高中数学必修二第二章同步练习

合集下载

(完整word版)高中数学必修二第二章经典练习试题整理

(完整word版)高中数学必修二第二章经典练习试题整理

完美格式整理版A. 相交 B .异面 C .平行 D •异面或相交第I 卷(选择题) 请修改第I 卷的文字说明6.设四棱锥P- ABCD 勺底面不是平行四边形,用平面(如图),使得截面四边形是平行四边形,则这样的平面a ( )1.在空间,下列哪些命题是正确的( )•① 平行于同一条直线的两条直线互相平行 ② 垂直于同一条直线的两条直线互相平行 ③ 平行于同一个平面的两条直线互相平行 ④ 垂直于不一个平面的两条直线互相平行 A •仅②不正确 B.仅①、④正确 C .仅①正确 D.四个命题都正确2. 如果直线a 是平面a 的斜线,那么在平面%内( )A不存在与a 平行的直线 B不存在与a 垂直的直线C 与a 垂直的直线只有一条D 与a 平行的直线有无数条A.不存在B .只有1个C •恰有4个D.有无数多个高一数学必修二第二章经典练习题a 去截此四棱锥 3.平面a 内有一四边形 ABCD P 为a 外一点, P 点到四边形ABCD 各边的距离相等,则这个四边形 A 必有外接圆 BD 必是正方形必有内切圆( )C既有内切圆又有外接圆4.已知六棱锥PA ±平面 ABC PA= 2AB , 则下列结论正确的是( )A . PB 丄ADBC .直线BC//平面PAED 平面PABL 平面PBC直线PD 与平面ABC 所成的角为45 7.设P 是厶ABC 所在平面外一点, 到厶ABC 各边的距离也相等,那么△ A 是非等腰的直角三角形 BC 是等边三角形DP 到厶ABC 各顶点的距离相等,而且 PABC ( ) 是等腰直角三角形不是A 、B 、C 所述的三角形8.已知正四棱锥S ABCD 的侧棱长与底面边长都相等 点,则AE , SD 所成的角的余弦值为 ,E 是SB 的中 A. 13B.-23 C-33D. 23完美格式整理版5•若a , b是异面直线,直线c // a,则c与b的位置关系是(完美格式整理版侧面BB 1C 1C 的中心,贝V AD 与平面BB 1C 1C 所成角的大小是()15.在正方体ABCD A 1B 1C 1D 1中,0为正方形ABCD 中心,则厲0与平 面ABCD所成角的正切值为() A.、2B.—2C.1D.二323A . 30°B . 45°C . 60°D . 90° w.w.w.k.s.5.u.c.o.m 12.已知直线I 、m ,平面、,且| , m ,则//是I m 的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件16.在正方体 ABCDAB 1C 1D 1中,若E 是A 1C 1的中点,则直线 CE 垂直于( )A ACBBD C A ,D DA 1D 117.四条不共线的线段顺次首尾连接,可确定平面的个数是()A. 1 B . 3 C . 4D. 1 或 49.正方体 ABC —ABCD 中,E 、F 分别是 AA 与CG 的中点,则直线 与DF所成角的大小是 ()EDA .B 。

