人教版高中数学高二选修2-2第二章《推理与证明》章末复习同步练习
最新人教版选修2-2高中数学第二章 推理与证明2.3数学归纳法习题课 同步习题及答案

习题课 数学归纳法明目标、知重点1.进一步掌握数学归纳法的实质与步骤,掌握用数学归纳法证明等式、不等式、整除问题、几何问题等数学命题.2.掌握证明n =k +1成立的常见变形技巧:提公因式、添项、拆项、合并项、配方等.1.归纳法归纳法是一种由特殊到一般的推理方法,分完全归纳法和不完全归纳法两种,而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明. 2.数学归纳法(1)应用范围:作为一种证明方法,用于证明一些与正整数n 有关的数学命题; (2)基本要求:它的证明过程必须是两步,最后还有结论,缺一不可; (3)注意点:在第二步递推归纳时,从n =k 到n =k +1必须用上归纳假设.题型一 用数学归纳法证明不等式思考 用数学归纳法证明不等式的关键是什么?答 用数学归纳法证明不等式,首先要清楚由n =k 到n =k +1时不等式两边项的变化;其次推证中可以利用放缩、比较、配凑分析等方法,利用归纳假设证明n =k +1时的结论.例 1 已知数列{b n }的通项公式为b n =2n ,求证:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1都成立. 证明 由b n =2n ,得b n +1b n =2n +12n ,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n.下面用数学归纳法证明不等式b 1+1b 1·b 2+1b 2·…·b n +1b n=32·54·76·…·2n +12n>n +1成立. (1)当n =1时,左边=32,右边=2,因为32>2,所以不等式成立.(2)假设当n =k (k ≥1且k ∈N *)时不等式成立, 即b 1+1b 1·b 2+1b 2·…·b k +1b k =32·54·76·…·2k +12k>k +1成立. 则当n =k +1时,左边=b 1+1b 1·b 2+1b 2·…·b k +1b k ·b k +1+1b k +1=32·54·76·…·2k +12k ·2k +32k +2 >k +1·2k +32k +2=(2k +3)24(k +1)=4k 2+12k +94(k +1)>4k 2+12k +84(k +1)=4(k 2+3k +2)4(k +1)=4(k +1)(k +2)4(k +1)=k +2=(k +1)+1. 所以当n =k +1时, 不等式也成立. 由(1)、(2)可得不等式b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n>n +1对任意的n ∈N *都成立.反思与感悟 用数学归纳法证明不等式时要注意两凑:一凑归纳假设;二凑证明目标.在凑证明目标时,比较法、综合法、分析法都可选用.跟踪训练1 用数学归纳法证明122+132+142+…+1n 2<1-1n (n ≥2,n ∈N *).证明 当n =2时,左式=122=14,右式=1-12=12,因为14<12,所以不等式成立.假设n=k(k≥2,k∈N*)时,不等式成立,即122+132+142+…+1k2<1-1k,则当n=k+1时,1 22+132+142+…+1k2+1(k+1)2<1-1k+1(k+1)2=1-(k+1)2-kk(k+1)2=1-k2+k+1k(k+1)2<1-k(k+1)k(k+1)2=1-1k+1,所以当n=k+1时,不等式也成立.综上所述,对任意n≥2的正整数,不等式都成立.题型二利用数学归纳法证明整除问题例2 求证:a n+1+(a+1)2n-1能被a2+a+1整除,n∈N*.证明(1)当n=1时,a1+1+(a+1)2×1-1=a2+a+1,命题显然成立.(2)假设当n=k(k∈N*)时,a k+1+(a+1)2k-1能被a2+a+1整除,则当n=k+1时,a k+2+(a+1)2k+1=a·a k+1+(a+1)2·(a+1)2k-1=aa k+1+(a+1)2k-1]+(a+1)2(a+1)2k-1-a(a+1)2k-1=aa k+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1.由归纳假设,上式中的两项均能被a2+a+1整除,故n=k+1时命题成立.由(1)(2)知,对任意n∈N*,命题成立.反思与感悟证明整除性问题的关键是“凑项”,先采用增项、减项、拆项和因式分解等手段,凑成n=k时的情形,再利用归纳假设使问题获证.跟踪训练2 证明x2n-1+y2n-1(n∈N*)能被x+y整除.证明(1)当n=1时,x2n-1+y2n-1=x+y,能被x+y整除.(2)假设当n=k(k∈N*)时,命题成立,即x2k-1+y2k-1能被x+y整除.那么当n=k+1时,x2(k+1)-1+y2(k+1)-1=x2k+1+y2k+1=x2k-1+2+y2k-1+2=x2·x2k-1+y2·y2k-1+x2·y2k-1-x2·y2k-1=x2(x2k-1+y2k-1)+y2k-1(y2-x2).∵x2k-1+y2k-1能被x+y整除,y2-x2=(y+x)(y-x)也能被x+y整除,∴当n=k+1时,x2(k+1)-1+y2(k+1)-1能被x+y整除.由(1),(2)可知原命题成立.题型三利用数学归纳法证明几何问题思考用数学归纳法证明几何问题的关键是什么?答用数学归纳法证明几何问题的关键是“找项”,即几何元素从k个变成k+1个时,所证的几何量将增加多少,还需用到几何知识或借助于几何图形来分析,实在分析不出来的情况下,将n=k+1和n=k分别代入所证的式子,然后作差,即可求出增加量,然后只需稍加说明即可,这也是用数学归纳法证明几何命题的一大技巧.例3 平面内有n(n∈N*,n≥2)条直线,其中任何两条不平行,任何三条不过同一点,证明:交点的个数f(n)=n(n-1)2.证明(1)当n=2时,两条直线的交点只有一个,又f(2)=12×2×(2-1)=1,∴当n=2时,命题成立.(2)假设n=k(k>2)时,命题成立,即平面内满足题设的任何k条直线交点个数f(k)=12k(k-1),那么,当n=k+1时,任取一条直线l,除l以外其他k条直线交点个数为f(k)=12k(k-1),l与其他k条直线交点个数为k,从而k+1条直线共有f(k)+k个交点,即f(k+1)=f(k)+k=12k(k-1)+k=12k(k-1+2)=12k(k+1)=12(k+1)(k+1)-1],∴当n=k+1时,命题成立.由(1)(2)可知,对任意n∈N*(n≥2)命题都成立.反思与感悟用数学归纳法证明几何问题时,一要注意数形结合,二要注意有必要的文字说明.跟踪训练3 有n个圆,其中每两个圆相交于两点,并且每三个圆都不相交于同一点,求证:这n个圆把平面分成f(n)=n2-n+2部分.