生活中的轴对称复习(改)
生活中有哪些轴对称现象

生活中有哪些轴对称现象
生活中,我们经常会遇到一些轴对称的现象,这些现象在日常生活中无处不在。
轴对称是指物体在某个轴线上的对称性,即物体的一部分关于这个轴线对称于另一部分。
让我们一起来看看生活中有哪些轴对称的现象吧。
首先,我们可以看到很多自然界中的轴对称现象。
比如,许多植物的叶子都具
有轴对称的特点,叶子的左半部分和右半部分关于中间的中脉对称。
这种轴对称的设计让植物在生长过程中更加稳定和美观。
其次,建筑物中也常常可以看到轴对称的设计。
许多古代建筑和现代建筑都采
用了轴对称的设计理念,比如对称的门窗、楼梯和装饰图案等。
这种设计不仅能够增加建筑物的美感,还能够在视觉上给人一种平衡和稳定的感觉。
除此之外,我们在日常生活中还可以看到许多轴对称的艺术作品。
比如对称的
花瓶、对称的家具、对称的服装等等。
这些设计不仅能够给人以美的享受,还能够在一定程度上提高生活品质。
总的来说,轴对称现象在生活中是无处不在的。
无论是自然界中的植物、建筑
物中的设计,还是艺术作品中的表现,轴对称都是一种美的体现。
让我们在日常生活中多留意这些轴对称的现象,感受到它们给我们带来的美好。
专题05 生活中的轴对称(考点清单)(解析版)-23-2024学年7下数学期末考点大串讲(北师大版)

专题05生活中的轴对称(考点清单)【考点1】轴对称图形【考点2】轴对称的性质【考点3】轴对称-最短路线问题【考点4】翻折变换(折叠问题)【考点5】角平分线的性质【考点6】线段垂直平分线的性质【考点7】等腰三角形的性质【考点8】等边三角形的性质【考点9】作图-轴对称变换【考点10】利用轴对称设计图案【考点11】出轨作图-角平分线和垂直平分线【考点1】轴对称图形1.(2023秋•石景山区期末)我国在环保方面取得的成就,为可持续发展奠定了基础.以下四个环保标志分别是“绿色食品”“节水”“安全饮品”“循环再生”,其中是轴对称图形的是()A.B.C.D.【答案】C【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意;故选:C.2.(2023秋•海曙区校级期末)第19届杭州亚运会上,中国运动员全力以赴地参赛,最终取得骄人战绩.下列运动标识中,是轴对称图形的是()A.B.C.D.【答案】B【解答】解:由图形可知,选项B为轴对称图形.故选:B.3.(2023秋•徐州期末)下列图形中,不是轴对称图形的是()A.B.C.D.【答案】C【解答】解:A.是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项符合题意;D.是轴对称图形,故此选项不合题意;故选:C.【考点2】轴对称的性质4.(2023秋•嵊州市期末)如图,△ABC与△A′B′C′关于直线l对称,∠A=45°,∠B′=110°,则∠C度数为()A.15°B.20°C.25°D.35°【答案】C【解答】解:∵△ABC和△A′B′C′关于直线l对称,∠B′=110°,∴∠B=∠B′=110°,又∵∠A=45°,∴∠C=180°﹣∠A﹣∠B=180°﹣45°﹣110°=25°,故选:C.5.(2023秋•定南县期末)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【答案】A【解答】解:∵∠B=50°,∠BAC=90°,∴∠C=90°﹣50°=40°,∵AD⊥BC,△ADB与△ADB'关于直线AD对称,∴∠AB′D=∠B=50°,∵∠AB′D=∠C+∠CAB′,∴∠CAB′=50°﹣40°=10°,故选:A.6.(2023秋•射洪市期末)如图,在五边形ABCDE中,∠B=∠E=90°,AB=5cm,△ABC的面积是30cm2,△ACD与△AED关于AD所在的直线成轴对称,则AE的长度为()A.12cm B.13cm C.14cm D.15cm【答案】B【解答】解:∵∠B=90°,AB=5cm,△ABC的面积是30cm2,∴,∴BC=12cm,∵△ACD与△AED关于AD所在的直线成轴对称,∴△ACD≌△AED,∴AE=AC=13cm.故选:B.7.(2023秋•庄浪县期末)如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为()A.3cm B.4cm C.5cm D.6cm【答案】C【解答】解:∵P点关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2,∵△PMN的周长是5cm,∴P1P2=5cm.故选:C.8.(2023秋•文登区期末)如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A.2个B.3个C.4个D.5个【答案】C【解答】解:如图所示:都是符合题意的图形.故选:C.9.(2023秋•南康区期末)如图,AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是3.【答案】见试题解答内容【解答】解:∵AD是三角形ABC的对称轴,∴AD垂直平分BC,即AD⊥BC,BD=DC,∴S△EFB=S△EFC,∴S阴影部分=S△ABD=S△ABC=BD•AD=×2×3=3.故答案为3.10.(2023秋•信州区期末)如图,在△ABC中,点D,E分别在边AB,BC上,点A与点E关于直线CD对称.若AB=7,AC=9,BC=13,则△DBE的周长为11.【答案】见试题解答内容【解答】解:∵点A与点E关于直线CD对称,∴AD=ED,∠ADC=∠EDC,CD=CD,∴△ADC≌△EDC(SAS),∴AC=EC,∵AB=7,AC=9,BC=13,∴BE=BC﹣CE=BC﹣AC=13﹣9=4,∴△DBE的周长=BD+DE+BE=AB+BE=7+4=11.故答案为:11.11.(2023秋•上城区期末)按如图的方法折纸,则∠1+∠2=90°.【答案】90.【解答】解:根据折叠的性质可知,∠1=∠AEB,∠2=∠FEC,∵∠1+∠AEB+∠2+∠FEC=180°,∴2(∠1+∠2)=180°,即∠1+∠2=90°,故答案为:90.12.(2023秋•双辽市期末)如图,△AOB与△COB关于边OB所在的直线成轴对称,AO 的延长线交BC于点D.若∠BOD=46°,∠C=20°,则∠ADC=72°.【答案】见试题解答内容【解答】解:∵△AOB与△COB关于边OB所在的直线成轴对称,∴△AOB≌△COB,∴∠A=∠C=20°,∠ABO=∠CBO,∵∠BOD=∠A+∠ABO,∴∠ABO=∠BOD﹣∠ABO=46°﹣20°=26°,∴∠ABD=2∠ABO=52°,∴∠ADC=∠A+∠ABD=20°+52°=72°,故答案为:72.【考点3】轴对称-最短路线问题13.(2023秋•阳新县期末)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10.如果点D,E分别为BC,AB上的动点,那么AD+DE的最小值是()A.8.4B.9.6C.10D.10.8【答案】B【解答】解:作点A关于BC的对称点A',作点A'E⊥AB,交BC于点D.则AD=A'D,∴AD+DE=A'D+DE≥A'E.即AD+DE的最小值为A'E.∵∠ACB=90°,AC=6,BC=8,∴AB=10,AA'=12,=,∵S△AA'B∴A'E===9.6,即AD+DE的最小值为9.6.故选:B.14.(2023秋•城口县期末)四边形ABCD中,∠BAD=122°,∠B=∠D=90°,在BC、CD上分别找一点M、N,当三角形AMN周长最小时,∠MAN的度数为()A.58°B.64°C.61°D.74°【答案】B【解答】解:如图,延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD分别交于点M、N.