人教A版高中数学必修二-章节练习题

人教A版高中数学必修二-章节练习题

第二章单元测试1.下列命题正确的是………………………………………………( ) A .三点确定一个平面 B .经过一条直线和一个点确定一个平面 C .四边形确定一个平面 D .两条相交直线确定一个平面2.若直线a 不平行于平面α,且α⊄a ,则下列结论成立的是( ) A .α内的所有直线与a 异面 B .α内不存在与a 平行的直线 C .α内存在唯一的直线与a 平行 D .α内的直线与a 都相交 3.平行于同一平面的两条直线的位置关系………………………( ) A .平行 B .相交 C .异面 D .平行、相交或异面 4.平面α与平面β平行的条件可以是…………………………( ) A .α内有无穷多条直线都与β平行B .直线βα//,//a a 且直线a 不在α内,也不在β内C .直线α⊂a ,直线β⊂b 且β//a ,α//bD .α内的任何直线都与β平行5.下列命题中,错误的是…………………………………………( ) A .平行于同一条直线的两个平面平行 B .平行于同一个平面的两个平面平行 C .一个平面与两个平行平面相交,交线平行D .一条直线与两个平行平面中的一个相交,则必与另一个相交 6.已知两个平面垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线 ②一个平面内的已知直线必垂直于另一个平面的无数条直线 ③一个平面内的任一条直线必垂直于另一个平面④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面 其中正确的个数是…………………………………………( ) A .3 B .2 C .1 D .07.下列命题中错误的是……………………………………( ) A .如果平面βα⊥,那么平面α内所有直线都垂直于平面βB .如果平面βα⊥,那么平面α一定存在直线平行于平面βC .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .如果平面τα⊥,τβ⊥,l =⋂βα,那么τ⊥l 8.如图是正方体的平面展开图,则在这个正方体中 ①BM 与ED 平行 ②CN 与BE 异面 ③CN 与BM 成 60 ④DM 与BN 垂直 以上四个命题中,正确命题的序号是( ) A .①②③ B .②④ C .③④ D .②③④9.不共面的四点可以确定平面的个数为 ( ) A . 2个 B . 3个 C . 4个 D .无法确定 10.已知直线a 、b 与平面α、β、γ,下列条件中能推出α∥β的是 ( ) A .a ⊥α且a ⊥β B .α⊥γ且β⊥γ C .a ⊂α,b ⊂β,a ∥b D .a ⊂α,b ⊂α,a ∥β,b ∥β 11.下列四个说法 ①a //α,b ⊂α,则a // b ②a ∩α=P ,b ⊂α,则a 与b 不平行 ③a ⊄α,则a //α ④a //α,b //α,则a // b 其中错误的说法的个数是 ( ) A .1个 B .2个 C .3个 D .4个 12.如图,A —BCDE 是一个四棱锥,AB ⊥平面BCDE ,且四边形BCDE 为矩形,则图中互相垂直的平面共有( )A .4组B .5组C .6组D .7组13.(12分)已知正方方体111'D C B A ABCD -,求:(1)异面直线11CC BA 和的夹角是多少? (2)B A 1和平面11B CDA 所成的角?(3)平面11B CDA 和平面ABCD 所成二面角的大小?AB CDEFMN C A 1B 11P A BCDCABPMN14.(12分)如图,在三棱锥P —ABC 中,PA 垂直于平面ABC ,AC ⊥BC . 求证:BC ⊥平面PAC .15.(10分)如图:AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于B A ,的任意一点,求证: PAC BC 平面⊥16.(12分)如图,在四棱锥P —ABCD 中,M ,N 分别是AB ,PC 的中点,若ABCD 是平行四边形.求证:MN ∥平面PAD .,M N 分别是17. 如图:S 是平行四边形ABCD 平面外一点,,SA BD 上的点,且SM AM =NDBN, 求证://MN 平面SCDA BCP O17.(14分)如图正方形ABCD 中,O 为中心,P O ⊥面ABCD ,E 是PC 中点, 求证:(1)PA ||平面BDE ; (2)面PAC ⊥面BDE.18.(14分)如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面 C 1DF ?并证明你的结论.19.在正方体ABCD A B C D E F BB CD -11111中,、分别是、的中点 (1)证明:AD D F ⊥1; (2)求AE D F 与1所成的角; (3)证明:面面AED A FD ⊥11.必修2第三章《直线与方程》单元测试题一、选择题(本大题共10小题,每小题5分,共50分)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( ) A 30° B 45° C 60° D 90°2. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=A 、 -3B 、-6C 、23- D 、323.点P (-1,2)到直线8x-6y+15=0的距离为( )(A )2 (B )21 (C )1 (D )274. 点M(4,m )关于点N(n, - 3)的对称点为P(6,-9),则( ) A m =-3,n =10 B m =3,n =10 C m =-3,n =5 D m =3,n =55.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=06.过点M(2,1)的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|, 则L的方程是( )A x-2y+3=0 B 2x-y-3=0 C 2x+y-5=0 D x+2y-4=0 7. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)8. 直线0202=++=++n y x m y x 和的位置关系是(A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定 9. 如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有 A. k 1<k 3<k 2 B. k 3<k 1<k 2C. k 1<k 2<k 3D. k 3<k 2<k 110.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在的直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0二、填空题(本大题共4小题,每小题5分,共20分)11.已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为 . 12.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 . 13.直线5x+12y+3=0与直线10x+24y+5=0的距离是 . 14.原点O在直线L上的射影为点H(-2,1),则直线L的方程为 . 三、解答题(本大题共3小题,每小题10分,共30分)15. ①求平行于直线3x+4y-12=0,且与它的 16.直线x+m 2y+6=0与直线(m-2)x+3my+2m=0距离是7的直线的方程; 没有公共点,求实数m 的值. ②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是1053的直线的方程.*17.已知直线l 被两平行直线063=-+y x 033=++y x 和所截得的线段长为3,且直线过点(1,0),求直线l 的方程.参考答案:1.A ;2.B ;3.B ;4.D ;5.B ;6.D ;7.A ;8.C ;9.A ;10.A. 11.x+4y-7=0或x=-1;12.x+y-3=0或2x-y=0;13.261;14.2x-y+5=0; 15. (1)3x+4y+23=0或3x+4y-47=0;(2)3x-y+9=0或3x-y-3=0. 16.m=0或m=-1;17.x=1或3x-4y-3=0.必修2第四章《圆与方程》单元测试题一、 选择题(本大题共10小题,每小题5分,共50分) 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为(A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ) (A)22 (B)4 (C)24 (D)23.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( )(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D)1±=a4.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( )(A)5 (B) 3 (C)10 (D) 55.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( )(A) 222=+y x (B) 422=+y x (C) )2(222±≠=+x y x (D) )2(422±≠=+x y x6.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为A 、1,-1B 、2,-2C 、1D 、-17.过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第三象限,则该直线的方程是A 、x y 3=B 、x y 3-=C 、x y 33=D 、x y 33-= 8.过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是A 、(x-3)2+(y+1)2=4B 、(x+3)2+(y-1)2=4C 、(x-1)2+(y-1)2=4D 、(x+1)2+(y+1)2=4 9.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是A 、6π B 、4π C 、3π D 、2π 10.M (x 0,y 0)为圆x 2+y 2=a 2(a>0)内异于圆心的一点,则直线x 0x+y 0y=a 2与 该圆的位置关系是( )A 、相切B 、相交C 、相离D 、相切或相交二、填空题(本大题共4小题,每小题5分,共20分)11.以点A(1,4)、B(3,-2)为直径的两个端点的圆的方程为 .12.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______. 13.过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________. 14.过圆x 2+y 2-x+y-2=0和x 2+y 2=5的交点,且圆心在直线3x+4y-1=0上的圆的方程为 . 2+y 2-8x=0的弦OA 。