证明(1)n=1时,分为2块,f(1)=2,命题成立;(2)假设n=k(k∈N*)时,被分成f(k)=k2-k+2部分;那么当n=k+1时,依题意,第k+1个圆与前k个圆产生2k个交点,第k+1个圆被截为2k段弧,每段弧把所经过的区域分为两部分,所以平面上净增加了2k个区域.∴f(k+1)=f(k)+2k=k2-k+2+2k=(k+1)2-(k+1)+2,即n=k+1时命题成立,由(1)(2)知命题成立.呈重点、现规律]1.数学归纳法证明与正整数有关的命题,包括等式、不等式、数列问题、整除问题、几何问题等.2.证明问题的初始值n0不一定,可根据题目要求和问题实际确定n0.3.从n=k到n=k+1要搞清“项”的变化,不论是几何元素,还是式子;一定要用到归纳假设.一、基础过关1.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N*),验证n=1时,左边应取的项是( )A.1 B.1+2C.1+2+3 D.1+2+3+4答案 D解析等式左边的数是从1加到n+3.当n=1时,n+3=4,故此时左边的数为从1加到4.2.用数学归纳法证明“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取( )A.2 B.3C.5 D.6答案 C解析当n取1、2、3、4时2n>n2+1不成立,当n=5时,25=32>52+1=26,第一个能使2n>n2+1的n值为5,故选C.3.已知f(n)=1+12+13+…+1n(n∈N*),证明不等式f(2n)>n2时,f(2k+1)比f(2k)多的项数是( )A.2k-1项B.2k+1项C.2k项D.以上都不对答案 C解析观察f(n)的表达式可知,右端分母是连续的正整数,f(2k)=1+12+…+12k,而f(2k+1)=1+12+…+12k+12k+1+12k+2+…+12k+2k.因此f(2k+1)比f(2k)多了2k项.4.用数学归纳法证明不等式1n+1+1n+2+…+12n>1124(n∈N*)的过程中,由n=k递推到n=k+1时,下列说法正确的是( )A.增加了一项12(k+1)B.增加了两项12k+1和12(k+1)C.增加了B中的两项,但又减少了一项1 k+1D.增加了A中的一项,但又减少了一项1 k+1答案 C解析当n=k时,不等式左边为1k+1+1k+2+…+12k,当n=k+1时,不等式左边为1k+2+1k+3+…+12k+12k+1+12k+2,故选C.5.用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开( )A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3答案 A解析假设当n=k时,原式能被9整除,即k3+(k+1)3+(k+2)3能被9整除.当n=k+1时,(k+1)3+(k+2)3+(k+3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k3即可.6.已知数列{a n}的前n项和为S n,且a1=1,S n=n2a n(n∈N*).依次计算出S1,S2,S3,S4后,可猜想S n的表达式为________________.答案S n=2n n+1解析S1=1,S2=43,S3=32=64,S4=85,猜想S n=2nn+1.7.已知正数数列{a n}(n∈N*)中,前n项和为S n,且2S n=a n+1an,用数学归纳法证明:a n=n-n-1.证明(1)当n=1时,a1=S1=12(a1+1a1),∴a21=1(a n>0),∴a1=1,又1-0=1,∴n=1时,结论成立.(2)假设n=k(k∈N*)时,结论成立,即a k=k-k-1. 当n=k+1时,a k+1=S k+1-S k=12(a k+1+1ak+1)-12(a k+1ak)=12(a k+1+1ak+1)-12(k-k-1+1k-k-1)=12(a k+1+1ak+1)-k.∴a2k+1+2ka k+1-1=0,解得a k+1=k+1-k(a n>0),∴n=k+1时,结论成立.由(1)(2)可知,对n∈N*都有a n=n-n-1.二、能力提升8.对于不等式n2+n≤n+1 (n∈N*),某学生的证明过程如下:①当n=1时,12+1≤1+1,不等式成立.②假设n=k (n∈N*)时,不等式成立,即k2+k≤k+1,则n=k+1时,(k+1)2+(k+1)=k2+3k+2<k2+3k+2+(k+2)=(k+2)2=(k+1)+1,所以当n=k+1时,不等式成立,上述证法( )A.过程全部正确B.n=1验证不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确答案 D解析从n=k到n=k+1的推理中没有使用归纳假设,不符合数学归纳法的证题要求.9.用数学归纳法证明122+132+…+1(n+1)2>12-1n+2.假设n=k时,不等式成立.则当n=k+1时,应推证的目标不等式是__________________________.答案122+132+…+1k2+1(k+1)2+1(k+2)2>12-1k+3解析观察不等式中的分母变化知,122+132+…+1k2+1(k+1)2+1(k+2)2>12-1k+3.10.证明:62n-1+1能被7整除(n∈N*).证明(1)当n=1时,62-1+1=7能被7整除.(2)假设当n=k(k∈N*)时,62k-1+1能被7整除.那么当n=k+1时,62(k+1)-1+1=62k-1+2+1=36×(62k-1+1)-35.∵62k-1+1能被7整除,35也能被7整除,∴当n=k+1时,62(k+1)-1+1能被7整除.由(1),(2)知命题成立.11.求证:1n+1+1n+2+…+13n>56(n≥2,n∈N*).证明(1)当n=2时,左边=13+14+15+16>56,不等式成立.(2)假设当n=k(k≥2,k∈N*)时命题成立,即1k+1+1k+2+…+13k>56.则当n=k+1时,1 (k+1)+1+1(k+1)+2+…+13k+13k+1+13k+2+13(k+1)=1k+1+1k+2+…+13k+(13k+1+13k+2+13k+3-1k+1)>56+(13k+1+13k+2+13k+3-1k+1)>56+(3×13k+3-1k+1)=56,所以当n=k+1时不等式也成立.由(1)和(2)可知,原不等式对一切n≥2,n∈N*均成立.12.已知数列{a n }中,a 1=-23,其前n 项和S n 满足a n =S n +1S n+2(n ≥2),计算S 1,S 2,S 3,S 4,猜想S n 的表达式,并用数学归纳法加以证明. 解 当n ≥2时,a n =S n -S n -1=S n +1S n+2.∴S n =-1S n -1+2(n ≥2). 