∵∠ABC=∠ADC=90°,∴A、A′关于BC对称,A、A″关于CD对称,此时△AMN的周长最小,∵BA=BA′,MB⊥AB,∴MA=MA′,同理:NA=NA″,∴∠A′=∠MAB,∠A″=∠NAD,∵∠AMN=∠A′+∠MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,∴∠AMN+∠ANM=2(∠A′+∠A″),∵∠BAD=122°,∴∠A′+∠A″=180°﹣∠BAD=58°,∴∠AMN+∠ANM=2×58°=116°.∴∠MAN=180°﹣116°=64°,故选:B.15.(2023秋•湖北期末)如图,∠MON=45°,P为∠MON内一点,A为OM上一点,B 为ON上一点,当△PAB的周长取最小值时,∠APB的度数为()A.45°B.90°C.100°D.135°【答案】B【解答】解:如图,作出P点关于OM、ON的对称点P1,P2连接P1,P2交OM,ON 于A、B两点,此时△PAB的周长最小,由题意可知∠P1PP2=180°﹣∠MON=180°﹣45°=135°,∴∠P1PA+∠P2PB=∠P1+∠P2=180°﹣∠P1PP2=45°,∴∠APB=135°﹣45°=90°.故选:B.16.(2023秋•启东市期末)如图,∠AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ=α,∠PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°【答案】C【解答】解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小,∴∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,∴∠QPN=(180°﹣α)=∠AOB+∠MQP=20°+(180°﹣β),∴180°﹣α=40°+(180°﹣β),∴β﹣α=40°,故选:C.17.(2023秋•西城区期末)如图,在△ABC中,AB=AC,∠A=90°,点D,E是边AB 上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,∠DNM+∠EMN的大小是()A.45°B.90°C.75°D.135°【答案】B【解答】解:作点D关于BC的对称点D',作点E关于AC的对称点E',连接D'E'分别交AC,BC于点M',N',连接ME',ND',EM',DN',则ME=ME',ND=ND',∴四边形DEMN的周长=DE+ME+MN+ND=DE+ME'+MN+ND'≥DE+D'E',∵DE长固定,∴点M与M'重合,点N与点N'重合时,四边形DEMN的周长最小,此时∠DNM+∠EMN =∠DN'M+∠EM'N,由对称性和三角形外角性质可知:∠DN'M=∠N'DD'+∠N'D'D=2∠N'D'D,∠EM'N=∠M'EE'+∠M'E'E=2∠M'E'E,∴∠DN'M+∠EM'N=2∠N'D'D+2∠M'E'E=2(180°﹣∠D'DE'),设DD'与BC交于点H,∵AB=AC,∠A=90°,∴∠BDH=45°,∴∠D'DE'=180°﹣45°=135°,∴∠DN'M+∠EM'N=2(180°﹣135°)=90°,即当四边形DEMN的周长最小时,∠DNM+∠EMN的大小是90°,故选:B.【考点4】翻折变换(折叠问题)18.(2023秋•腾冲市期末)如图,将长方形ABCD沿AE折叠,已知∠CED'=50°,则∠AED的大小是()A.50°B.55°C.65°D.75°【答案】C【解答】解:由折叠的性质,∠DEA=∠AED′,∴∠AED=(180°﹣∠CED′)÷2=65°.本题选C.19.(2023秋•荔城区期末)如图,在长方形纸片ABCD中,M为AD边的中点,将纸片沿BM、CM折叠,使点A落在A1处,点D落在D1处,若∠1=32°,则∠BMC=()A.74°B.106°C.122°D.148°【答案】B【解答】解:由翻折知,∠AMB=∠BMA1,∠DMC=∠D1MC,∵∠1=32°,∴∠AMB+∠DMC=74°,∴∠BMC=74°+32°=106°,故选:B.20.(2023秋•驿城区期末)将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,点B、A′、C′在同一直线上.若∠CBD=70°,则∠ABE的度数为()A.20°B.30°C.40°D.70°【答案】A【解答】解:由折叠可知:∠CBD=∠C′BD=70°,∠ABE=∠A′BE,∴∠ABE+∠A′BE=2∠ABE=180°﹣(∠CBD+∠C′BD)=40°,∴∠ABE=20°,故选:A.21.(2023秋•海沧区期末)如图,一张长方形纸片ABCD,点E,F分别在边AB,CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的A′处,得折痕EN.若∠FEA=74°,则∠BEM的度数是()A.63°B.55°C.53°D.56°【答案】C【解答】解:由翻折的性质可知,∠AEN=∠NEF,∠BEM=∠FEM,∵∠FEA+∠FEM+∠BEM=180°,∴∠BEM=(180°﹣∠FEA)=53°.故选:C.22.(2023秋•夏津县期末)数学活动:折纸中的数学【知识背景】我们在第四章《几何图形初步》中学习了角的平分线,并会用折纸的方法作角平分线.如图4.3﹣11是教材第135页的探究,将纸片折叠使QP与QR重合,QM是折痕,此时∠PQM与∠RQM重合,所以∠PQM=∠RQM,射线QM是∠PQR的平分线.【知识初探】(1)如图(1),点P,Q分别是长方形纸片ABCD的对边AB,CD上的点,连结PQ,将∠APQ和∠BPQ分别对折,使点A,B都分别落在PQ上的A′和B′处,点C落在C′处,分别得折痕PN,PM,则∠NPM的度数是90°;【类比再探】(2)如图(2),将长方形ABCD纸片分别沿直线PN,PM折叠,使点A,B分别落在点A′,B′处,PA′和PB′不在同一条直线上,且被折叠的两部分没有重叠部分.①若∠A'PB'=20°,∠APN=30°,求∠NPM的度数;②若∠A'PB'=α(0°≤α<180°),求∠NPM的度数(用含α的式子表示);【拓展探究】(3)将长方形ABCD纸片分别沿直线PN,PM折叠,使点A,B,C分别落在点A',B',C′处,PA′和PB′不在同一条直线上,且被折叠的两部分有重叠部分,如图(3).若∠A'PB'=α(0°≤α≤60°),请直接写出∠NPM的度数(用含α的式子表示).【答案】(1)90°;(2)①100°;②∠NPM=90°+;(3)∠NPM=90°﹣.【解答】解:(1)由折叠可知,∠APN=∠A′PN,∠BPM=∠B′PM,∵∠APN+∠A′PN+∠BPM+∠B′PM=180°,∴2∠A′PN+2∠B′PM=180°,∴∠A′PN+∠B′PM=90°,即∠NPM=90°.故答案为:90°;(2)①由折叠可知,∠APA′=2∠APN=2∠A′PN=60°,∠BPB′=2∠BPM=2∠B′PM,∵∠A′PB′=20°,∴∠BPB′=180°﹣∠APA′﹣∠A′PB′=100°,∴∠BPM=∠B′PM=BPB′=50°,∴∠NPM=∠A′PN+∠A′PB′+∠B′PM=100°;②若∠A′PB′=α(0°≤α<180°),则∠APA′+∠BPB′=180°﹣α,∴∠A′PN+∠A′PB′=(∠APA′+∠BPB′)=90°﹣,∴∠NPM=∠A′PN+∠A′PB′+∠B′PM=90°﹣+α=90°+.(3)由折叠可知,∠APN=∠A′PN,∠BPM=∠B′PM,∵2∠A′PN+2∠B′PM=180°+α,∴∠A′PN+∠B′PM=90°+,∴∠NPM=∠A′PN+∠B′PM﹣∠A′PB′=90°+﹣α=90°﹣.【考点5】角平分线的性质23.