应用。
一、基本原理数值计算方法的基本原理是将复杂的数学问题转化为简单的数值近似。
当我们遇到无法直接求解的数学问题时,我们可以通过逼近、插值、数值积分等方法来找到问题的近似解。
这些方法依赖于数值计算的基本运算,如加法、减法、乘法和除法,以及根据需要进行的其他运算,如开方、求幂、对数等。
二、常见的数值计算方法1. 逼近法:逼近法是一种通过构造一系列逼近值来找到待求解问题的近似解的方法。
常见的逼近法包括线性逼近、多项式逼近和三角函数逼近等。
2. 插值法:插值法是通过已知数据点来推断未知数据点的数值的方法。
最常见的插值法是拉格朗日插值和牛顿插值。
3. 数值积分:数值积分是通过将定积分转化为求和的形式来计算复杂的积分问题的方法。
常见的数值积分方法包括矩形法、梯形法和辛普森法等。
4. 方程求解:方程求解是通过数值计算方法来找到方程的根的方法。
常见的方程求解方法包括二分法、牛顿迭代法和割线法等。
5. 数值微分:数值微分是通过数值计算方法来近似计算函数的导数的方法。
最常见的数值微分方法是中心差分法和前向差分法。
三、数值计算方法的应用数值计算方法在多个领域都有广泛的应用。
以下是数值计算方法在一些领域的应用示例:1. 物理学:数值计算方法在物理学中常用于解决运动、电磁场、量子力学等问题。
通过数值模拟和计算,可以得到粒子的轨迹、电场分布和能级结构等重要信息。
2. 工程学:数值计算方法在工程学中广泛应用于结构分析、流体力学、电路设计等领域。
通过数值模拟和计算,可以预测材料的强度、流体的流动特性和电路的性能等。
3. 经济学:数值计算方法在经济学中用于解决成本、收益、市场供需等问题。
通过数值模拟和计算,可以预测经济指标的变化趋势和决策的效果。
第一章数值计算方法与误差分析分析

控制误差传播的例子
例10 计算积分 In=∫01 xn ex-1dx,n=0,1, 2, … , 9 利用分部积分法,可得 In= xn ex-1| 01 –∫01 ex-1dxn
=1– n∫01 xn-1 ex-1dx =1– nIn-1
从而有递推公式
I0= ∫01 ex-1dx= ex-1 | 01 = 1-e-1 ≈0.6321 In= 1– nIn-1 (n=0, 1, 2, … , 9)
所谓算法,是指对一些数据按某种规定的顺序 进行的运算序列。在实际计算中,对于同一问题我 们选用不同的算法, 所得结果的精度往往大不相同。 这是因为初始数据的误差或计算中的舍入误差在计 算过程中的传播,因算法不同而异,于是就产生了 算法的数值稳定性问题。一个算法, 如果计算结果 受误差的影响小,就称这个算法具有较好的数值稳 定性。否则,就称这个算法的数值稳定性不好。
简化计算步骤、减少运算次数、避免误差积累的例子
又如计算
1/(1*2)+1/(2*3)+…+1/(1000*1001)
的值。 若一项一项进行计算,不仅计算次数多,而 且误差积累也很大。若简化成 1-1/1001 进行计 算,则整个计算只要一次求倒数和一次减法。
(四)要避免绝对值小的数作除数
由式 ε(x1/x2)≈d(x1/x2)≈[x2ε(x1)-x1ε(x2)]/ x22 , (x2≠0) 可知,当除数x2接近于零时,商的绝对误差就可能很大。因此 , 在数值计算中要尽量避免绝对值小的数作除数, 避免的方法是把 算式变形或改变计算顺序。 例8 当x接近于0时 (1-cosx)/sinx 的分子、分母都接近0,为避免绝对值小的数作除数,可将原式 化为 (1-cosx)/sinx=sinx/(1+cosx) 例9 当x 很大时,可化 x/[(x+1)0.5-x0.5]=x[(x+1)0.5 + x0.5]
数值计算方法1_误差

0 绪论
评分标准 考试
60%
作业 出勤
30%
10%
1.1 误差 – 来源
误差来源
原始误差-模型误差(忽略次要因素,如空气阻力)物理模型 ,数学模型 观测误差-获取模型参数的观测或实验过程中带来的误差 方法误差-截断误差(算法本身引起) 计算误差-舍入误差(计算机表示数据引起)
1.1 误差 – 来源
模型 长乘以宽
求面积
测量
尺子
近似 表达
虚线
取值
四舍五入
1.2 误差 – 分类
绝对误差
* 设 x* 为精确值, x 为近似值,e x x 为误差或绝对误差
例如:f ( x ) ln(x 1) 作Taylor展开,
(1)i 1 i (1) n x n 1 , 0 1 x n1 i (n 1)(1x) i1
方法二:
取前5项,截断误差已经小于10-5 。
1.5 误差 – 避免两个相近的数相减
方法一:
方法二:
1.6 误差 – 避免除数绝对值远小于被除数绝对值
除数减小,绝对误差增大
1.7 误差 – 防止大数吃小数 求根
1.7 误差 – 防止大数吃小数
如果用8位数计算机:
正确结果: 错误结果:
1.8 误差 – 尽量采用数值稳定性好的方法
方法一:迭代 正向计算
方法二:取中数 反向计算
1.8 误差 – 尽量采用数值稳定性好的方法
为 什 么 ?