北师大版高中数学必修二同步练习题 第2章向量的数乘运算 向量的数乘与向量共线的关系(含答案)

北师大版高中数学必修二同步练习题 第2章向量的数乘运算 向量的数乘与向量共线的关系(含答案)

3.1 向量的数乘运算3.2 向量的数乘与向量共线的关系必备知识基础练1.已知CA ⃗⃗⃗⃗⃗ =-47AB ⃗⃗⃗⃗⃗ ,且BC ⃗⃗⃗⃗⃗ =k CA⃗⃗⃗⃗⃗ ,则k=( ) A.-43 B.34C.43D.-342.已知△ABC 的重心为O ,则向量BO ⃗⃗⃗⃗⃗ =( ) A.23AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ B.13AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ C.-23AB ⃗⃗⃗⃗⃗ +13AC⃗⃗⃗⃗⃗ D.-13AB ⃗⃗⃗⃗⃗ +23AC⃗⃗⃗⃗⃗ 3.(多选)已知实数m ,n 和向量a ,b ,下列说法中正确的是( ) A.m (a -b )=m a -m b B.(m-n )a =m a -n a C.若m a =m b ,则a =b D.若m a =n a (a ≠0),则m=n4.下列各组向量中,一定能推出a ∥b 的是( ) ①a =-3e ,b =2e ; ②a =e 1-e 2,b =e 1+e 22-e 1;③a =e 1-e 2,b =e 1+e 2+e 1+e 22.A.①B.①②C.②③D.①②③5.在△ABC 中,点P 是AB 上一点,且CP ⃗⃗⃗⃗⃗ =23CA ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ ,又AP ⃗⃗⃗⃗⃗ =t AB ⃗⃗⃗⃗⃗ ,则t 的值为( )A.13 B.23C.12D.536.13(2a -3b )-3(a +b )= .7.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD=12AB ,BE=23BC.若AB ⃗⃗⃗⃗⃗ =a ,AC⃗⃗⃗⃗⃗ =b ,则DE ⃗⃗⃗⃗⃗ = .(用a ,b 表示)8.在△ABC 中,4OP ⃗⃗⃗⃗⃗ =3OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ,且BA ⃗⃗⃗⃗⃗ =λPA⃗⃗⃗⃗⃗ ,则λ= . 关键能力提升练9.如图,已知平行四边形ABCD 的对角线相交于点O ,过点O 的直线与AB ,AD 所在直线分别交于点M ,N ,满足AB ⃗⃗⃗⃗⃗ =m AM ⃗⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =n AD ⃗⃗⃗⃗⃗ (m>0,n>0),若mn=12,则mn 的值为( )A.23 B.45C.67D.8910.(多选)若点D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC ⃗⃗⃗⃗⃗ =a ,CA ⃗⃗⃗⃗⃗ =b ,则下列结论正确的是( ) A.AD ⃗⃗⃗⃗⃗ =-12a -bB.BE ⃗⃗⃗⃗⃗ =a +12bC.CF⃗⃗⃗⃗⃗ =-12a +12bD.EF ⃗⃗⃗⃗⃗ =12a 11.已知a ,b 是不共线的向量,AB ⃗⃗⃗⃗⃗ =λa +2b ,AC ⃗⃗⃗⃗⃗ =a +(λ-1)b ,且A ,B ,C 三点共线,则实数λ的值为( ) A.-1 B.2C.-2或1D.-1或212.在四边形ABCD 中,AB ⃗⃗⃗⃗⃗ =a +2b ,BC ⃗⃗⃗⃗⃗ =-4a -b ,CD ⃗⃗⃗⃗⃗ =-5a -3b ,则四边形ABCD 的形状是 .13.已知两个非零向量a ,b 不共线.(1)若AB⃗⃗⃗⃗⃗ =a +b ,BC ⃗⃗⃗⃗⃗ =2a +8b ,CD ⃗⃗⃗⃗⃗ =3(a -b ),求证:A ,B ,D 三点共线; (2)求实数k 使k a +b 与2a +k b 共线.学科素养创新练14.过△ABC 的重心G 任作一直线分别交AB ,AC 于点D ,E ,若AD ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =y AC ⃗⃗⃗⃗⃗ ,且xy ≠0,试求1x +1y 的值. 答案1.B CA ⃗⃗⃗⃗⃗ =-47AB ⃗⃗⃗⃗⃗ =-47(AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )=-47AC ⃗⃗⃗⃗⃗ −47CB ⃗⃗⃗⃗⃗ =47CA ⃗⃗⃗⃗⃗ +47BC ⃗⃗⃗⃗⃗ ,所以37CA⃗⃗⃗⃗⃗ =47BC ⃗⃗⃗⃗⃗ ,所以BC ⃗⃗⃗⃗⃗ =34CA⃗⃗⃗⃗⃗ ,故k=34.故选B . 2.C 设E ,F ,D 分别是AC ,AB ,BC 的中点,由于O 是三角形ABC 的重心,所以BO⃗⃗⃗⃗⃗ =23BE ⃗⃗⃗⃗⃗ =23×(AE ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=23×12AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =-23AB ⃗⃗⃗⃗⃗ +13AC⃗⃗⃗⃗⃗ .故选C .3.ABD 根据向量数乘的运算可知A 和B 正确;当m=0时,m a =m b =0,但a 与b 不一定相等,故C 错误;由m a =n a ,得(m-n )a =0,因为a ≠0,所以m=n ,故D 正确.