(2023秋•哈密市期末)三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是()A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点【答案】C【解答】解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在∠A、∠B、∠C的角平分线的交点处.故选:C.24.(2023秋•兴隆县期末)如图,已知∠AOB=60°,OC平分∠AOB,点P在OC上,PD⊥OA于D,OP=6cm,点E是射线OB上的动点,则PE的最小值为()A.2cm B.3cm C.4cm D.5cm【答案】B【解答】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOP=30°,∵PD⊥OA,OP=6cm,∴,过点P作PE'⊥OB于点E',∵OC平分∠AOB,PE'⊥OB,PD⊥OA,∴PE'=PD=3cm,∴PE的最小值为3cm.故选:B.25.(2023秋•保定期末)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC 于点D,若CD=3,AB=10,则△ABD的面积是()A.30B.15C.20D.27【答案】B【解答】解:过D作DH⊥AB于H,∵∠C=90°,AD平分∠BAC,∴DH=DC=3,∵AB=10,∴△ABD的面积=AB•DH×10×3=15.故选:B.26.(2023秋•韶关期末)如图,已知△ABC的周长是18cm,∠ABC和∠ACB的角平分线交于点O,OD⊥BC于点D,若OD=3cm,则△ABC的面积是()cm2.A.24B.27C.30D.33【答案】B【解答】解:过O点作OE⊥AB于E,OF⊥AC于F,连接OA,如图,∵OB平分∠ABC,OD⊥BC,OE⊥AB,∴OE=OD=3,同理可得OF=OD=3,=S△OAB+S△OBC+S△OAC∴S△ABC=×OE×AB+×OD×BC+×OF×AC=(AB+BC+AC),∵△ABC的周长是18,=×18=27(cm2).∴S△ABC故选:B.27.(2023秋•曹县期末)如图,△AOB的外角∠CAB,∠DBA的平分线AP,BP相交于点P,PE⊥OC于E,PF⊥OD于F,下列结论:(1)PE=PF;(2)点P在∠COD的平分线上;(3)∠APB=90°﹣∠O,其中正确的有()A.0个B.1个C.2个D.3个【答案】见试题解答内容【解答】解:(1)证明:作PH⊥AB于H,∵AP是∠CAB的平分线,∴∠PAE=∠PAH,在△PEA和△PHA中,,∴△PEA≌△PHA(AAS),∴PE=PH,∵BP平分∠ABD,且PH⊥BA,PF⊥BD,∴PF=PH,∴PE=PF,∴(1)正确;(2)与(1)可知:PE=PF,又∵PE⊥OC于E,PF⊥OD于F,∴点P在∠COD的平分线上,∴(2)正确;(3)∵∠O+∠OEP+∠EPF+∠OFP=360°,又∵∠OEP+∠OFP=90°+90°=180°,∴∠O+∠EPF=180°,即∠O+∠EPA+∠HPA+∠HPB+∠FPB=180°,由(1)知:△PEA≌△PHA,∴∠EPA=∠HPA,同理:∠FPB=∠HPB,∴∠O+2(∠HPA+∠HPB)=180°,即∠O+2∠APB=180°,∴∠APB=90°﹣,∴(3)错误;故选:C.28.(2023秋•东城区期末)如图,△ABC的外角的平分线BD与CE相交于点P,若点P 到AC的距离为3,则点P到AB的距离为()A.1B.2C.3D.4【答案】C【解答】解:如图,过点P作PF⊥AC于F,PG⊥BC于G,PH⊥AB于H,∵∠ABC的外角平分线BD与∠ACB的外角平分线CE相交于点P,∴PF=PG=3,PG=PH,∴PF=PG=PH=3.故选:C.29.(2023秋•铜官区期末)如图,直线l1,l2,l3表示三条公路.现要建造一个中转站P,使P到三条公路的距离都相等,则中转站P可选择的点有()A.一处B.二处C.三处D.四处【答案】D【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.故选:D.【考点6】线段垂直平分线的性质30.(2023秋•钦州期末)如图,已知AC﹣BC=3,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长是15,则AC的长为()A.6B.7C.8D.9【答案】D【解答】解:∵DE是AB的垂直平分线,∴EA=EB,∵△BCE的周长是15,∴EC+EB+BC=EC+EA+BC=AC+BC=15,则,解得,AC=9,BC=6,故选:D.31.(2023秋•宁津县期末)如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC=6,则DC为()A.5B.8C.9D.10【答案】A【解答】解:∵△ABC周长为16,∴AB+BC+AC=16,∵AC=6,∴AB+BC=10,∵EF垂直平分AC,∴EA=EC,∵AB=AE,AD⊥BC,∴BD=DE,∴AB+BD=AE+DE=×(AB+BC)=5,∴DC=DE+EC=AE+DE=5,故选:A.32.(2023秋•丹江口市期末)如图,∠BAC=140°,若DM和EN分别垂直平分AB和AC,则∠DAE等于()A.100°B.90°C.80°D.70°【答案】A【解答】解:∵∠B+∠C+∠BAC=180°,∠BAC=140°,∴∠B+∠C=40°,∴DM和EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∴∠DAB+∠EAC=∠B+∠C=40°,∴∠DAE=∠BAC﹣(∠DAB+∠EAC)=140°﹣40°=100°.故选:A.33.(2023秋•嵩县期末)如图,兔子的三个洞口A、B、C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在△ABC()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三个角的角平分线的交点【答案】C【解答】解:猎狗到△ABC三个顶点的距离相等,则猎狗应蹲守在△ABC的三条边垂直平分线的交点.故选:C.34.(2023秋•天津期末)在△ABC中,AB的垂直平分线l1交BC于点D,AC的垂直平分线l2交BC于点E,l1与l2相交于点O,△ADE的周长为6.(1)AD与BD的数量关系为AD=BD.(2)求BC的长.(3)分别连接OA,OB,OC,若△OBC的周长为16,求OA的长.【答案】(1)AD=BD;(2)6;(3)5.【解答】解:(1)∵l1是线段AB的垂直平分线,∴AD=BD,故答案为:AD=BD;(2)∵l2是线段AC的垂直平分线,∴EA=EC,∵△ADE的周长为6,∴AD+DE+AE=6,∴BD+DE+EC=6,即BC=6;(3)∵l1是线段AB的垂直平分线,∴OA=OB,∵l2是线段AC的垂直平分线,OA=OC,∴OB=OC,∵△OBC的周长为16,BC=6,∴OB+OC=10,∴OA=OB=OC=5.【考点7】等腰三角形的性质35.(2023秋•江陵县期末)一个等腰三角形的两边长分别为3cm和7cm,则此三角形的周长为()A.13cm B.17cmC.7cm或13cm D.不确定【答案】B【解答】解:当3cm是腰时,3+3<7,不符合三角形三边关系,故舍去;当7cm是腰时,周长=7+7+3=17cm.故它的周长为17cm.故选:B.36.(2023秋•建华区期末)若等腰三角形中有一个角为50度,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50°D.50°或80°【答案】D【解答】解:①50°是底角,则顶角为:180°﹣50°×2=80°;②50°为顶角;所以顶角的度数为50°或80°.故选:D.37.