体会生活中的轴对称现象
生活中有哪些轴对称现象

生活中有哪些轴对称现象
生活中,我们经常会遇到一些轴对称的现象,这些现象在日常生活中无处不在。
轴对称是指物体在某个轴线上的对称性,即物体的一部分关于这个轴线对称于另一部分。
让我们一起来看看生活中有哪些轴对称的现象吧。
首先,我们可以看到很多自然界中的轴对称现象。
比如,许多植物的叶子都具
有轴对称的特点,叶子的左半部分和右半部分关于中间的中脉对称。
这种轴对称的设计让植物在生长过程中更加稳定和美观。
其次,建筑物中也常常可以看到轴对称的设计。
许多古代建筑和现代建筑都采
用了轴对称的设计理念,比如对称的门窗、楼梯和装饰图案等。
这种设计不仅能够增加建筑物的美感,还能够在视觉上给人一种平衡和稳定的感觉。
除此之外,我们在日常生活中还可以看到许多轴对称的艺术作品。
比如对称的
花瓶、对称的家具、对称的服装等等。
这些设计不仅能够给人以美的享受,还能够在一定程度上提高生活品质。
总的来说,轴对称现象在生活中是无处不在的。
无论是自然界中的植物、建筑
物中的设计,还是艺术作品中的表现,轴对称都是一种美的体现。
让我们在日常生活中多留意这些轴对称的现象,感受到它们给我们带来的美好。
生活中的轴对称图形

生活中的轴对称图形
生活中处处都充满了美丽的轴对称图形,它们不仅存在于数学课本中,更融入
了我们的日常生活。
从自然界到建筑物,从日常用品到艺术品,轴对称图形无处不在,给我们的生活增添了许多美丽和神奇。
在自然界中,许多植物和动物都展现出轴对称的美丽。
比如,蝴蝶的翅膀、花
朵的花瓣、树木的枝叶等都具有轴对称的特点,让人们感受到大自然的神奇和美丽。
这些轴对称图形不仅给人们带来了视觉上的享受,更让人们感受到了自然界的奇妙之处。
在建筑物中,许多建筑设计也采用了轴对称的元素,使建筑更加美观和稳定。
例如,古希腊的神庙、古罗马的圆形竞技场,以及现代建筑中的对称设计等,都展现出了轴对称图形的魅力。
这些建筑不仅给人们带来了美的享受,更让人们感受到了建筑艺术的魅力和力量。
在日常用品中,许多家具、餐具、装饰品等也采用了轴对称的设计,使这些物
品更加美观和实用。
比如,镜子、餐桌、花瓶等都采用了轴对称的设计,让人们在使用这些物品的同时,也感受到了轴对称图形的美妙之处。
在艺术品中,许多绘画、雕塑、摄影作品也展现出了轴对称图形的魅力。
艺术
家们通过对称的构图和设计,创作出了许多令人赏心悦目的作品,给人们带来了美的享受和心灵的震撼。
生活中的轴对称图形无处不在,它们给我们的生活增添了许多美丽和神奇。
让
我们在日常生活中,多去发现和欣赏这些轴对称图形,让美丽和神奇充满我们的生活。
《轴对称现象》生活中的轴对称PPT赏析教学课件

轴对称现象
目录导航
01 学 习 目 标 02 精 典 范 例 03 变 式 练 习 04 巩 固 训 练
学习目标
1.经历观察生活中的轴对称现象、探索轴对称现象共同特征 的过程,进一步积累数学活动经验和发展空间观念. 2.理解轴对称图形和成轴对称的图形的意义,能够识别这些图 形并能指出它们的对称轴.体会轴对称在现实生活中的广泛应 用和丰富的文化价值. 3.经历探索轴对称性质的过程,积累数学活动经验,发展空间观 念.
A
B
C
D
变式练习
1.在以下绿色食品、回收、节能、节水四个标志中,是轴对 称图形的是A( )
A
B
C
D
2.下列“数字”图形中,有且仅有一条对称轴的是( A )
A
B
C
D
3.观察下图中的各组图形,其中成轴对称的有 ①② (填 序号).
①
②
③
巩固训练 4.如图所示的几个图案中,是轴对称图形的是( A )
12.下面四个图形中,哪些是轴对称图形?如果是轴对称图形, 各有几条对称轴?分别画出来.
解:(1)不是;(2)(3)(4)都是轴对称图形,其中(2)有 3 条对称轴;(3)有 2 条对称轴;(4)有 1 条对称轴,画图略.
13.(1)正三角形,(2)正四边形,(3)正五边形,(4)正六边形,(5)正八 边形,(6)正九边形都是轴对称图形,数一数它们的对称轴的条 数.观察后分析:正多边形对称轴的条数与边数n有什么关系? 根据你的分析结果回答,正十边形、正十六边形、正二十九边 形分别有几条对称轴?正五十边形呢?正一百边形呢?
(5)
(6)
(3)
(4)
(7) 英国
(8)
《轴对称图形》教案(最新5篇)