则有:S 1=a 1=-23,S 2=-1S 1+2=-34,S 3=-1S 2+2=-45,S 4=-1S 3+2=-56,由此猜想:S n =-n +1n +2(n ∈N *).用数学归纳法证明:(1)当n =1时,S 1=-23=a 1,猜想成立.(2)假设n =k (k ∈N *)猜想成立,即S k =-k +1k +2成立,那么n =k +1时,S k +1=-1S k +2=-1-k +1k +2+2=-k +2k +3=-(k +1)+1(k +1)+2. 即n =k +1时猜想成立.由(1)(2)可知,对任意正整数n ,猜想结论均成立. 三、探究与拓展13.已知递增等差数列{a n }满足:a 1=1,且a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式a n ;(2)若不等式(1-12a 1)·(1-12a 2)·…·(1-12a n )≤m 2a n +1对任意n ∈N *,试猜想出实数m 的最小值,并证明.解 (1)设数列{a n }公差为d (d >0),由题意可知a 1·a 4=a 22,即1(1+3d )=(1+d )2,解得d =1或d =0(舍去).所以a n =1+(n -1)·1=n .(2)不等式等价于12·34·56·…·2n -12n ≤m 2n +1, 当n =1时,m ≥32;当n =2时,m ≥358; 而32>358,所以猜想,m 的最小值为32. 下面证不等式12·34·56·…·2n -12n ≤322n +1对任意n ∈N *恒成立. 下面用数学归纳法证明: 证明 (1)当n =1时,12≤323=12,命题成立. (2)假设当n =k 时,不等式,12·34·56·…·2k -12k ≤322k +1成立, 当n =k +1时,12·34·56·…·2k -12k ·2k +12k +2≤322k +1·2k +12k +2, 只要证322k +1·2k +12k +2≤ 322k +3, 只要证2k +12k +2≤12k +3,只要证2k +12k +3≤2k +2, 只要证4k 2+8k +3≤4k 2+8k +4,只要证3≤4,显然成立.1 2·34·56·…·2n-12n≤322n+1恒成立.所以,对任意n∈N*,不等式。
高中数学选修2-2(人教A版)第二章推理与证明2.2知识点总结含同步练习及答案

4. 当 q ≠ 1 时, S n =
−a1 n a q + 1 = aq n + b ,这里 a + b = 0 ,且 a ≠ 0, b ≠ 0 ,这是等比数 1−q 1−q 列前 n 项和公式的一个特征,据此很容易根据 S n ,判断数列 {an } 是否为等比数列.如若 {an } 是
等比数列,且 S n = 3 n + r ,则 r =
)
C.2 D.3
B.1
2. 从任何一个正整数 n 出发,若 n 是偶数就除以 2 ,若 n 是奇数就乘 3 再加 1 ,如此继续下去
⋯ ⋯,现在你从正整数 3 出发,按以上的操作,你最终得到的数不可能是 (
A.1
答案: C 解析: 按照题中给出的规则:
)
B.2
C.3
D.4
10 = 5 ;得到的第三个数是 2 16 8 5 × 3 + 1 = 16 ;得到的第四个数是 = 8 ;得到的第五个数为 = 4 ; 2 2 4 2 得到的第六个数为 = 2 ;得到第七个数为 = 1 ;得到第八个数为 1 × 3 + 1 = 4. 2 2 所以后面的数是以 4、2、1 为一个周期的数.
高中数学选修2-2(人教A版)知识点总结含同步练习题及答案
第二章 推理与证明 2.1 合情推理与演绎推理
一、学习任务 1. 能用归纳和类比等进行简单的推理,体会并了解合情推理在数学发现中的作用. 2. 理解演绎推理的基本方法,并能运用它们进行一些简单推理. 3. 了解合情推据已知中的点
E, F 的位置,如图,可知入射角的正切值为 2 ,第一次碰撞点为 F ,在反射 的过程中,直线是平行的,利用平行关系及三角形的相似可得第二次碰撞点 G 在 DA 上 ,且 1 1 DG = , 第三次碰撞点 H 在 DC 上,且 DH = ,第四次碰撞点 M 在 CB 上,且 6 3 1 1 1 CM = ,第五次碰撞点为 N ,在 DA 上,且 AN = ,第六次回到 E 点, AE = . 3 6 3
高中数学选修2-2第二章《推理与证明》单元测试题(含答案)

高中数学选修2-2第二章《推理与证明1》单元测试题单元练习题一、选择题1.数列2,5,11,20,,47,x …中的x 等于( ) A .28 B .32 C .33 D .272.设,,(,0),a b c ∈-∞则111,,a b c b c a+++( )A .都不大于2-B .都不小于2-C .至少有一个不大于2-D .至少有一个不小于2-3.已知正六边形ABCDEF ,在下列表达式①EC CD BC ++;②DC BC +2;③+;④-2中,与等价的有( ) A .1个 B .2个 C .3个 D .4个 4.函数]2,0[)44sin(3)(ππ在+=x x f 内( ) A .只有最大值 B .只有最小值 C .只有最大值或只有最小值 D .既有最大值又有最小值5.如果821,,a a a ⋅⋅⋅为各项都大于零的等差数列,公差0≠d ,则( ) A .5481a a a a > B .5481a a a a <C .5481a a a a +>+D .5481a a a a =6. 若234342423log [log (log )]log [log (log )]log [log (log )]0x x x ===,则x y z ++=( )A .123B .105C .89D .58 7.函数xy 1=在点4=x 处的导数是 ( )A .81B .81-C .161D .161-二、填空题1.从222576543,3432,11=++++=++=中得出的一般性结论是_____________。
2.已知实数0≠a ,且函数)12()1()(2a x x a x f +-+=有最小值1-,则a =__________。
3.已知b a ,是不相等的正数,b a y b a x +=+=,2,则y x ,的大小关系是_________。
4.若正整数m 满足m m 102105121<<-,则)3010.02.(lg ______________≈=m5.若数列{}n a 中,12341,35,7911,13151719,...a a a a ==+=++=+++则10____a =。
高中数学选修2-2(人教B版)第二章推理与证明2.1知识点总结含同步练习题及答案

第二章 推理与证明 2.1 合情推理与演绎推理
一、学习任务 1. 能用归纳和类比等进行简单的推理,体会并了解合情推理在数学发现中的作用. 2. 理解演绎推理的基本方法,并能运用它们进行一些简单推理. 3. 了解合情推理和演绎推理的联系和区别.