故选ABD .4.B ①中,a =-32b ,所以a ∥b ; ②中,b =e 1+e 22-e 1=e 2-e 12=-12a ,所以a ∥b ;③中,b =3e 1+3e 22=32(e 1+e 2),若e 1与e 2共线,则a 与b 共线,若e 1与e 2不共线,则a 与b 不共线. 故选B .5.A ∵AP ⃗⃗⃗⃗⃗ =CP ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ =t AB ⃗⃗⃗⃗⃗ , ∴CP ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ =t (CB ⃗⃗⃗⃗⃗ −CA⃗⃗⃗⃗⃗ ), ∴CP ⃗⃗⃗⃗⃗ =(1-t )CA ⃗⃗⃗⃗⃗ +t CB ⃗⃗⃗⃗⃗ =23CA⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ , ∴t=13.6.-73a -4b 13(2a -3b )-3(a +b )=23a -b -3a -3b =-73a -4b .7.-16a +23b DE ⃗⃗⃗⃗⃗ =DB ⃗⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=-16AB ⃗⃗⃗⃗⃗ +23AC⃗⃗⃗⃗⃗ =-16a +23b . 8.4 由题意得3(OP ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=OB ⃗⃗⃗⃗⃗ −OP ⃗⃗⃗⃗⃗ ⇒3AP ⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ ,如简图,所以BA ⃗⃗⃗⃗⃗ =4PA⃗⃗⃗⃗⃗ ,即λ=4.9.D 因为AO⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ , 又因为AB ⃗⃗⃗⃗⃗ =m AM ⃗⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =n AD ⃗⃗⃗⃗⃗ (m>0,n>0), 故AO ⃗⃗⃗⃗⃗ =m2AM ⃗⃗⃗⃗⃗⃗ +12nAN ⃗⃗⃗⃗⃗⃗ , 又因为O ,M ,N 三点共线,所以m 2+12n=1,即m+1n=2.由{mn =12,m +1n =2,解得{m =23,n =34.m n =23×43=89.故选D .10.ABC 如图,在△ABC 中,AD⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =-CA ⃗⃗⃗⃗⃗ +12CB ⃗⃗⃗⃗⃗ =-b -12a ,故A 正确;BE ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ =a +12b ,故B 正确;AB ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ =-b -a ,CF ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ =b +12×(-b -a )=-12a +12b ,故C 正确;EF⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ =-12a ,故D 不正确.故选ABC . 11.D 因为A ,B ,C 三点共线, 所以存在唯一一个实数k 使AB ⃗⃗⃗⃗⃗ =k AC ⃗⃗⃗⃗⃗ . 因为AB⃗⃗⃗⃗⃗ =λa +2b ,AC ⃗⃗⃗⃗⃗ =a +(λ-1)b , 所以λa +2b =k [a +(λ-1)b ]. 因为a 与b 不共线,所以{λ=k ,2=k (λ-1),解得λ=2或λ=-1.12.梯形 因为AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =(a +2b )+(-4a -b )+(-5a -3b )=-8a -2b =2BC ⃗⃗⃗⃗⃗ , 所以AD ∥BC ,且AD=2BC.所以四边形ABCD 是梯形.13.(1)证明因为AB⃗⃗⃗⃗⃗ =a +b ,BD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =2a +8b +3a -3b =5a +5b =5(a +b )=5AB ⃗⃗⃗⃗⃗ , 所以AB ⃗⃗⃗⃗⃗ ,BD⃗⃗⃗⃗⃗⃗ 共线,且有公共点B ,所以A ,B ,D 三点共线.(2)解因为k a +b 与2a +k b 共线, 所以存在实数λ,使k a +b =λ(2a +k b ). 所以(k-2λ)a +(1-λk )b =0, 所以{k -2λ=0,1-λk =0,解得k=±√2.14.解如图,设AB ⃗⃗⃗⃗⃗ =a ,AC ⃗⃗⃗⃗⃗ =b ,则AG ⃗⃗⃗⃗⃗ =23AM ⃗⃗⃗⃗⃗⃗ =2312(a+b )=13(a+b ).∴GD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −AG⃗⃗⃗⃗⃗ =(x -13)a -13b , ED ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −AE ⃗⃗⃗⃗⃗ =x a -y b . ∵GD ⃗⃗⃗⃗⃗ 与ED ⃗⃗⃗⃗⃗ 共线,∴存在实数λ,使GD ⃗⃗⃗⃗⃗ =λE D ⃗⃗⃗⃗⃗⃗ , ∴(x -13)a -13b =x λa -y λb , ∴{x -13=λx ,13=λy ,。