《轴对称图形》教案(最新5篇)《轴对称图形》教案篇一教学目标:1、联系生活中的具体事物,通过观察和动手操作初步体会生活中的轴对称现象,认识轴对称图形的基本特征。
2、会用动手或观察等方法辨别轴对称图形,能利用身边的工具制作轴对称图形,并在认识、制作和欣赏轴对称图形的过程中,感受到物体图形的对称美,激发学生良好的数学情感。
3、在对知识的探究过程中,培养学生的合作能力,动手能力、空间思维能力和良好的学习情感。
教学重点:理解轴对称图形的特征。
教学难点:掌握并能准确辨别较为复杂的轴对称图形。
教具准备:多媒体网络课件、钉子板、剪刀等教学过程:一、活动导入谈话:同学们,老师今天带来了一个美丽的朋友,大家看!(出示只有一个触角的蝴蝶的图片。
)提问:仔细观察这张图片,你有什么发现和感受,还应该怎么做才好看?学生回答。
教师:今天我们要研究的问题和这只美丽的蝴蝶也有一定的关系。
板书课题:轴对称图形,同时引导学生看了课题你想研究哪些问题?(请学生提出自己赶兴趣的问题)二、识轴对称图形1、课件出示天安门、飞机、奖杯图片。
引导学生观察图片上的物体,说说它们有什么共同特征。
教师:同学们请拿出你们自己手中的这些平面图形,折一折、比一比,和同组的同学交流一下你们发现了什么?(先小组讨论,再汇报)引导学生用手摸一摸对折后的两边,说说有什么样的感觉。
得出结论:这些图形对折后“两部分完全重合”。
介绍:我们把这些对折后能完全重合的图形称为“轴对称图形”。
(板书轴对称图形定义)。
中间这条折痕就是轴对称图形的对称轴。
(板书:对称轴)谈话:我们生活中还有哪些常见物体的平面图形也是轴对称图形呢?(学生交流并回答)2、试一试谈话:同学们你们的学具袋中有几种不同的多边形,它们是轴对称图形吗?引导学生参照轴对称图形的定义,动手折一折、比一比,看看这些常见的图形哪些是轴对称图形?汇报时引导学生用“完全重合”等词语来描述和判断是否是轴对称图形。
3、判断轴对称图形谈话:下面我们一起到“轴对称图形博物馆”去看看。
生活中的轴对称教案(完成版)

生活中的轴对称教案(最新完成版)第一章:轴对称的基本概念1.1 轴对称的定义解释轴对称的概念,让学生理解轴对称图形的特点。
通过实际例子,如剪纸、图片等,让学生直观地感受轴对称。
1.2 轴对称的性质介绍轴对称图形的性质,如对应点的连线与对称轴垂直,对应点相等等。
引导学生通过实际操作,验证这些性质。
第二章:生活中的轴对称现象2.1 生活中的轴对称实例举例说明生活中常见的轴对称现象,如衣服的领子、房间的布置等。
让学生观察并描述这些轴对称现象。
2.2 制作轴对称图形引导学生利用纸张、剪刀等材料,制作自己喜欢的轴对称图形。
鼓励学生发挥创意,设计独特的轴对称图形。
第三章:轴对称与几何图形的变换3.1 轴对称与对称轴解释对称轴的概念,让学生理解对称轴在轴对称中的作用。
引导学生通过实际操作,找出给定图形的对称轴。
3.2 轴对称与旋转介绍轴对称与旋转的关系,让学生理解旋转是轴对称的一种特殊情况。
引导学生通过实际操作,观察旋转对图形的影响。
第四章:轴对称在实际应用中的例子4.1 轴对称在设计中的应用举例说明轴对称在设计中的应用,如标志设计、服装设计等。
让学生欣赏并分析这些设计中的轴对称元素。
4.2 轴对称在建筑中的应用举例说明轴对称在建筑中的应用,如宫殿、教堂等。
引导学生观察并描述这些建筑中的轴对称特点。
第五章:轴对称的练习与拓展5.1 轴对称的练习题提供一些轴对称的练习题,让学生巩固所学知识。
包括找对称轴、判断轴对称图形等类型的题目。
5.2 轴对称的拓展活动引导学生进行轴对称的拓展活动,如设计轴对称的图案、制作轴对称的手工作品等。
鼓励学生发挥创意,展示自己的作品。
第六章:轴对称与坐标系6.1 坐标系中的轴对称介绍坐标系中轴对称的概念,让学生理解在坐标系中如何表示轴对称图形。
引导学生通过实际操作,找出给定图形在坐标系中的对称轴。
6.2 轴对称图形的对称点解释坐标系中轴对称图形的对称点如何计算,让学生掌握对称点的求法。
生活中的轴对称现象