(2023春•雁塔区校级期末)如图,在△ABC中,AB=AC,∠ACD=50°,点D是BC 的中点,点E在AC上,且AE=AD,则∠AED的度数为()A.40°B.60°C.70°D.80°【答案】C【解答】解:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠BAC=180°﹣50°×2=80°,∵点D是BC的中点,∴AD⊥BC,∴∠ADC=90°,∠CAD=∠BAD=∠BAC=40°,又∵AD=AE,∴∠ADE=∠AED=(180°﹣40°)=70°,故选:C.38.(2023秋•叙州区期末)如图,为了让电线杆垂直于地面,工程人员的操作方法通常是:从电线杆DE上一点A往地面拉两条长度相等的固定绳AB与AC,当固定点B,C到杆脚E的距离相等,且B,E,C在同一直线上时,电线杆DE就垂直于BC.工程人员这种操作方法的依据是()A.等边对等角B.垂线段最短C.等腰三角形“三线合一”D.线段垂直平分线上的点到这条线段两端点的距离相等【答案】C【解答】解:∵AB=AC,BE=CE,∴AE⊥BC,故工程人员这种操作方法的依据是等腰三角形“三线合一”,故选:C.39.(2023秋•自贡期末)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC 于点D和E,连接AD.若∠B=40°,BA=BD,则∠DAC为()A.25°B.30°C.35°D.40°【答案】C【解答】解:∵∠B=40°,BA=BD,∴∠BAD=∠BDA===70°,∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=∠BDA=35°,故选:C.40.(2023秋•延边州期末)【数学知识】等腰三角形的“三线合一”性质非常重要.如图①,在△ABC中,AB=AC,AD是中线,若∠C=58°,则∠BAD的度数为32°;【数学应用】如图②,在△ABC和△AEF中,AB=AC,AE=AF,AD、AG分别为△ABC 和△AEF的中线,若∠BAF=110°,∠CAE=24°,求∠DAG的度数;【拓展】如图③,在△ABC和△ABE中,AB=AC,AB=AE,AD、AF分别为△ABC和△ABE的中线,AD与BE交于点O,若∠AOF=69°,则∠CAE的度数为42°.【答案】【数学知识】32°;【数学应用】67°;【拓展】42°.【解答】解:【数学知识】∵AB=AC,AD是中线,∠C=58°,∴∠B=∠C=58°,AD⊥BC,∴∠B+∠BAD=90°,∴∠BAD=32°,故答案为:32°;【数学应用】∵AB=AC,AE=AF,AD、AG分别为△ABC和△AEF的中线,∴,∠EAG=∠EAF,∴∠DAG=∠DAC+∠CAE+∠EAG=∠BAC+∠CAE+∠EAF=∠BAF+∠CAE,∵∠BAF=110°,∠CAE=24°,∴∠DAG=55°+12°=67°;【拓展】∵AB=AC,AB=AE,AD、AF分别为△ABC和△ABE的中线,∴AF⊥BE,∠BAF=BAE,∠BAD=BAC,∴∠AOF+∠OAF=90°,∵∠AOF=69°,∴∠OAF=21°,∴∠BAF﹣∠BAD=∠BAE﹣∠BAC=21°,∴∠BAE﹣∠BAC=42°,∵∠CAE=∠BAE﹣∠BAC=42°,故答案为:42°.【考点8】等边三角形的性质41.(2022春•沂源县期末)如图,a∥b,等边△ABC的顶点B在直线b上,∠1=20°,则∠2的度数为()A.60°B.45°C.40°D.30°【答案】C【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,过C作CM∥直线l,∵直线l∥直线m,∴直线l∥直线m∥CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB﹣∠MCB=60°﹣20°=40°,故选:C.42.(2023秋•老河口市期末)如图所示,△ABC是边长为20的等边三角形,点D是BC 边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF=()A.5B.10C.15D.20【答案】B【解答】解:设BD=x,则CD=20﹣x,∵△ABC是等边三角形,∴∠B=∠C=60°.∴BE=cos60°•BD=,同理可得,CF=,∴BE+CF=.故选:B.43.(2023秋•万州区期末)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.B.C.D.【答案】B【解答】解:过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=1,∴DE=.故选:B.44.(2023秋•岑溪市期末)如图,已知:∠MON=30°,点A1、A2、A3、…在射线ON上,点B1、B2、B3、…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4、…均为等边三角形,若OA1=1,则△A9B9A10的边长为()A.32B.64C.128D.256【答案】D【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,…∴△A n B n A n+1的边长为2n﹣1,∴△A9B9A10的边长为29﹣1=28=256.故选:D.45.(2023秋•海南期末)如图,在等边△ABC中AB=4,BD是AC边上的高,点E在BC 的延长线上,∠ACB=2∠E,则BE的长为()A.4.5B.5C.6D.9【答案】C【解答】解:∵△ABC是等边三角形,BD是AC边上的高,∴CD=AC,∵AC=AB=4,∴CD=2,∵∠ACB=∠E+∠CDE=2∠E,∴∠CDE=∠E,∴CE=CD=2,∵BC=AB=4,∴BE=BC+CE=4+2=6.故选:C.46.(2023秋•靖宇县期末)如图,是由9个等边三角形拼成的六边形,若已知中间最小的三角形的边长是3,则六边形的周长为()A.90B.60C.50D.30【答案】A【解答】解:设等边△ABC的边长为a.∵9个三角形都是等边三角形,∴NA=AW=AB=BN=BC=a,CD=CE=DE=DF=a+3,GF=HF=MG=a+6,MN=MW=a+9.∵NW=NA+AW,∴a+9=2a.∴a=9.∴拼成的六边形的周长为:NB+BC+CD+DF+GF+MG+MN=a+a+a+3+a+3+a+6+a+6+a+9=7a+27=63+27=90.故选:A.47.(2023秋•邹平市期末)如图,等边△ABC中,点D、E分别在边AB、BC上,把△BDE 沿直线DE翻折,使点B落在点B'处,DB'、EB'分别交边AC于点F、G.如果测得∠GEC =36°,那么∠ADF=84°.【答案】84°.【解答】解:∵△ABC为等边三角形,∴∠B=60°,∵∠GEC=36°,∴∠BEG=180°﹣∠GEC=180°﹣36°=144°,由翻折的性质得:∠BED=∠GED,∠BDE=∠FDE,∴∠BED=∠BEG=×144°=72°,∴∠BDE=180°﹣∠B﹣∠BED=180°﹣60°﹣72°=48°,∴∠BDE=∠FDE=48°,∴∠BDF=∠BDE+∠FDE=96°,∴∠ADF=180°﹣∠BDF=180°﹣96°=84°.故答案为:84°.【考点9】作图-轴对称变换48.(2023秋•哈密市期末)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请写出△ABC关于x轴对称的△A1B1C1的各顶点坐标;(2)请画出△ABC关于y轴对称的△A2B2C2;(3)在x轴上求作一点P,使点P到A、B两点的距离和最小,请标出P点,并直接写出点P的坐标(2,0).【答案】见试题解答内容【解答】解:(1)∵△ABC与△A1B1C1关于x轴对称,∴点A1(1,﹣1),B1(4,﹣2),C1(3,﹣4).(2)如图,△A2B2C2即为所求.