高中数学必修二人教B版练习:2.3 圆的方程2.3.2 Word版含解析

高中数学必修二人教B版练习:2.3 圆的方程2.3.2 Word版含解析

第二章 2.3 2.3.2A 级 基础巩固一、选择题1.圆x 2+y 2-2x +y +14=0的圆心坐标和半径分别是 ( B )A .(-1,12);1B .(1,-12);1C .(1,-12);62D .(-1,12);62[解析] 圆x 2+y 2-2x +y +14=0化为标准方程为(x -1)2+(y +12)2=1,圆心坐标为(1,-12),半径是1,故选B . 2.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的范围是 ( D ) A .a <-2或a >23B .-23<a <2C .-2<a <0D .-2<a <23[解析] 由题知a 2+(2a )2-4(2a 2+a -1)>0,即(3a -2)(a +2)<0,因此-2<a <23.3.圆x 2+y 2-2x +6y +8=0的周长等于 ( C ) A .2π B .2π C .22πD .4π[解析] 圆的方程x 2+y 2-2x +6y +8=0 可化为(x -1)2+(y +3)2=2,∴圆的半径r =2,故周长l =2πr =22π.4.方程2x 2+2y 2-4x +8y +10=0表示的图形是 ( A ) A .一个点 B .一个圆 C .一条直线D .不存在 [解析] 方程2x 2+2y 2-4x +8y +10=0, 可化为x 2+y 2-2x +4y +5=0, 即(x -1)2+(y +2)2=0,∴方程2x 2+2y 2-4x +8y +10=0 表示点(1,-2).5.若直线mx +2ny -4=0始终平分圆x 2+y 2-4x -2y -4=0的周长,则mn 的取值范围是 ( D )A .(0,1)B .(0,1]C .(-∞,1)D .(-∞,1][解析] 可知直线mx +2ny -4=0过圆心(2,1),有2m +2n -4=0,即n =2-m ,则mn =m ·(2-m )=-m 2+2m =-(m -1)2+1≤1.6.已知点P 是圆C :x 2+y 2+4x +ay -5=0上任意一点,P 点关于直线2x +y -1=0的对称点在圆C 上,则实数a 等于 ( B )A .10B .-10C .20D .-20[解析] 由题意知,直线2x +y -1=0过圆C 的圆心(-2,-a 2),∴2×(-2)-a2-1=0,∴a =-10.二、填空题7.点P (1,-2)和圆C :x 2+y 2+m 2x +y +m 2=0的位置关系是__在圆C 外部__. [解析] 将点P (1,-2)代入圆的方程,得1+4+m 2-2+m 2=2m 2+3>0,∴点P 在圆C 外部.8.若方程x 2+y 2+Dx +Ey +F =0表示以(2,-4)为圆心,4为半径的圆,则F =__4__. [解析] 由题意,知D =-4,E =8,r =(-4)2+82-4F2=4,∴F =4.三、解答题9.已知圆D 与圆C :x 2+y 2-x +2y =0关于直线x -y +1=0对称,求圆D 的一般方程. [解析] 圆C 的圆心坐标为(12,-1),半径r =52,C (12,-1)关于直线x -y +1=0对称的点D (-2,32),故所求圆D 的方程为(x +2)2+(y -32)2=54,即圆D 的一般方程为x 2+y 2+4x -3y +5=0.10.一动点到A (-4,0)的距离是到B (2,0)的距离的2倍,求动点的轨迹方程.[解析] 设动点M 的坐标为(x ,y ), 则|MA |=2|MB |, 即(x +4)2+y 2=2(x -2)2+y 2,整理得x 2+y 2-8x =0.∴所求动点的轨迹方程为x 2+y 2-8x =0.B 级 素养提升一、选择题1.一束光线从点A (-1,1)出发经x 轴反射到圆C :x 2+y 2-4x -6y +12=0上的最短路程是 ( A )A .4B .5C .32-1D .2 6[解析] 将方程C :x 2+y 2-4x -6y +12=0配方,得(x -2)2+(y -3)2=1,即圆心为C (2,3),半径为1. 由光线反射的性质可知:点A 关于x 轴的对称点A ′(-1,-1)到圆上的最短距离就是所求的最短路程,即|A ′C |-r =(2+1)2+(3+1)2-1=5-1=4,故选A .2.