车标设计
国旗欣赏
交通标志
实物图案
几何图案
面对生活中这些美丽的图片, 你是否强烈地感受到美就在我们身边! 这是一种怎样的美呢? 请你谈谈你的感想?
想一想:0-9十个数字中,
哪些是轴对称图形?
0 1 2 3 4 5 6 7 8 9
想一想:下列英文字母中,哪些是轴对称图形?
A
S B
C
T
D
U
E
V
F
W
G
X
H
Y
I
Z
你知道吗?中国的汉字也十分注重对称美。
中 目
王 呈
申 十
木
土
下面是哈弗大学的新生面试题:
我们今天主要学习了哪些内容?同学们 说一说 有什么感受?
一、主要内容:
1、轴对称图形: 如果沿某条直线对折,对折的两部分是完全 重合的,那么就称这样的图形为轴对称图形;这条 直线叫做这个图形的对称轴。 轴对称: 把一个图形沿着某一条直线翻折过去,如果它能够 与另一个图形重合,那么就说这两个图形成轴对称, 这条直线就是对称轴,两个图形中的对应点(即两个 图形重合时互相重合的点)叫做对称点.
轴对称和轴对称图形这两个概念有区别吗? 有联系吗?
轴对称和轴对称图形关系: 区别: (1)轴对称图形是一个图形。 (2)轴对称是两个图形之间的关系。 联系: (1)都是沿一条直线翻折后能够互相重合。 (2)它们可以互相转化;如果把成轴对称的 两个图形看作一个整体,那么它就是一 个轴对称图形;如果把轴对称图形沿对 称轴分成两个部分,那么两个部分就是 关于这条对称轴成轴对称。
把一个图形沿着某一条直线翻折过去如果它能够把一个图形沿着某一条直线翻折过去如果它能够与另一个图形重合那么就说这两个图形成轴对称与另一个图形重合那么就说这两个图形成轴对称这条直线就是对称轴两个图形中的对应点即两个这条直线就是对称轴两个图形中的对应点即两个图形重合时互相重合的点叫做对称点
生活中的轴对称

生活中的轴对称美国数学家克莱因曾对数学美作过这样的描绘:音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科技可以改善物质生活,但数学却能提供以上一切。
下面就让我们一起来看看数学是怎样让人赏心悦目的。
轴对称图形是沿着某直线折叠后,直线两旁的局部互相重合的图形。
这条直线就是他们的对称轴。
这条对称轴就像一个公正的法官,左右两边的长度、面积、形状等,都一点儿也不差,唯一不同的就是他们所朝的方向。
在数学课本里,我们已见过它们的身影,也接触、理解过它们。
下面让我们一起看看生活当中的轴对称图形。
当我们漫步在校园时,随手捡起一片树叶,假如将树叶中间的那根茎当成是其左右两边的对称轴,将树叶右边局部沿着这条对称轴对折过去,我们会惊奇地发现它正好与左边的一半树叶重合。
一只蝴蝶停留在花朵上,张合着翅膀时,假如将蝴蝶两只触角的中点与尾部相连接,连接好的线段所在的直线就是其对称轴。
而右边的翅膀就像是左边的翅膀沿着对称轴翻折过去的图形。
像蝴蝶这样成轴对称图形的动物还有很多,比方蜻蜓、飞蛾、螃蟹等。
动物进化经历了由海绵动物、双胚层辐射对称动物〔包括腔肠动物〕、三胚层两侧对称动物的开展阶段,其中从辐射对称动物到两侧对称动物的演化,是生物进化过程中的一个重大事件,它意味着一系列遗传基因的重要创新,并由此促进生命的形态、行为向更加复杂的阶段快速开展。
“贵州小春虫〞的发现,将生物进化史上的一个重要阶段——两侧对称动物化石记录的历史前推到了寒武纪之前4000万年。
对称是动物的美学,左右对称是动物世界普遍的安康、强壮的特征。
人类的耳、眼、四肢都是对称生长的。
耳的轴对称不仅使我们听到的声音具有强烈的立体感,还可以判断声源的位置;眼的对称使我们看物体更明晰、准确。
演出前化装时,你肯定不希望眉毛被画得一高一低、两边眼线不一样粗细吧?这就要求化装师随时把轴对称放在心里。
中国银行的图形标志也是一个轴对称图形。
这个图形的对称轴有两条,一条是图形程度直径所在的直线,另一条是与程度直径相垂直的直径所在的直线。
浅谈《生活中的轴对称图形》