二、课后作业
(查看更多本章节同步练习题,请到快乐学)
1. 下面说法正确的有 (
)
①演绎推理是由一般到特殊的推理; ②演绎推理得到的结论一定是正确的; ③演绎推理一般模式是"三段论"形式; ④演绎推理的结论的正误与大前提、小前提和推理形式有关. A.1 个
答案: D
B.2 个
答案: B
)
B.4 或 6 或 7 或 8 个部分D.6 或 7 或 8 个部分
C.4 或 7 或 8 个部分
4. 已知 √2 +
− − − − − − − − − − − − − − − − − − − − −− − 2 2 3 3 4 4 = 2 ⋅ √ ,√3 + = 3 ⋅ √ ,√4 + = 4 ⋅ √ ,….若 3 3 8 8 15 15 − − − − − − − a a √8 + = 8 ⋅ √ (a, t 均为正实数),类比以上等式,可推测 a, t 的值,则 a + t = t t
答案: 解析: 根据已知归纳推理有根号下的分子和根号前面的数字一样,即
.
71
数相乘减一,所以 t = 64 − 1 = 63 .
a = 8,分母等于分子与根式外的
高考不提分,赔付1万元,关注快乐学了解详情。
C.3 个
D.4 个
2. "因为对数函数 y = loga x 是增函数,而 y = log 1 x 是对数函数,所以 y = log 1 x 是增函数".这个推 理是错误的,是因为 ( A.大前提错误
高中数学选修2-2(人教A版)第二章推理与证明2.3知识点总结含同步练习及答案

) 个.
C.4 D.5
B.3
2. 设 a ,b ,c 均为正实数,则三个数 a + A.都大于 2
答案: D
1 1 1 ,b + ,c + b a a
(
)
C.至少有一个不大于 2
B.都不大于 2
D.至少有一个不小于 2
3. 设 x ∈ (0, 1) , a = 1 + x , b = 2√x , c =
高中数学选修2-2(人教A版)知识点总结含同步练习题及答案
第二章 推理与证明 2.2 直接证明与间接证明
一、学习任务 了解分析法、综合法、反证法的思考过程和特点. 二、课后作业
(查看更多本章节同步练习题,请到快乐学)
1. 下列表述:①综合法是执因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是间接证 法;⑤反证法是逆推法.其中正确的语句有 ( A.2
答案: 解析: 作差比较即可.
1 ,则 a 、 b 、 c 中最大的是 1−x
.
c
4. " x > 1 ,且 y > 1 "的充要条件是" x + y > 2 ,且
答案:
".
(x − 1) (y − 1) > 0
Байду номын сангаас
高考不提分,赔付1万元,关注快乐学了解详情。
高中数学人教A版选修2-2(课时训练):第二章 推理与证明 章末复习 Word版含答案

章末复习1.归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明.2.演绎推理与合情推理不同,是由一般到特殊的推理,是数学中证明的基本推理形式.也是公理化体系所采用的推理形式,另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性.3.直接证明和间接证明是数学证明的两类基本证明方法.直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,间接证法的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法.4.数学归纳法主要用于解决与正整数有关的数学问题.证明时,它的两个步骤缺一不可.它的第一步(归纳奠基)n=n0时结论成立.第二步(归纳递推)假设n=k时,结论成立,推得n =k+1时结论也成立.数学归纳法原理建立在归纳公理的基础上,它可用有限的步骤(两步)证明出无限的命题成立.5.归纳、猜想、证明探索性命题是近几年高考试题中经常出现的一种题型,此类问题未给出问题结论,需要由特殊情况入手,猜想、证明一般结论的问题称为探求规律性问题,它的解题思想是:从给出的条件出发,通过观察、试验、归纳、猜想,探索出结论,然后再对归纳、猜想的结论进行证明.题型一归纳推理和类比推理归纳推理和类比推理是常用的合情推理,两种推理的结论“合情”但不一定“合理”,其正确性都有待严格证明.尽管如此,合情推理在探索新知识方面有着极其重要的作用.运用合情推理时,要认识到观察、归纳、类比、猜想、证明是相互联系的.在解决问题时,可以先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳、类比的方法进行探索、猜想,最后用逻辑推理方法进行验证.例1观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28 B.76C.123 D.199答案 C解析记a n+b n=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n-1)+f(n-2)(n∈N*,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a10+b10=123.跟踪演练1自然数按下表的规律排列则上起第2 007行,左起第2 008列的数为()A.2 0072B.2 0082C.2 006×2 007 D.2 007×2 008答案 D解析经观察可得这个自然数表的排列特点:①第一列的每个数都是完全平方数,并且恰好等于它所在行数的平方,即第n行的第1个数为n2;②第一行第n个数为(n-1)2+1;③第n行从第1个数至第n个数依次递减1;④第n列从第1个数至第n个数依次递增1.故上起第2 007行,左起第2 008列的数,应是第2 008列的第2 007个数,即为[(2 008-1)2+1]+2 006=2 007×2 008.题型二 直接证明由近三年的高考题可以看出,直接证明的考查中,各种题型均有体现,尤其是解答题,几年来一直是考查证明方法的热点与重点.综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题常用的思维方式.如果从解题的切入点的角度细分,直接证明方法可具体分为:比较法、代换法、放缩法、判别式法、构造函数法等,应用综合法证明问题时,必须首先想到从哪里开始起步,分析法就可以帮助我们克服这种困难,在实际证明问题时,应当把分析法和综合法结合起来使用. 例2 已知a >0,求证:a 2+1a 2-2≥a +1a-2.证明 要证a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2+2≥a +1a+ 2.