已知x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值为 ( D ) A .9 B .14 C .14-6 5D .14+6 5[解析] 已知方程表示圆心为(-2,1),r =3的圆. 令d =x 2+y 2,则d 表示(x ,y )与(0,0)的距离,∴d max =(-2-0)2+(1-0)2+r =5+3,∴(x 2+y 2)max =(5+3)2=14+6 5.3.如果直线l 将圆x 2+y 2-2x -6y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是 ( A )A .[0,3]B .[0,1]C .⎣⎡⎦⎤0,13 D .⎣⎡⎭⎫0,13 [解析] l 过圆心C (1,3),且不过第四象限. 由数形结合法易知:0≤k ≤3.4.已知圆x 2+y 2+kx +2y +k 2=0,当该圆的面积取最大值时,圆心坐标是 ( A ) A .(0,-1) B .(1,-1) C .(-1,0)D .(-1,1)[解析] 圆的半径r =124-3k 2,要使圆的面积最大,即圆的半径r 取最大值,故当k=0时,r 取最大值1,∴圆心坐标为(0,-1).二、填空题5.圆x 2+y 2-4x +2y +c =0与y 轴交于A 、B 两点,圆心为P ,若∠APB =90°,则c 等于__-3__. 导学号 92434810[解析] 圆与y 轴的交点A 、B 的坐标为(0,-1±1-c ),点P 坐标为(2,-1),由∠APB =90°,得k P A ·k PB =-1,∴c =-3.6.若x 20+y 20+Dx 0+Ey 0+F >0,则点P (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0的__外部__.导学号 92434811[解析] ∵x 20+y 20+Dx 0+Ey 0+F >0,∴点P (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0的外部.三、解答题7.经过两点P (-2,4)、Q (3,-1),且在x 轴上截得的弦长为6的圆的方程. 导学号 92434812[解析] 设圆的方程为x 2+y 2+Dx +Ey +F =0,将P 、Q 两点的坐标分别代入,得⎩⎪⎨⎪⎧2D -4E -F =203D -E +F =-10①②又令y =0,得x 2+Dx +F =0.由已知,|x 1-x 2|=6(其中x 1,x 2是方程x 2+Dx +F =0的两根),∴D 2-4F =36,③ ①、②、③联立组成方程组,解得⎩⎪⎨⎪⎧D =-2E =-4F =-8,或⎩⎪⎨⎪⎧D =-6E =-8F =0.∴所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.C 级 能力拔高1.(2016·唐山调研)已知点A (-3,0),B (3,0),动点P 满足|P A |=2|PB |. 导学号 92434813 (1)若点P 的轨迹曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.[解析] (1)设点P 的坐标为(x ,y ),则 (x +3)2+y 2=2(x -3)2+y 2.化简可得(x -5)2+y 2=16,此方程即为所求.(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图所示.由直线l 2是此圆的切线,连接CQ ,则 |QM |=|CQ |2-|CM |2=|CQ |2-16,当CQ ⊥l 1时,|CQ |取最小值,此时|CQ |=|5+3|2=42,则|QM |的最小值为32-16=4.2.已知方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )的图形是圆. 导学号 92434814(1)求t 的取值范围;(2)当实数t 变化时,求其中面积最大的圆的方程. [解析] (1)方程即(x -t -3)2+(y +1-4t 2)2 =(t +3)2+(1-4t 2)2-16t 4-9.∴r 2=-7t 2+6t +1>0,∴-17<t <1.(2)∵r =-7t 2+6t +1=-7⎝⎛⎭⎫t -372+167, ∴当t =37∈⎝⎛⎭⎫-17,1时r max =477, 此时圆面积最大,所对应的圆的方程是⎝⎛⎭⎫x -2472+⎝⎛⎭⎫y +13492=167.。