浅谈《生活中的轴对称图形》作者:李贻来源:《新教育时代·教师版》2016年第23期摘要:轴对称图形在我们的生活中经常出现,美丽的图片、房屋建筑设计、室内装饰……最近的几次听课、评课中,发现越是看似简单易懂的知识却越容易讲不清楚,讲不透彻,这让我不得不反思三个技术问题——相似概念的区别与联系、课堂容量的适当选择、作图法的应用。
关键词:相似概念的区别与联系;课堂容量的适当选择;作图法的应用。
生活中有许许多多的轴对称图形,它们是那么的美丽,让人记忆深刻。
作为教师,我们希望在学习第五章《生活中的轴对称图形》后,能够让学生们学好轴对称的相关知识,将来他们也许会成为我们未来生活的设计师,创作出更多鲜活的作品。
作为教师,我想谈谈在教学七年级下期的第五章《生活中的轴对称图形》(北师大版本)中遇到的三个问题。
第五章《生活中的轴对称图形》共四节课,从整个章节的理解和分析,我们看得出教学是一个循序渐进、由浅入深、从初步的理解掌握到实际应用的过程,希望是美好的,操作中我们却遇到了问题。
一、清楚认识“轴对称”和“对称轴图形”两个概念学生在学习第一课《生活中的轴对称》,学生易在看到各种美妙的轴对称图片后,确确实实能感受到图片中的轴对称现象,但如果知识只是从感官上认识,那一些分析理解的考点题上就很易混淆“轴对称”和“轴对称图形”两个概念。
轴对称——把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做关于这条直线的对称点,这条直线叫做对称轴,两个图形关于直线对称也称轴对称。
说明:(1)轴对称是指两个图形之间形状个位置的关系,包含两层意思:一是两个图形,能够完全重合,即形状大小都相同;二是对重合的方式有限制,也就是它们的位置关系必须满足一个条件,即把它们沿某一条直线对折后能够重合,因此,全等的图形不一定是轴对称的,而轴对称图形一定是全等的。
(2)对称轴是指一条直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体会生活中的轴对称现象
我们生活在一个充满对称的世界里,日常生活中随处都可以看到它的身影. 一、设计最短输水管线
【例1】如图1,要在河道l 上修建一座水泵站,分别向A 、B 两地供水,问:水泵站建在河道的什么地方,可使所用的输水管线最短?
【分析】我们可以把河道近似地看成一条直线l ,问题就是要在直线l 上找一点C ,使AC 与BC 的和最小.设B ′是B 关于l 的对称点,本题就是要使AC 与CB ′的和最小.在连接AB ′的线中,线段AB ′最短.因此,线段AB ′与直线l 的交点C 的位置即为所求.
图1
B /
B
C A
l
二、台球比赛中的准确击球
【例2】如图2,已知台球桌ABCD 内有两球P 、Q ,现击打球Q 去撞击AD 边后反弹,再正面撞击球P .请画出球Q 撞击AD 边的位置.
【分析】要使球Q 撞击AD 边反弹,再撞击球P ,必须使球Q 的入射角等于反射角,显然,作点P 关于AD 的对称点P ′,连接P ′Q ,P ′Q 与AD 相交于点E ,容易得到∠QED =∠AEP ′=∠AEP .所以点E 即为所求.
图2
C
三、蚂蚁爬行的最短路程
【例3】如图4,在一块三角形区域ABC 中,一只蚂蚁P 停留在AB 边上,它现在从点P 出发,先爬到BC 边上的点M ,再从点M 爬到AC 边上的点N ,然后再回到点P ,请在图上作出点M 、点N ,使得蚂蚁爬行的路程最短.
图4P 2
N
C
M P 1
B
P
A
【分析】作点P 关于BC 、AC 的对称点P 1、P 2,连接P 1P 2,分别交BC 、AC 于点M 、点N ,再连接PM 、PN ,易知:
PM =P 1M ,PN =P 2N ,所以蚂蚁爬行的路程=PM +PN +MN =P 1M +P 2N +MN =P 1P 2,根据两
点之间线段最短,可知△PMN即为所求.
四、设计精美的图案
【例4】幸福村拟建造农民文化公园,将12个场馆排列成6行,每行4个场馆,村委会将如图5的设计公布后,引起许多同学的好奇,他们纷纷设计出精美的轴对称图案来,请你也设计一张符合条件的新图吧!
【分析】这是一道融知识、技能、技巧为一体的创新试题,答案不唯一,只要符合条件即可.下面试给出几个参考答案.
总之,我们的生活充满着对称,用心去感悟对称,你会觉得对称世界是如此的绚丽多彩.。