(3)如图,点P即为所求,点P的坐标为(2,0).故答案为:(2,0).49.(2023秋•和平县期末)如图,在平面直角坐标系中,点A的坐标为(﹣4,2),点B 的坐标为(﹣3,4),点C与点A关于y轴对称.(1)写出点C的坐标,画出△ABC;(2)画出△ABC关于y轴对称的△A′B′C′;=S△ABC,直接写出点D的坐标.(3)在y轴上存在一点D,使得S△ACD【答案】(1)C(4,2),画图见解析;(2)画图见解析;(3)D的坐标为(0,0)或(0,4).【解答】解:(1)如图,C(4,2),△ABC即为所求作的三角形,(2)如图,△A′B′C′即为所求作的三角形,(3)∵A(﹣4,2),B(﹣3,4),C(4,2),∴,设D(0,y),∴,∴|y﹣2|=2,∴y=0或y=4,∴D的坐标为(0,0)或(0,4).50.(2023秋•南宁期末)如图,已知△ABC的三个顶点的坐标分别是A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)画出与△ABC关于y轴对称的△A1B1C1,并直接写出A1,B1,C1的坐标;(2)在x轴上有一点D,使得△ADC≌△ABC,请直接写出点D的坐标.【答案】(1)画图见解答;A1(4,1),B1(3,3),C1(1,2).(2)(﹣2,0).【解答】解:(1)如图,△A1B1C1即为所求.A1(4,1),B1(3,3),C1(1,2).(2)∵△ADC≌△ABC,∴AD=AB,CD=CB.∵点D在x轴上,∴点D的位置如图所示.∴点D的坐标为(﹣2,0).【考点10】利用轴对称设计图案51.(2023秋•高阳县期末)如图所示的“钻石”型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的图形是一个轴对称图形,一共有()种涂法.A.1B.2C.3D.4【答案】C【解答】解:如图,满足条件的三角形有三个.故选:C.52.(2023秋•徐州期末)如图,方格纸中有3个小方格被涂成黑色,若从其余13个白色小方格中选出一个涂成黑色,使所有的黑色方格构成轴对称图形,则不同的涂色方案共有()A.1个B.2个C.3个D.4个【答案】D【解答】解:如图所示:不同的涂色方案共有4个.故选:D.53.(2023秋•四平期末)如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF 及其对称轴MN.【答案】见试题解答内容【解答】解:如图所示;54.(2023秋•襄城区期末)如图,在3×3的正方形网格中,有一个以格点为顶点的三角形.(1)请你在图①,图②,图③中,分别画出一个与该三角形成轴对称且以格点为顶点的三角形,并将所画三角形涂上阴影.(注:所画的三幅图不能重复).(2)格纸中所有与该三角形成轴对称且以格点为顶点的三角形共有6个.【答案】见试题解答内容【解答】解:(1)如图所示:(2)格纸中所有与该三角形成轴对称且以格点为顶点的三角形共有6个.故答案为:6.【考点11】尺规作图-角平分线和垂直平分线55.(2023秋•宁安市期末)作图题:(不写作法,但必须保留作图痕迹)如图:某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库P应该建在什么位置吗?在所给的图形中画出你的设计方案.【答案】见试题解答内容【解答】解:如图所示:(1)连接MN,分别以M、N为圆心,以大于MN为半径画圆,两圆相交于DE,连接DE,则DE即为线段MN的垂直平分线;(2)以O为圆心,以任意长为半径画圆,分别交OA、OB于G、H,再分别以G、H为圆心,以大于GH为半径画圆,两圆相交于F,连接OF,则OF即为∠AOB的平分线(或∠AOB的外角平分线);(3)DE与OF相交于点P,则点P即为所求.。
生活中的轴对称(知识点总结+基础+变式+提高)

生活中的轴对称(知识点总结+基础+变式+提高)知识要点梳理轴对称图形轴对称分类轴对称角平分线线段的垂直平分线轴对称实例等腰三角形等边三角形生活中的轴对称轴对称的性质轴对称的性质镜面对称的性质图案设计轴对称的应用镶边与剪纸一、轴对称图形1、如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、理解轴对称图形要抓住以下几点:全等的图形不一定是轴对称图形;(4)对称轴是直线而不是线段;轴对称图形轴对称区别是一个图形自身的对称特性是两个图形之间的对称关系对称轴可能不止一条对称轴只有一条共同点沿某条直线对折后都能够互相重合如果轴对称的两个图形看作一个整体,那么它就是一个轴对称图形;如果把轴对称图形分成两部分(两个图形),那么这两部分关于这条对称轴成轴对称。
【例2】下列四个判断:①成轴对称的两个三角形是全等三角形;②两个全等三角形一定成轴对称;③轴对称的两个圆的半径相等;④半径相等的两个圆成轴对称,其中正确的有()三、角平分线的性质1、角平分线所在的直线是该角的对称轴。
2、性质:角平分线上的点到这个角的两边的距离相等。
【例3】如图,AB=AC,BE⊥AC于E,CF⊥AB 于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A. ①B. ②C. ①②D.①②③四、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。
2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。
【例4】下列各语句中不正确的是()A.全等三角形的周长相等B.全等三角形的对应角相等C.到角的两边距离相等的点在这个角的平分线上D.线段的垂直平分线上的点到这条线段的两端点的距离相等【变式4】有公路l1异侧、l2同侧的两个村庄A,B,如图.高速公路管理处要建一处服务区,按照设计要求,服务区到两个村庄A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,符合条件的服务区C有()处.五、等腰三角形1、有两条边相等的三角形叫做等腰三角形;2、相等的两条边叫做腰;另一边叫做底边;3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角;4、三条边都相等的三角形也是等腰三角形。
《生活中的轴对称》练习及错题分析

《生活中的轴对称》练习及错题分析5.1 轴对称现象一、选择题1.下面是轴对称图形的有()个圆、一个角为30度的直角三角形、长方形、正方形、等腰梯形A.1个B.2个C.3个D.4个2.下列图形不是轴对称图形的是()A.等边三角形B.矩形C.平行四边形D.正六边形3.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线4.下面四个图形中,哪个不是轴对称图形()A.有两个内角相等的三角形B.线段C.有一个内角是30°,一个内角是120°的三角形D.有一个内角是60°的直角三角形5.正方形是轴对称图形,它有()对称轴A.1 B.2 C.3 D.46.下面说法错误的是()A.轴对称图形的对称轴只能有有限条B.直线是轴对称图形C.线段是轴对称图形D.角是轴对称图形7.下列图形不是轴对称图形的是()A.有两个角相等的三角形B.有一个角是45°的直角三角形C.两个内角分别为30°、120°的三角形D.有一个内角为30°的直角三角形8.下列说法中,正确的是()A.两个全等三角形组成一个轴对称图形B.直角三角形一定是轴对称图形C.轴对称图形是由两个图形组成的D.等边三角形是有三条对称轴的轴对称图形二、填空题1.角平分线上的点到角的两边的距离___________.2.线段垂直平分线上的点到这条线段两个端点的距离__________3.等边三角形的对称轴有___________条,是_________4.观察下面的图形,它们共同特点是,我认为__________比较与众不同,理由:.5.数的运算中会有一些有趣的对称现象比如“1的金字塔”,你能发现其中的规律吗?按你发现的规律把下面的式子补充完整.12=1112=121123211112=11112=1234321111112=_________1111112=_____________三、解答题1.如图所示,是不是轴对称图形,它有几条对称轴,请把它画出来.2.同学们你们想到了吗?不仅图形中有轴对称现象,而且许多文字中也存在着这种现象,比如我们的汉字中的“土”“山”“干”“甘”“品”等等,再如英文中的“A”“X”“Y”等等。