∵a >0,故只需证⎝⎛⎭⎫a 2+1a 2+22≥⎝⎛⎭⎫a +1a+22, 即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a2+22⎝⎛⎭⎫a +1a +2, 从而只需证2a 2+1a2≥2⎝⎛⎭⎫a +1a , 只要证4⎝⎛⎭⎫a 2+1a 2≥2⎝⎛⎭⎫a 2+2+1a 2, 即a 2+1a 2≥2,而上述不等式显然成立,故原不等式成立.跟踪演练2如图,在四面体B -ACD 中,CB =CD ,AD ⊥BD ,且E ,F 分别是AB ,BD 的中点,求证: (1)直线EF ∥平面ACD ; (2)平面EFC ⊥平面BCD .证明 (1)要证直线EF ∥平面ACD , 只需证EF ∥AD 且EF ⊄平面ACD . 因为E ,F 分别是AB ,BD 的中点, 所以EF 是△ABD 的中位线,所以EF ∥AD ,所以直线EF ∥平面ACD .(2)要证平面EFC ⊥平面BCD , 只需证BD ⊥平面EFC , 只需证⎩⎪⎨⎪⎧EF ⊥BD ,CF ⊥BD ,CF ∩EF =F .因为⎩⎪⎨⎪⎧EF ∥AD ,AD ⊥BD ,所以EF ⊥BD .又因为CB =CD ,F 为BD 的中点, 所以CF ⊥BD .所以平面EFC ⊥平面BCD . 题型三 反证法如果一个命题的结论难以直接证明时,可以考虑反证法.通过反设已知条件,经过逻辑推理,得出矛盾,从而肯定原结论成立.反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,在高考题中也经常体现,它所反映出的“正难则反”的解决问题的思想方法更为重要.反证法主要证明:否定性、唯一性命题;至多、至少型问题;几何问题.例3 如图所示,已知两个正方形ABCD 和DCEF 不在同一平面内,M ,N 分别为AB 、DF 的中点.(1)若平面ABCD ⊥平面DCEF ,求直线MN 与平面DCEF 所成角的正弦值; (2)用反证法证明:直线ME 与BN 是两条异面直线. (1)解 法一图(1)如图(1)所示,取CD 的中点G ,连接MG ,NG ,设正方形ABCD ,DCEF 的边长为2, 则MG ⊥CD ,MG =2,NG =2, ∵平面ABCD ⊥平面DCEF ,∴MG ⊥平面DCEF ,∴∠MNG 是MN 与平面DCEF 所成的角. ∵MN =6,∴sin ∠MNG =63, ∴直线MN 与平面DCEF 所成角的正弦值为63.图(2)法二 设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系,如图(2)所示. 则M (1,0,2),N (0,1,0), ∴MN →=(-1,1,-2).又DA →=(0,0,2)为平面DCEF 的法向量, ∴cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63,∴MN 与平面DCEF 所成角的正弦值为 |cos 〈MN →,DA →〉|=63.(2)证明 假设直线ME 与BN 共面,则AB ⊂平面MBEN ,且平面MBEN 与平面DCEF 交于EN ,∵两正方形不共面, ∴AB ⊄平面DCEF .又AB ∥CD ,所以AB ∥平面DCEF ,而EN 为平面MBEN 与平面DCEF 的交线, ∴AB ∥EN .又AB ∥CD ∥EF ,∴EN ∥EF ,这与EN ∩EF =E 矛盾,故假设不成立. ∴ME 与BN 不共面,即它们是异面直线.跟踪演练3 若a ,b ,c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6.求证:a ,b ,c 中至少有一个大于0.证明 假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0,而a +b +c =x 2-2y +π2+y 2-2z +π3+z 2-2x +π6=(x -1)2+(y -1)2+(z -1)2+π-3.∵π-3>0,且(x -1)2+(y -1)2+(z -1)2≥0, ∴a +b +c >0,这与a +b +c ≤0矛盾,因此假设不成立,∴a ,b ,c 中至少有一个大于0. 题型四 数学归纳法1.数学归纳法事实上是一种完全归纳的证明方法,它适用于与自然数有关的问题.两个步骤、一个结论缺一不可,否则结论不成立;在证明递推步骤时,必须使用归纳假设,必须进行恒等变换.2.探索性命题是近几年高考试题中经常出现的一种题型,此类问题未给出问题的结论,需要由特殊情况入手,猜想、证明一般结论,它的解题思路是:从给出条件出发,通过观察、试验、归纳、猜想、探索出结论,然后再对归纳,猜想的结论进行证明.例4 等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x +r (b >0且b ≠1,b ,r 均为常数)的图象上. (1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N *),证明:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1成立.(1)解 由题意:S n =b n +r ,当n ≥2时,S n -1=b n -1+r ,所以a n =S n -S n -1=b n -1(b -1),由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列. 又a 1=b +r ,a 2=b (b -1), a 2a 1=b ,即b (b -1)b +r =b ,解得r =-1. (2)证明 当b =2时,由(1)知a n =2n -1,因此b n =2n (n ∈N *),所证不等式为2+12·4+14·…·2n +12n >n +1.①当n =1时,左式=32,右式= 2.左式>右式,所以结论成立. ②假设n =k (k ∈N *)时结论成立, 即2+12·4+14·…·2k +12k>k +1,则当n =k +1时,2+12·4+14·…·2k +12k ·2k +32(k +1)>k +1·2k +32(k +1)=2k +32k +1.要证当n =k +1时结论成立, 只需证2k +32k +1>k +2成立,只需证:4k 2+12k +9>4k 2+12k +8成立,显然成立, ∴当n =k +1时,2+12·4+14·…·2k +12k ·2k +32(k +1)>(k +1)+1成立,综合①②可知不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立. 跟踪演练4 数列{a n }满足:a 1=1,a n +1=12a n +1.(1)写出a 2,a 3,a 4. (2)求数列{a n }的通项公式. 解 (1)因为a 1=1,a n +1=12a n +1,所以a 2=12a 1+1=12+1=32,a 3=12a 2+1=12·32+1=74,a 4=12a 3+1=12·74+1=158.