高中数学必修二2.2-直线、平面平行的判定及其性质课堂练习及答案

高中数学必修二2.2-直线、平面平行的判定及其性质课堂练习及答案

2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定●知识梳理1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:a αb β => a∥αa∥b●知能训练一.选择题1.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n2.若直线l不平行于平面α,且l⊄α,则()A.α内存在直线与l异面B.α内存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交3.如图,M是正方体ABCD-A1B1C1D1的棱DD1的中点,给出下列命题①过M点有且只有一条直线与直线AB、B1C1都相交;②过M点有且只有一条直线与直线AB、B1C1都垂直;③过M点有且只有一个平面与直线AB、B1C1都相交;④过M点有且只有一个平面与直线AB、B1C1都平行.其中真命题是()A.②③④B.①③④C.①②④D.①②③4.正方体ABCD-A1B1C1D1中M,N,Q分别是棱D1C1,A1D1,BC的中点.P在对角线BD1上,且BP=BD1,给出下面四个命题:(1)MN∥面APC;(2)C1Q∥面APC;(3)A,P,M三点共线;(4)面MNQ∥面APC.正确的序号为()A.(1)(2)B.(1)(4)C.(2)(3)D.(3)(4)5.在正方体ABCD-A1B1C1D1的各个顶点与各棱中点共20个点中,任取两点连成直线,所连的直线中与A1BC1平行的直线共有()A.12条B.18条C.21条D.24条6.直线a∥平面α,P∈α,那么过P且平行于a的直线()A.只有一条,不在平面α内B.有无数条,不一定在平面α内C.只有一条,且在平面α内D.有无数条,一定在平面α内7.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交8.如图在正方体ABCD-A1B1C1D1中,与平面AB1C平行的直线是()A.DD1B.A1D1C.C1D1D.A1D9.如图,在三棱柱ABC-A1B1C1中,点D为AC的中点,点D1是A1C1上的一点,若BC1∥平面AB1D1,则等于()A.1/2B.1 C.2 D.310.下面四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()A.①②B.①④C.②③D.③④11.如图,正方体的棱长为1,线段B′D′上有两个动点E,F,EF=,则下列结论中错误的是()A.AC⊥BEB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值二.填空题12.如图,在正方体ABCD-A1B1C1D1中,E,F,G,H,M分别是棱AD,DD1,D1A1,A1A,AB的中点,点N在四边形EFGH的四边及其内部运动,则当N只需满足条件时,就有MN⊥A1C1;当N只需满足条件时,就有MN∥平面B1D1C.13.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于.三.解答题14.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2.(1)求证:AB 1∥平面BC1D;(2)若BC=3,求三棱锥D-BC1C的体积.2.2.2 平面与平面平行的判定●知识梳理1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