生活中的轴对称(复习)

第七章生活中的轴对称<复习)一、知识点:1、<1)、轴对称:对于—————个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成————————,这条直线就是对称轴。
可以说成:这两个图形关于某条直线对称。
b5E2RGbCAP<2)、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做,这条直线叫做p1EanqFDPw2、常见简单的轴对称图形:<完成填空)3、轴对称的性质:<1)对应点所连的被对称轴<2)对应线段; <3)对应角。
如图,是用笔尖扎重叠的纸得到的成轴对称的两个图形,则AB的对应线段是,EF的对应线段是。
∠C的对应角是连结CE交L于O,则⊥,且=4、等腰三角形的性质:<1)<2);<3)是图形,它的对称轴是。
<4)“三线合一”指顶角的、底边上的、底边上的重合。
5、等边三角形的性质:<1)三边; <2)三角且都为度;<3)具有三角形的一切性质。
6、角平分线的性质:角的平分线上的,到的相等。
如图1,BM平分∠ABC,PD⊥AB,PE⊥BC,则= ;若PD=3,则PE=——7、线段的垂直平分线<即中垂线)性质:线段的垂直平分线上的,到的相等。
如图,MN是AB的中垂线,点P在MN上,则PA=8、利用轴对称设计图案:要求:会设计图案,会说出一些图案的含义9、镜面对称的有关性质:<1)任何一个平面图形<物体)在镜子中的像与它是可以重合的。
因此,一个轴对称图形在镜子中的像仍是轴对称图形。
DXDiTa9E3d<2)若一个平面图形正对镜面,则其左<右)侧在镜中的像是其———<<<———)侧;<3)若一个平面图形<物体)垂直于镜面摆放,则靠近镜面的部分,其像也靠近镜面;像与物体到镜面的距离—————;像与物体的对应点连线被镜面———————。
生活中的轴对称复习

<学生自己梳理,然后教师指导)
做轴对称图形的对称轴
轴对称做轴对称图形
等腰三角形
性质和判定
等边三角形
三、知识巩固变式训练
<学生先做,然后由学生板演,发现问题,先由学生订正,教师学生共同总结反思)
1、以下图形有两条对称轴的是<)
A、正六边形B、矩形C、等腰三角形D、圆
2、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A为<)
3.情感态度与价值观目标:通过作图、欣赏、设计,来培养学生的审美观念及创新能力。
教案
ห้องสมุดไป่ตู้重点
难点
重点:掌握线段的垂直平分线、角的平分线的性质、等腰三角形的性质及应用。
难点:轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质应用。
教案
方法
讲授法、复习巩固法
学习方法
习题练习法
教案
工具
三角板、PPT课件
6.如图, 、 、 是三个村庄,现要修建一个自来水厂 ,使得自来水厂 到三个村庄的距离相等,请你作出自来水厂的位置
7.如图,在直线 上求作一点 ,点 使点 到点 和点 的距离相等.
8.如图, 内有两点 、 ,求作一点 ,使到 两边的距离相等,且到点 和点 的距离相等.
9.画出下图中△ABC关于直线MN的轴对称图形
3、等腰三角形的两边长分别为3cm,7cm,则它的周长为cm
4、如图,在△ABC中,DE是边AC的垂直平分线,若BC=8cm,AB=10cm,则△EBC的周长为cm<学生可以合作讨论,互帮互学)
5、将一张长方形纸按如图的方式折叠,BC,BD为折痕,则∠CBD为<)
北师大版七年级下册数学[《生活中的轴对称》全章复习与巩固(提高)知识点整理及重点题型梳理]
北师大版七年级下册数学[《生活中的轴对称》全章复习与巩固(提高)知识点整理及重点题型梳理]研究目标】1.增进对身边轴对称图形的认识和欣赏,提高对数学的兴趣。
2.了解轴对称的概念,探索轴对称图形的基本性质和应用。
3.探究线段垂直平分线、角平分线和等腰三角形的性质及判定方法。
4.能够按照要求画出一些轴对称图形。
要点梳理】要点一、轴对称1.轴对称图形和轴对称1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。
要点诠释:成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上。
3)轴对称图形与轴对称的区别和联系要点诠释:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的。
联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形。
2.线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一。
同时也给出了引辅助线的方法,即遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件。
三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心。
生活中的轴对称案例
生活中的轴对称案例生活中有很多轴对称的案例,例如建筑物、家具、艺术品、图案、植物、动物等。
以下是一些常见的轴对称案例。
1.建筑物:很多建筑物具有轴对称的设计,例如宫殿、教堂和博物馆等。
它们通常在建筑的对称轴线上根据对称关系来布置和装饰窗户、楼梯、门廊、柱子等元素,展现出一种和谐美感。
2.家具:家具设计中也常见轴对称的元素。
例如对称布置的沙发、床头柜、书架等。
轴对称的家具设计使得整个房间更加平衡和谐。
3.艺术品:绘画和雕塑作品中广泛使用轴对称的原理。
例如彼特拉的城墙雕刻、古代中国的器物和织物等。
轴对称的艺术作品通常给人一种稳定和美观的感觉。
4.图案:很多图案具有轴对称的设计,例如花纹、几何图形、壁纸等。
人们常常用轴对称的图案来装饰衣物、家居用品等,这样可以使它们看起来更加整洁和美观。
5.植物:一些植物展现出轴对称的形态。
例如蒲公英的花序、菊花的花瓣等。
轴对称的植物形态给人一种和谐、平衡的感觉。
6.动物:一些动物的身体结构也具有轴对称性。
例如海星的五角形身体、蛇的身体左右对称等。
这种身体结构使得它们在行动时更加协调和灵活。
除了以上案例,轴对称还存在于日常生活的许多其他方面。
例如对称的面容特征、对称的服装设计、对称的餐桌布置等。
轴对称性在生活中普遍存在,它能够给人一种稳定、平衡、和谐的感觉,同时也是设计和美学上的重要原则之一轴对称性的存在使得事物更加美观、整洁和有序。
人们在设计和布置空间时通常会考虑到轴对称的原则,以达到整体的和谐。
通过观察生活中的轴对称案例,我们可以更好地理解轴对称的原理,并在设计中灵活运用,创造出更加美好的生活环境。
【北师大版】2020年春七年级下册数学:第五章-生活中的轴对称-章末复习(含答案)