Hale Waihona Puke 1.8 误差 – 尽量采用数值稳定性好的方法
方法一:迭代
方法二:取中数 反向计算
反向计算误差传播降低,方法一可否反向计算?
数值计算方法总结.

运算量
1 1 分解A LR需 (n3 n)次, 解Ly b需 (n 2 n)次, 3 2 1 2 n3 n 解Rx y需 (n n)次, 共N n 2 2 3 3
第2章 解线性代数方程的直接法
2.2 三角分解法 2.2.2 克洛特分解法
对A进行杜里特尔分解时, A=LR, L为单位下三角阵, R为上三角阵
1i n j 1
2
( AT A), 称为谱范数
第2章 解线性代数方程的直接法
2.3 舍入误差对解的影响 2.3.1 向量和矩阵的范数
这些系数的绝对值称为求y问题的条件数,其值很大时的问题 称为坏条件问题或病态问题
凡是计算结果接近于零的问题往往是病态问题。
应避免相近数相减,小除数和大乘数
第1章 数值计算方法的一般概念
1.2.3 数据误差影响的估计
由误差估计式(1 1)可知 (x1 x2 ) x1 x2 x1 x2 (x1 x2 ) x x x1 x x x2 1 2 1 2 (x1 x2 ) x2 x1 x1x2 (x1 x2 ) x1 x2 x1 x1 x1 ( ) 2 x 2 x x2 x2 2 ( x1 ) x x 1 2 x 2
2.[回代] 按相反顺序求解上三角形方程组,得到方程组的解
第一步得到xn ,第二步得到xn1,...,第n步得到x1
将方程组写成增广矩阵的形式,将有利于计算机实现
A A b
第2章 解线性代数方程的直接法
2.1 高斯消去法 2.1.2 运算量估计 高斯消去法运算量估计 1.消去算法运算量
第1章 数值计算方法的一般概念
1.2.3 数据误差影响的估计
数值计算方法

数值计算方法数值计算方法是指通过数值运算来解决数学问题的一种方法。
数值计算方法在现代科学与工程领域中广泛应用,例如在数值模拟、数据分析、优化问题等方面都扮演着重要的角色。
本文将介绍数值计算方法的一些基本概念与常见算法。
数值计算方法的基本概念包括数值逼近、插值与数值积分。
数值逼近是指通过数值运算得到对某个数值的逼近值。
例如,我们可以用泰勒级数展开来逼近某个函数的值。
插值是指通过已知点的数值来求解未知点的数值。
常见的插值方法有线性插值、拉格朗日插值等。
数值积分是指通过数值运算来求解某个函数的积分值。
蒙特卡洛积分和数值求积公式是常用的数值积分方法。
数值计算方法中常用的算法有迭代法、分治法和优化方法等。
迭代法是一种通过不断逼近的方法来求解某个问题的算法。
例如,牛顿迭代法可以用来求解非线性方程的根。
分治法是指将一个大问题分割成多个小问题来求解的方法。
例如,快速排序算法就是一种基于分治思想的排序算法。
优化方法是一种通过寻找最优解的方法来求解某个问题的算法。
例如,梯度下降法可以用来求解无约束优化问题。
数值计算方法在实际应用中需要考虑到数值稳定性与计算效率。
数值稳定性是指算法在数值计算过程中的误差控制能力。
例如,矩阵求逆过程中的舍入误差会对结果造成较大影响,需要通过数值稳定的算法来减小误差。
计算效率是指算法在计算过程中所需的时间与空间。
例如,矩阵乘法的传统算法的时间复杂度为O(n^3),而通过Strassen算法可以将时间复杂度减小为O(n^log2^7)。
因此,在实际应用中需要选择合适的算法来平衡数值稳定性与计算效率的要求。
在数值计算方法中,误差分析是一项重要的工作。
误差分析是指通过数学分析来分析与评估数值计算的误差。
例如,可以通过泰勒级数的余项来估计数值逼近的误差。
误差分析有助于理解数值计算算法的准确性与可靠性,并帮助我们选择合适的算法以及确定适当的计算精度。
总之,数值计算方法是一种通过数值运算来解决数学问题的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 2 ,3 , , n
第一章
引论
Ax b 第一章
i 2 ,3 , , n 绪论
§ 1.1 数值计算的研究对象与特点 § 1.2 数值问题与数值方法
a11 a21 A an 1 a12 a1 n 误差 § 1.3 a22 a2 n i 1 b l x i ij j j 1 an 2 ann x i lii
§ 1.1 计算机数值方法的研究对象与特点
以计算机为工具,求解各种数学模型,都要经历三个过程:
总体设计——模型的细化 详细设计——主要为算法设计 程序设计
计算机数值方法研究的是将数学模型化为数值问题, 并研究求解数值问题的数值方法进而设计数值算法
§ 1.2 数值问题与数值算法
一、数值问题 数值问题: 输入数据与输出数据之间关系
如求根公式 应化为公式
x1 , 2
x1 , 2
b b 2 4ac 2a
b sqrt(b 2 4ac) 2a
2 n x x ex 1 x 2! n!