(2)法一 猜想a n =2n -12n -1,下面用数学归纳法证明.证明 (1)当n =1时,a 1=21-121-1=1,满足上式,显然成立;(2)假设当n =k 时a k =2k -12k -1,那么当n =k +1时,a k +1=12a k +1=12·2k-12k -1+1=2k -12k +1=2k -1+2k 2k =2k +1-12k满足上式,即当n =k +1时猜想也成立.由(1)(2)可知,对于n ∈N *都有a n =2n -12n -1.法二 因为a n +1=12a n +1,所以a n +1-2=12a n +1-2,即a n +1-2=12(a n -2),设b n =a n -2,则b n +1=12b n ,即{b n }是以-1为首项,12为公比的等比数列,所以b n=b1·q n-1=-12n-1,所以a n=b n+2=2n-12n-1.1.合情推理主要包括归纳推理和类比推理(1)归纳推理的基本模式:a,b,c∈M且a,b,c具有某属性,结论:∀d∈M,d也具有某属性.(2)类比推理的基本模式:A具有属性a,b,c,d;B具有属性a′,b′,c′;结论:B具有属性d′.(a,b,c,d与a′,b′,c′,d′相似或相同)2.使用反证法证明问题时,常见的“结论词”与“反设词”列表如下:(1)验证是基础数学归纳法的原理表明:第一个步骤是要找一个数n0,这个数n0就是要证明的命题对象的最小自然数,这个自然数并不一定都是“1”.(2)递推是关键数学归纳法的实质在于递推,所以从“k”到“k+1”的过程,必须把归纳假设“n=k”作为条件来导出“n=k+1”时的命题,在推导过程中,要把归纳假设用一次或几次.高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。
人教版高中数学选修2-2习题第二章推理与证明2.3数学归纳法

第二章推理与 明2.3 数学 法A基 稳固一、1.等式 12+ 22+ 32+ ⋯ + n 2=12(5n 2- 7n + 4)()A . n 任何正整数都建立B . 当 n =1, 2, 3 建立C .当 n =4 建立, n = 5 不建立D . 当 n = 4 不建立分析: ,n = 1, 2, 3 建立, n = 4, 5,⋯不建立 .答案: B2.用数学 法 明n 2“2> n +1 于n ≥n 0 的自然数 n 都建立 ” ,第一步 明中的开端n 0 取 ( )A .2B .3C .5D .6分析:当 n 取 1、 2、 3、 4 2n > n 2+ 1 不建立,当n = 5 , 25= 32> 52+ 1= 26,第一个能使 2n > n 2+ 1 的 n5.答案: C13.用数学 法 明某命 , 左式2+ cos α+ cos 3α+ ⋯ +cos (2n - 1)α(α≠k π,k ∈ Z ,n ∈ N * ),在 n = 1 ,左 所得的代数式()A.12B.1+ cos α2C.12+ cos α+ cos 3α1D.2+ cos α+ cos 3α+ cos 5α分析:令n = 1,左式= 1+ cos α.2答案: B4.已知 f(n)= 1+1+1+ ⋯+1(n ∈ N*), 明不等式f(2n)> n, f(2k +1 )比 f (2k )多的 数2 3n2是 ()A . 2k -1B . 2k +1C . 2 kD .以上都不分析: 察f(n)的表达式可知,右端分母是 的正整数,f(2k)= 1+ 1+ ⋯ + 1k ,而 f(2k2 2+ 11 1111k +1kk)= 1+2+ ⋯ + 2k +2k+ 1+ 2 k + 2+ ⋯ + 2 k + 2k ,所以 f(2)比 f(2 )多了 2 .答案: C5.用数学 法 明(n + 1)(n + 2) ⋯⋯(n + n)= 2n · 1×3⋯⋯ (2n + 1)(n ∈N * ),从 “k 到 k + 1”左端需增乘的代数式()A . 2k + 1B . 2(2k + 1)2k + 12k + 3C.k + 1D.k + 1分析:当 n = k 左端 (k + 1)(k + 2) ⋯(k + k),当 n = k + 1 ,左端 (k + 2)(k + 3) ⋯(k + 1+ k - 1)( k + 1+ k)(k + 1+ k + 1),即 (k + 2)( k +( 2k + 1)( 2k + 2)3) ⋯⋯(k + k)(2k + 1)(2k + 2). 察比 它 的 化知增乘了= 2(2k + 1).k + 1答案: B二、填空6. 于不等式n 2+ 4n < n + 2(n ∈ N * ) ,某学生的 明 程以下:(1)当 n = 1 ,12+ 4< 1+ 2,不等式建立.(2) 假n = k(k ∈ N * ) , 不 等 式 成 立 , 即k 2+ 4k < k + 2 ,n = k + 1,( k + 1) 2+ 4( k + 1)=k 2+ 6k + 5< ( k 2+ 6k + 5)+ 4= ( k + 3) 2= (k + 1)+ 2.所以当 n = k + 1 ,不等式建立.上述 法第 ________步 .分析:第二步 , 明 程中没实用到 假 .答案: (2)7.已知数列 {a n }的前 n 和S n ,且 a 1= 1, S n = n 2 a n (n ∈ N * )挨次 算出 S 1、 S 2、S 3、S 4 后,可猜想 S n 的表达式 ________.分析: S =1,S =4,S = 3= 6, S =8,12332445猜想 S n = 2n.n +1答案:2nn + 18. 随意 n ∈ N * , 34n + 2+ a 2n +1 都能被14 整除, 最小的自然数 a =________.分析:当 n = 1 , 36+ a 3 能被 14 整除的数a =3 或 5;当 a =3 且 n = 2 , 310+ 35 不能被 14 整除,故a = 5.答案: 5三、解答9.用数学 法 明:1 +1 + 1 + ⋯ +1 =2×4 4×6 6× 82n ( 2n +2)n4( n + 1) .明:(1)当 n = 1 ,左 =1=1,右 =1等式建立.2× 4 88(2)假 n = k ,等式建立,即1 + 1 + 1+ ⋯+ 1 = k 建立.2× 4 4×6 6×8 2k ( 2k + 2) 4( k + 1)当 n = k + 1 ,1+ 1 +1 + ⋯ +1+1=k+4× 6 6× 8( 2k + 2)( 2k + 4)2× 42k ( 2k + 2)4( k + 1)1=k ( k + 2)+ 1=( 2k + 2)(2k + 4)4( k + 1)( k + 2)( k +1) 2=k +1 =k + 14( k + 1)( k + 2) 4( k + 2) 4[( k + 1)+ 1].所以 n = k + 1 ,等式建立.由 (1) 、 (2)可得 全部 n ∈ N * ,等式建立.10.