期末复习(五) 生活中的轴对称01 知识结构生活中的轴对称⎩⎪⎪⎨⎪⎪⎧轴对称现象⎩⎪⎨⎪⎧轴对称图形两个图形成轴对称轴对称的性质⎩⎪⎨⎪⎧对应点所连的线段被对称轴垂直平分对应线段相等,对应角相等简单的轴对称图形⎩⎪⎨⎪⎧等腰三角形的性质线段垂直平分线的性质角平分线的性质利用轴对称进行设计本章知识在考试中涉及的考点主要有:识别轴对称图形,运用轴对称的性质求线段或角,运用等腰三角形、线段垂直平分线或角平分线的性质求三角形中的角度和边长,证明三角形中相关角度或边长之间的关系等. 02 典例精讲【例1】 下列轴对称图形中,对称轴条数最多的是(D)【思路点拨】 选项A ,B ,C 的图形中分别有1条对称轴;而选项D 的图形中有4条对称轴,在几个备选项中对称轴最多.【方法归纳】 本题考查轴对称图形及对称轴的定义.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,其中这条直线叫做对称轴.轴对称图形是针对一个图形本身而言,成轴对称是对两个图形而言,注意他们的本质区别.【例2】 (黄冈中考)如图,在△ABC 中,AB =AC ,∠A =36°,AB 的垂直平分线交AC 于点E ,垂足为点D ,连接BE ,则∠EBC 的度数为36°.【思路点拨】 根据垂直平分线的性质可得边相等,再由等腰三角形的性质得角相等.【方法归纳】 此题主要借助等腰三角形的性质、线段垂直平分线的性质及三角形内角和定理等几何知识来求解. 【例3】 如图1,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图2,在△A BC 中,∠ACB 是直角,∠B =60°,AD ,CE 分别是∠BAC,∠BCA 的平分线,AD ,CE 相交于点F.请你判断并写出FE 与FD 之间的数量关系;(2)如图3,在△ABC 中,如果∠ACB 不是直角,而(1)中的其他条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【思路点拨】首先按题意要求完成画图(作出全等三角形),易联想到全等三角形的性质、判定及角平分线的性质等相关知识,为解决后面的问题提供了探究的途径和方法.【解答】画图略.(1)FE与FD之间的数量关系为FE=FD.(2)FE=FD仍然成立.理由:在AC上截取AG=AE,连接FG.因为∠BAD=∠DAC,AF为公共边,所以△AEF≌△AGF.所以∠AFE=∠AFG,FE=FG.因为∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,所以∠DAC+∠FCA=60°.所以∠AFE=∠CFD=∠AFG=60°.所以∠CFG=60°.又因为∠FCA=∠DCE,FC为公共边,所以△CFG≌△CFD.所以FG=FD.所以FE=FD.【方法归纳】本例是一道设计新颖的几何结论探究性试题,旨在考查学生应用所学知识解决三角形有关问题的综合能力.解决此类问题重点抓住全等三角形的判定和性质及角平分线的性质解题.【例4】如图,有一条小船及A,B两点,如果该小船先从点A航行到达岸边l的点P处补货后,再航行到点B,但要求航程最短,试在图中画出点P的位置.【思路点拨】题目要求航程最短,就是在岸边l上找一点P,使点P到A,B的距离之和最短.只要找出A点关于l的对称点A′,连接A′B,A′B与l的交点就为所求的P点.【解答】(1)作出点A′,使点A′与点A关于直线l成轴对称.(2)连接A′B交直线l于点P,则点P为所求,如图所示.【方法归纳】由轴对称性质可知AP=A′P,要使AP+PB的和最小,即A′P+PB的和最小,于是求出点P的位置的问题,转化为“两点之间,线段最短”的问题.03整合集训一、选择题(每小题3分,共30分)1.(龙东中考)下列交通标志图案是轴对称图形的是(B)2.如图所示的轴对称图形中,对称轴最多的是(B)3.若等腰三角形的顶角为50°,则它的底角是(C)A.20° B.50°C.65° D.80°4.如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是(D)A.△ABD≌△ACDB.AF垂直平分EGC.∠B=∠CD.DE=EG5.(凉山中考)如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为(C)A.30° B.45°C.60° D.75°6.如图,已知五边形ABCDE和五边形A1B1C1D1E1关于直线MN对称,点B到直线MN的距离是3,则下列说法中正确的是(B)A.点A1到MN的距离是3B.点B1到MN的距离是3C.点C1到MN的距离是3D.点D1到MN的距离是37.(丹东中考)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为(D)A.70°B.80°C.40°D.30°8.如图,将长方形纸片的一角折叠,使顶点A落在点A′处,BC为折痕,若BE是∠A′BD的平分线,则∠CBE的度数为(C)A.65° B.115°C.90° D.75°9.下列说法不正确的是(D)A.角平分线上的点到这个角两边的距离相等B.线段垂直平分线上的点到这条线段两个端点的距离相等C.圆有无数条对称轴D.等腰三角形的对称轴是底角平分线所在直线10.如图,点B,C,E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是(D)A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA二、填空题(每小题4分,共20分)11.在方正黑体字:“幸、福、开、阳”中,是轴对称图形的字是幸.12.如图,在△ABC中,AB=AC,点D为BC边中点,∠BAD=20°,则∠CAD=20°.13.如图,△ABC与△A1B1C1关于某条直线成轴对称,则∠A1=75°.14.如图,D,E为AB,AC的中点,将△ABC沿线段DE折叠,点A落在点F处,若∠B=50°,则∠BDF=80°.15.(河南中考)如图,在△ABC中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD ,若CD =AC ,∠B =25°,则∠ACB 的度数为105°.三、解答题(共50分)16.请作出图中四边形ABCD 关于直线a 的轴对称图形,要求:不写作法,但必须保留作图痕迹.解:如图所示,四边形A′B′C ′D′即为所求.17.(6分)已知:如图,在△ABC 中,AB =AC ,D 为CA 延长线上一点,DE ⊥BC ,交线段AB 于点F ,∠BFE 与∠D 相等吗?并说明理由.解:∠BFE=∠D. 理由:因为AB =AC , 所以∠B=∠C. 因为DE⊥BC,所以∠BEF=∠DEC=90 °. 在△BEF 和△CDE 中,因为∠B=∠C,∠BEF =∠DEC, 所以∠BFE=∠D.18.如图,在四边形ABCD 中,AD ∥BC ,把△BCD 沿BD 对折,使C 点落在E 处,BE 与AD 相交于点O ,若∠DB C =15°,求∠BOD 的度数.解:因为AD∥BC,∠DBC =15°,所以∠BDO=15 °. 由折叠可知,∠DBC =∠DBO. 所以∠BDO=∠DBO=15 °. 又因为三角形内角和为180 °, 所以∠BOD=180 °-2∠DBO =180 °-2×15 ° =150 °.19.(10分)某中学七(2)班举行文艺晚会,桌子摆成两直条(如图中的AO ,BO),AO 桌面上摆满了橘子,OB 桌面上摆满了糖果,站在C 处的学生小明先拿橘子再拿糖果,然后回到C 处,请你在图上帮助他设计一条行走路线,使其所走的总路程最短.解:①分别作点C 关于OA ,OB 的对称点M ,N ;②连接MN ,分别交OA 于点D ,OB 于点E ,则C→D→E→C 为所求的行走路线.图略.20.(12分)如图所示,已知AB =AC ,∠A =40°,AB 的垂直平分线MN 交AC 于点D. (1)求∠DBC 的度数;(2)若△DBC 的周长为14 cm ,BC =5 cm ,求AB 的长.解:(1)因为AB =AC , 所以∠ABC=∠C. 因为∠A=40 °,所以∠ABC=180 °-40 °2=70 °.因为MN 是AB 的垂直平分线, 所以DA =DB.