超越函数e
x
应化为
函数y( x)的导数y( x)的计算应化为
y( x h ) y( x ) y( x ) h
3.14159265
2 1.414213562
1 1 0.166666666 3! 6
过失误差
3.1415927
2 1.4142136
1 0.16666667 3!
由于模型错误或方法错误引起的误差. 这类误差一般可以避免
数值计算中除了过失误差可以避免外,其余误差都是 难以避免的.数学模型一旦建立,进入具体计算时所考 虑和分析的就是截断误差和舍入误差
x 3 x 5 x7 sin x x 3! 5! 7! x2 x3 x4 ln( 1 x ) x 2! 3! 4!
Taylor展开
若将前若干项的部分和作为函数值的近似公式, 由于以后各项都舍弃了,自然产生了误差
舍入误差 计算误差
在数值计算过程中还会遇到无穷小数,因 计算机受到机器字长的限制,它所能表示 的数据只能有一定的有限位数,如按四舍 五入规则取有限位数,由此引起的误差
研究数值方法的主要任务: 1.将计算机上不能执行的运算化为在计算机上可 执行的运算 2.针对所求解的数值问题研究在计算机上可执行 的且有效的计算公式 3.因为可能采用了近似等价运算,故要进行误差分析, 即数值问题的性态及数值方法的稳定性 本课程的重点就是对线性方程组、微积分、微分方程、 矩阵特征值及回归拟合等问题寻找行之有效的数值方法
经过大量的运算之后,积累的总误差有时会大得惊人, 因此如何控制误差的传播也是数值方法的研究对象. 二、误差和误差限
,称 定义1. 设x为准确值, x *为x的一个近似值
E( x * ) x * x * 为近似值 x 的绝对误差 , 简称误差, 可简记为 E.
因为准确值 x 往往是未知甚至是无法 知道的
即: 输入与输出的都是数值的数学问题 如求解线性方程组 求解二次方程
Ax b
ax2 bx c 0
是数值问题
输入的数据是系数矩阵 A, 常数项向量 b与系数a , b, c
输出的数据是解向量 x , 和方程的解 x1 , x2
求解微分方程
y 2 x 3 y( 0 ) 0
三、数值算法
数值算法是指有步骤地完成解数值问题的过程. 数值算法有四个特点:
1.目的明确
2.定义精确 3.可执行 4.步骤有限
算法必须有明确的目的,其条件和结论 均应有清楚的规定 对算法的每一步都必须有精确的定义
算法中的每一步操作都是可执行的 算法必须在有限步内能够完成解题过程
例1. 给出等差数列1,2,3,…,10000的求和算法 解:
1. 取N 0, S 0
记数器置零
2. N 1 N , S N S
3. 若N 10000 , 转2,否则
4. 输出N , S
§ 1.3 误差
一、误差的种类及来源 模型误差 描述误差 在建立数学模型过程中,要将复杂的现 象抽象归结为数学模型,往往要忽略一 些次要因素的影响,而对问题作一些简 化,因此和实际问题有一定的区别. 在建模和具体运算过程中所用的数据往 往是通过观察和测量得到的,由于精度的 限制,这些数据一般是近似的,即有误差 由于计算机只能完成有限次算术运算和 逻辑运算,因此要将有些需用极限或无穷
二、数值方法
数值方法: 是指解数值问题的在计算机上 可执行的系列计算公式
在计算机上可执行的公式 是指只含有加减乘除的公式
现在的计算机中几乎都含有关于开方的标准函数sqrt()
常见的在计算机上不能直接运行的计算有: 开方、极限、超越函数、微分、积分等等 要在计算机上实行上述运算需将其化为可执行的等价 或近似等价运算
观测误差 参数误差
截断误差 方法误差
过程进行的运算有限化,对无穷过程进行截断,这就带来误 差.截断误差是对参与计算的数学公式做简化可行处理后 所产生的误差(用有限过程代替无限过程或用容易计算的 方法代替不容易计算的方法),是计算方法关注的内容
如:
2 3 x x ex 1 x 2! 3!
不是数值问题
输入的虽是数据 , 但输出的不是数据而是 函数y x2 3x
将其变成数值问题,即将其“离散化”
即将求函数 y x2 3x
改变成求函数值 y( x1 ), y( x2 ),, y( xn ), x1 x2 xn
“离散化”是将非数值问题的数学模型化为数值问题 的主要方法,这也是计算方法的任务之一
因此 E( x* ) x* x 往往也无法求出 而只能知道E( x* ) x* x 绝对值的某个上界 ,即 |E( x* )| |x* x| ( x* )
数值 ( x )称为x 的 绝对误差限或误差限, 简记为
* *
显然 且
0
x* x x* x x*