在数列 {a n }中, a 1= 1, a n +1=2a n(n ∈ N * ).2+ a n(1) 求: a 2、 a 3、 a 4 的 ,由此猜想数列 {a n }的通 公式 a n ;(2)用数学 法加以 明.2a n*(1)解:由 a 1=1,an+1=2+ a n (n ∈ N ),可得 a 2= 2, a 3= 2, a 4= 2.3 4 52由此能够猜想数列 {a n }的通 公式 a n =.2(2) 明:①当n = 1 , a 1== 1,猜想建立.②假 当n = k(k ≥1, k ∈ N * ), ,猜想建立,即 a = 2 ,kk +1当 n = k + 1 , a k + 1=2a k=2.2+a k k + 2明当 n = k +1 ,猜想也建立.由①、②可知,猜想 全部的n ∈ N * 都建立.B 能力提高1.用数学 法 明1 + 1 + 1 + ⋯ + 1< 1(n ∈ N * , n ≥ 2),由 “k 到 k + 1” ,不n + 1 n + 2 2nn 等式左端的 化是 ()A .增添1一2( k + 1)B .增添 1和 1 两2k + 1 2( k + 1)C .增添1 和 1 两 ,同 减少 1一2k + 1 2( k + 1)kD .以上都不分析: n = k ,左 =1 1 1 1k + + + k + +⋯+2k ,k 1 21 1 11 1 1),比 可知,增添n = k + 1 ,左 =+ + + + + + ⋯ +2k + + +( +k 1 k 2 k 32k 1 2 k 1 1 和 ( 1 ) 两 ,同 减少 12k + + k 一 .1 2 k 1答案: C2.用数学 法 明:2= n 4+ n 21+ 2+ 3+ ⋯ + n2, n = k + 1 的左端 在 n =k的左端加上 ______________________ .分析: n = k ,左 =1+ 2+ 3+ ⋯ + k 2, n = k + 1,左 =1+ 2+ 3+ ⋯+ k 2+ (k 2+1)+ (k 2+ 2)+ ⋯ + (k + 1)2 比 可知,左端 加上(k 2+ 1)+ (k 2 +2)+ ⋯ + (k + 1)2.答案: (k 2 + 1)+ (k 2+ 2)+ ⋯+ (k + 1)23.已知某数列的第一1,而且 全部的自然数n ≥2,数列的前 n 之 n 2.(1)写出 个数列的前5 ;(2)写出 个数列的通 公式并加以 明.解: (1) 已知 a 1= 1,由 意得 a 1· a 2= 22,所以 a 2= 22.因 a 1· a 2· a 3= 3232,所以 a 3= 2.2224 5同理,可得 a 4= 32, a 5= 42. 9 16 25所以 个数列的前5 分1,4, ,,.(2) 察 个数列的前5 ,猜 数列的通 公式 :1, n = 1,a n =n 2( n - 1) 2, n ≥ 2.下边用数学 法 明当2nn ≥2 , a n=(n - 1) 2.①当 n = 2 , a =22 2= 22, 建立.2(2- 1)②假 当n = k(k ≥2, k ∈ N * ) , 建立,k 2即 a k=(k - 1) 2.因 a 1· a 2⋯ a k - 1= (k - 1)2,a 1· a 2⋯ a k - 1· a k · a k + 1= (k + 1)2,( k + 1) 2( k + 1) 2( k - 1) 2( k + 1) 2所以 ak +1=( a-)a=( k - 1)2·k2= (+)-2 .1a 2a k 1k[k 11]就是 当n =k + 1 , 也建立.依据①②可知,当n ≥2 , 个数列的通 公式是2a n = n( n - 1)2.1, n = 1,所以 个数列的通 公式a n =n 2( n -1) 2, n ≥ 2.。
人教新课标版数学高二-人教选修2-2练习第二章《推理与证明》章末复习

选修2-2 2章末一、选择题1.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”的过程应用了()A.分析法B.综合法C.综合法、分析法综合使用D.以上都不是[答案] B[解析]所用方法符合综合法的定义,故应选B.2.已知a1=1,a n+1>a n,且(a n+1-a n)2-2(a n+1+a n)+1=0计算a2、a3,猜想a n=()A.nB.n2C.n3D.n+3-n[答案] B[解析]当n=1时,有(a2-a1)2-2(a2+a1)+1=0又a1=1,解之得a2=4=22,当n=2时,有(a3-a2)2-2(a3+a2)+1=0即a23-8a3+9-2a3-8+1=0解之得a 3=9=32,可猜想a n =n 2,故应选B.3.异面直线在同一平面内的射影不可能是( )A .两条平行直线B .两条相交直线C .一点与一直线D .同一条直线[答案] D[解析] 若两条直线在同一平面的射影是同一直线,则这两条直线的位置关系为平行或相交或重合,这均与异面矛盾,故异面直线在同一平面内的射影不可能为一条直线.故应选D.4.用数学归纳法证明(n +1)(n +2)(n +3)…(n +n )=2n ·1·3·…·(2n -1)(n ∈N *)时,从n =k 到n =k +1,左端需要增加的代数式为( )A .2k +1B .2(2k +1)C.2k +1k +1D.2k +3k +1[答案] B[解析] 当n =k 时上式为(k +1)(k +2)…(k +k )=2k ·1·3…·(2k -1),当n =k +1时原式左边为[(k +1)+1][(k +1)+2]…[(k +1)+(k +1)]=(k+2)(k+3)…(k+k)(2k+1)(2k+2)=2(k+1)(k+2)(k+3)…(k+k)(2k+1)所以由k增加到k+1时,可两边同乘以2(2k+1).故应选B.5.设a、b是非零向量,若函数f(x)=(x a+b)·(a-x b)的图象是一条直线,则必有()A.a⊥bB.a∥bC.|a|=|b|D.|a|≠|b|[答案] A[解析]∵f(x)=-ab x2+(a2-b2)x+ab且f(x)的图象为一条直线,∴a·b=0即a⊥b,故选A.二、填空题6.对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:“____________________________”,这个类比命题是________命题(填“真”或“假”).[答案]夹在两个平行平面间的平行线段相等;真[解析]类比推理要找两类事物的类似特征,平面几何中的线,可类比立体几何中的面.故可类比得出真命题“夹在两个平行平面间的平行线段相等”.7.推理某一三段论,其前提之一为肯定判断,结论为否定判断,由此可以推断:该三段论的另一前提必为________判断.[答案] 否定[解析] 当另一前提为肯定判断时,结论必为肯定判断,这不合题意,故应为否定判断.8.