所以∠DBA=∠A=40 °.所以∠DBC=70 °-40 °=30 °.(2)因为MN 垂直平分AB ,所以DA =DB.△DBC 的周长为BD +DC +BC =DA +DC +BC =AC +BC. 因为△DBC 的周长为14 cm ,BC =5 cm , 所以AC =14-5=9(cm ). 所以A B =9 cm .21.(12分)如图1所示,在△ABC 中,AB =AC ,AB 的垂直平分线交AB 于点N ,交BC 或BC 的延长线于点M.(1)如图1所示,若∠A=40°,求∠NMB 的大小;(2)如图2所示,如果将(1)中的∠A 的度数改为70°,其余条件不变,再求∠NMB 的大小; (3)你发现了什么规律?写出猜想,并说明理由.解:(1)因为AB =AC ,所以∠B=∠ACB.所以∠B=12(180 °-∠A)=12(180 °-40 °)=70 °.又因为∠BNM=90 °,所以∠NMB=90 °-∠B=90 °-70 °=20 °. (2)同理可得:∠NMB=35 °.(3)猜想规律:等腰三角形一腰的垂直平分线与底边或底边延长线的夹角等于顶角的一半,即∠NMB=12∠A.理由:因为AB =AC ,所以∠B=∠C=12(180 °-∠A).因为∠BNM =90 °,所以∠NMB=90 °-∠B=90 °-12(180 °-∠A)=12∠A .故∠NMB=12∠A.。
第五章生活中的轴对称全章复习
第五章生活中的轴对称全章复习一、考点突破:本讲主要学习轴对称的性质、简单的轴对称图形及利用轴对称进行设计,具体要求如下:1. 掌握轴对称的识别方法及其性质;2. 理解并掌握等腰三角形的性质及应用,了解角平分线和线段的垂直平分线的性质;3. 能利用轴对称进行简单设计。
中考要求:1. 轴对称是中考的必考内容,其题目经常与社会生活相联系,多以填空、选择题的形式出现,在中考中的难度不大;2. 等腰三角形的性质和判断也是中考的必考内容,题型丰富;3. 角平分线和线段的垂直平分线的性质是探求边相等、角相等、边角之间转化的重要几何定理,同属于必考内容。
二、重难点提示:重点:轴对称图形的识别,轴对称图形的性质,等腰三角形的性质和运用。
难点:等腰三角形的性质及判定的综合运用。
知识脉络图:知识点一:轴对称及轴对称图形要点精讲:识别轴对称的关键是找到一条直线,把图形沿直线折叠后直线两旁的部分能互相重合。
典例精析:例题1 观察下面的国旗,其中是轴对称图形的有( )A. 加拿大、哥斯达黎加、乌拉圭B. 加拿大、瑞典、澳大利亚C. 加拿大、瑞典、瑞士D. 乌拉圭、瑞典、瑞士例题2 如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中( )A. AD DH AH ≠=B. AD DH AH ==C. DH AD AH ≠=D. AD DH AH ≠≠例题3 如图,在一张纸上写了21038平放在桌子上,同时有两面镜子直立于桌面上,这时在两面镜子上都出现了“21038”的像,把在正面放置的镜子里出现的像和侧面镜里出现的像分别叫做“正面像”和“侧面像”则( )A. “正面像”和“侧面像”都是五位数,前者比较大B. “正面像”和“侧面像”都是五位数, 两者相等C. “正面像”和“侧面像”都是五位数,前者比较小D. “正面像”和“侧面像”中,只有一个五位数知识点二:等腰、等边三角形要点精讲:等腰三角形:等边对等角,三线合一,等角对等边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见图形的对称轴
角:1条。(角平分线所在的直线) 线段:2条。(线段的垂直平分线和它本身所在的直线) 等腰三角形:1条。(底边上的中线或高或顶角平分线) 等边三角形:3条。(三边上的“三线合一”) 长方形(矩形):2条。(对边中点所在直线) 正方形:4条(两对边中点和两对角线所在直线) 正n边形:n条 圆:无数条
D
C
3.如图,P、Q是△ABC边上的两点, BP=PQ=QC=AP=AQ, 求∠BAC的度数。 A
B
P
Q
C
轴对称的性质
对应点所连的线段被对称轴垂直平分 对应线段相等 对应角相等
镜子改变了什么
•其实质是:现实与镜中的像关于镜面成轴对称
任何事物放在镜子前,在镜中都能找出它关于 镜面的轴对称图形: (1)当正对镜面摆放时,镜面会改变它的左右方向 (2)当垂直于镜面摆放时,镜面会改变它的上下方 向; (3)如果是轴对称图形,当对称轴与镜面平行时, 其镜中影象与原图一样 .
加拿大
韩国
澳大利亚 乌拉圭
瑞典
瑞士
今天,你学到了些什么
?
作业布置:
1.课本P246-247本章复习题 2.练习册P134-135本章测试 卷
C
2、如图,在△A∠_____;____=____ ____= CAD BD CD
(2) ∵AD是中线 BAD ∴____⊥____; ∠_____= ∠_____ AD BC CAD B (3) ∵ AD是角平分线 AD BC BD ∵____ ⊥____;_____=____ CD
线段的垂直平分线 (2)线段也是轴对称图形, 是它
的对称轴,线段垂直平分线上的点到 线段的两个端点的距离 相等 。
等腰三角形的性质
等腰三角形是轴对称图形 它的对称轴是底边上的中线、底边上的高、 顶角的角平分线所在的直线。并且三线合 一。 等边对等角、等角对等边 等边三角形是特殊的等腰三角形。
线段垂直平分线的性质
线段的垂直平分线是线段的一条对称轴 线段垂直平分线上的点到这条线段的两端 距离相等
如图,已知AD是BC的中垂线,所能得 到的结论是: 你能根据现有条件,推得 ∠ABD=∠ACD
如 图 , 在 △ ABC 中 , AB=AC=16cm,AB的垂直平分线 交AC于 D, 如果BC=10cm,那 么 △BCD的周长 是_______cm.
1.轴对称图形的对称轴的条数( D ) A. 只有1条 B. 2条 C. 3条 D. 至少一条 2.下列图形中对称轴最多的是( A) A. 圆 B. 正方形 C. 角 D. 线段 3.下面几何图形中,其中一定是轴对称 图形的有 ( D )个 ⑴线段 ⑵角 ⑶等腰三角形 ⑷直角 三角形 ⑸等腰梯形 ⑹平行四边形 A.1 B.2 C.3 D.4
等边三角形的性质
◆三边都相等的三角形是
等边三角形(也叫正三角形)
◆等边三角形是轴对称图形,它有 三条对称轴。 ◆等边三角形三个内角都 等于60°
1、如图, (1)等腰△ABC中,AB=AC, 顶角∠A=100°,那么底角 40° ∠B= , ∠C= 。 40° A (2)△ABC中,AB=AC, ∠B=72°,那么 ∠A= 。 36° (3)等腰△ABC中有一 个角为50°,那么另外两 个角分别是多少? B
MN是AB的垂直平分线,EF是 BC垂直平分线。PA与PC是否相 等,为什么? M
E
P
C
F
A N B
角平分线性质
角平分线所在直线是角的对称轴 角平分线上的点到这个角的两边距离相等
A
E
P
B
FC
想一想:
角平分线所在的直线 (1)角是轴对称图形, 是它
的对称轴,角平分线上的点到角的 两边距离 相等 .
4. 小明照镜子的时候,发现T恤上的英 文单词在镜子中呈现“ ”的样子, A 请你判断这个英文单词是( )
A. B. D.
C.
5. 国旗是一个国家的象征,观察下面的 国旗,是轴对称图形的是 (C ) A.加拿大、韩国、乌拉圭 B.加拿大、瑞典、澳大利亚 C.加拿大、瑞典、瑞士 D.乌拉圭、瑞典、瑞士
第七章 生活中的轴对称 复习
本章知识回顾
生 活 中 的 轴 对 称
轴 对 称 图 形
线段 角
等腰三角形
两个图形成轴对称
轴 对 称 的 性 质
轴对称 的应用
镜面对称
概念:
轴对称图形:如果一个图形沿一条直线 折叠后,直线两旁的部分能够互相重合, 则称这个图形是轴对称图形。 成轴对称:如果两个图形沿一条直线对 折后,它们能完全重合,则称这两个图 形成轴对称 对称轴:这一条直线叫对称轴