如果一个凸多面体是n 棱锥,那么这个凸多面体的所有顶点所确定的直线共有__________条,这些直线中共有f (n )对异面直线,则f (4)=________________;f (n )=______________.(答案用数字或n 的解析式表示)[答案] n (n +1)2 12 n (n -1)(n -2)2[解析] 所有顶点所确定的直线共有棱数+底边数+对角线数=n +n +n (n -3)2=C 2n +1=n (n +1)2.从图中能看出四棱锥中异面直线的对数为f (4)=4×2+4×12×2=12,也可以归纳出一侧棱对应底面三条线成异面,其中四条侧棱应有4×3对异面直线.所以f (n )=n (n -2)+n (n -3)2×(n -2)=n (n -1)(n -2)2或一条棱对应C 2n -(n -1)=(n -1)(n -2)2对异面直线.故共有n ·(n -1)(n -2)2对异面直线. 三、解答题9.(1)椭圆C :x 2a 2+y 2b 2=1(a >b >0)与x 轴交于A 、B 两点,点P 是椭圆C 上异于A 、B 的任意一点,直线PA 、PB 分别与y 轴交于点M 、N ,求证:AN →·BM→为定值b 2-a 2. (2)类比(1)可得如下真命题:双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 轴交于A 、B 两点,点P 是双曲线C 上异于A 、B 的任意一点,直线PA 、PB 分别与y 轴交于点M 、N ,求证AN →·BM →为定值,请写出这个定值(不要求写出解题过程).[解析] (1)证明如下:设点P (x 0,y 0),(x 0≠±a )依题意,得A (-a,0),B (a,0)所以直线PA 的方程为y =y 0x 0+a(x +a ) 令x =0,得y M =ay 0x 0+a同理得y N =-ay 0x 0-a所以y M y N =a 2y 20a 2-x 20又点P (x 0,y 0)在椭圆上,所以x 20a 2+y 20b 2=1,因此y 20=b 2a 2(a 2-x 20)所以y M y N =a 2y 20a 2-x 20=b 2 因为AN →=(a ,y N ),BM →=(-a ,y M) 所以AN →·BM →=-a 2+y M y N=b 2-a 2. (2)-(a 2+b 2).10.用数学归纳法证明:12-22+32-42+…+(-1)n -1n 2=(-1)n -1·n (n +1)2(n ∈N *).[解析] (1)当n =1时,左边=12=1,右边=(-1)0×1×(1+1)2=1, 左边=右边,等式成立.(2)假设n =k (k ∈N *)时,等式成立,即12-22+32-42+…+(-1)k -1k 2=(-1)k -1·k (k +1)2.则当n =k +1时,12-22+32-42+…+(-1)k -1k 2+(-1)k (k +1)2 =(-1)k -1·k (k +1)2+(-1)k (k +1)2 =(-1)k (k +1)·⎣⎢⎡⎦⎥⎤(k +1)-k 2=(-1)k·(k +1)[(k +1)+1]2. ∴当n =k +1时,等式也成立,根据(1)、(2)可知,对于任何n ∈N *等式成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章《推理与证明》章末复习测试
一、选择题
1.分析法是从要证明的结论出发,逐步寻求使结论成立的( ) A.充分条件
B.必要条件
C.充要条件
D.等价条件
2.结论为:n n x y +能被x y +整除,令1234n =,,,验证结论是否正确,得到此结论成立的条件可以为( ) A.n *∈N
B.n *∈N 且3n ≥
C.n 为正奇数
D.n 为正偶数
3.在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( ) A.锐角三角形
B.直角三角形
C.钝角三角形
D.不确定
4.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a >··,类经上述性质,在等比数列{}n b 中,若01n b q >>,,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+ C.4758b b b b +>+
D.4578b b b b +>+
5.(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥, (2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( )
A.(1)与(2)的假设都错误 B.(1)与(2)的假设都正确 C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确 6.观察式子:213122+<,221151233++<,2221117
12344+++<,,则可归纳出式子为( ) A.2221111
1(2)2321n n n ++++<-≥ B.22211111(2)2321n n n ++++<+≥ C.222111211(2)23n n n n -++++<≥ D.22
211121(2)2321
n n n n +
+++
<+≥ 7.如图,在梯形ABCD 中,()AB DC AB a CD b a b ==>,,∥.若
C.21
k+
D.
2k
则上起第2005行,左起第2006列的数应为()
A.2
2005B.2
2006C.20052006
+D.20052006
⨯
二、填空题
13.写出用三段论证明3
()sin()
f x x x x
=+∈R为奇函数的步骤是.
14.已知
111
()1()
23
f n n
n
*
=++++∈N,用数学归纳法证明(2)
2
n
n
f>时,1
(2)(2)
k k
f f
+-等于.
15.由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为.16.下面是按照一定规律画出的一列“树型”图:
设第n个图有
n
a个树枝,则
1
n
a
+
与(2)
n
a n≥之间的关系是.
三、解答题
17.如图(1),在三角形ABC中,AB AC
⊥,若AD BC
⊥,则2
AB BD BC
=·;若类比该命题,如图(2),三棱锥A BCD
-中,AD⊥面ABC,若A点在三角形BCD所在平面内的射影为M,则有什么结论?命题是否是真命题.
1 2 5 10 17
4 3 6 11 18
9 8 7 12 19
16 15 14 13 20
25 24 23 22 21
31n +
+
+
1 2k+
31n +
+31k +
+3(1)k +
+3132k k +
++++343(k +31n +
+。