最新人教版必修二高中数学同步习题第二章2.2.3和答案

最新人教版必修二高中数学同步习题第二章2.2.3和答案

2.2.3 直线与平面平行的性质一、基础过关1.a,b是两条异面直线,P是空间一点,过P作平面与a,b都平行,这样的平面( )A.只有一个B.至多有两个C.不一定有D.有无数个2. 如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为( )A.AC⊥BD B.AC∥截面PQMNC.AC=BD D.异面直线PM与BD所成的角为45°3. 如图所示,长方体ABCD-A1B1C1D1中,E、F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于G、H,则HG与AB的位置关系是( )A.平行 B.相交C.异面 D.平行和异面4.直线a∥平面α,α内有n条直线交于一点,则这n条直线中与直线a平行的直线( )A.至少有一条B.至多有一条C.有且只有一条D.没有5.设m、n是平面α外的两条直线,给出三个论断:①m∥n;②m∥α;③n∥α.以其中的两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:______________.(用序号表示) 6. 如图所示,ABCD—A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1、B 1C1的中点,P是上底面的棱AD上的一点,AP=a3,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=________.7. ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.8. 如图所示,三棱锥A—BCD被一平面所截,截面为平行四边形EFGH.求证:CD∥平面EFGH.二、能力提升9.如图所示,平面α∩β=l1,α∩γ=l2,β∩γ=l3,l1∥l2,下列说法正确的是( )A.l1平行于l3,且l2平行于l3B.l1平行于l3,且l2不平行于l3C.l1不平行于l3,且l2不平行于l3D.l1不平行于l3,但l2平行于l310.如图所示,已知A、B、C、D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG的形状是________.10题图 11题图11.如图所示,在空间四边形ABCD 中,E 、F 、G 、H 分别是四边上的点,它们共面,并且AC ∥平面EFGH ,BD ∥平面EFGH ,AC =m ,BD =n ,当四边形EFGH 是菱形时,AE ∶EB =________.12. 如图所示,P 为平行四边形ABCD 所在平面外一点,M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l . (1)求证:BC ∥l ;(2)MN 与平面PAD 是否平行?试证明你的结论. 三、探究与拓展13.如图所示,三棱柱ABC —A 1B 1C 1,D 是BC 上一点,且A 1B ∥平面AC 1D ,D 1是B 1C 1的中点,求证:平面A 1BD 1∥平面AC 1D .答案1.C 2.C 3.A 4.B 5.①②⇒③(或①③⇒②) 6.223a 7.证明 如图所示,连接AC 交BD 于O ,连接MO ,∵ABCD 是平行四边形,ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .∴O 是AC 中点,又M 是PC 的中点, ∴AP ∥OM .根据直线和平面平行的判定定理, 则有PA ∥平面BMD .∵平面PAHG ∩平面BMD =GH , 根据直线和平面平行的性质定理, 则有AP ∥GH .8.证明 ∵四边形EFGH 为平行四边形, ∴EF ∥GH .又GH ⊂平面BCD ,EF ⊄平面BCD . ∴EF ∥平面BCD .而平面ACD ∩平面BCD =CD ,EF ⊂平面ACD ,∴EF ∥CD . 而EF ⊂平面EFGH ,CD ⊄平面EFGH , ∴CD ∥平面EFGH . 9.A 10.平行四边形 11.m ∶n12.(1)证明 因为BC ∥AD ,AD ⊂平面PAD ,BC ⊄平面PAD ,所以BC ∥平面PAD .又平面PAD ∩平面PBC =l ,BC ⊂平面PBC ,所以BC ∥l . (2)解 MN ∥平面PAD .证明如下:如图所示,取PD 中点E . 连接EN 、AE .又∵N 为PC 中点,∴EN 綊12AB∴EN綊AM,∴四边形ENMA为平行四边形,∴AE∥MN.又∵AE⊂平面PAD,MN⊄平面PAD,∴MN∥平面PAD.13.证明连接A1C交AC1于点E,∵四边形A1ACC1是平行四边形,∴E是A1C的中点,连接ED,∵A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,∴A1B∥ED,∵E是A1C的中点,∴D是BC的中点.又∵D1是B1C1的中点,∴BD1∥C1D,又∵C1D⊂平面AC1D,BD1⊄平面AC1D,∴BD1∥平面AC1D,又A1B∩BD1=B,∴平面A1BD1∥平面AC1D.。

高中数学 必修二 第二章 2.1 2.1.1课后练习题

高中数学  必修二   第二章 2.1 2.1.1课后练习题

第二章 2.1 2.1.1基础巩固一、选择题1.空间中,可以确定一个平面的条件是()A.两条直线B.一点和一条直线C.一个三角形D.三个点[答案] C2.如图所示,下列符号表示错误的是()A.l∈αB.P∉lC.l⊂αD.P∈α[答案] A[解析]观察图知:P∉l,P∈α,l⊂α,则l∈α是错误的.3.下面四个说法(其中A,B表示点,a表示直线,α表示平面):①∵A⊂α,B⊂α,∴AB⊂α;②∵A∈α,B∉α,∴AB∉α;③∵A∉a,a⊂α,∴A∉α;④∵A∈a,a⊂α,∴A∈α.其中表述方式和推理都正确的命题的序号是()A.①④B.②③C.④D.③[答案] C[解析]①错,应写为A∈α,B∈α;②错,应写为AB⊄α;③错,推理错误,有可能A∈α;④推理与表述都正确.4.如图所示,平面α∩β=l,A,B∈α,C∈β且C∉l,AB∩l=R,设过A,B,C三点的平面为γ,则β∩γ等于()A.直线AC B.直线BCC.直线CR D.以上都不对[答案] C[解析]由C,R是平面β和γ的两个公共点,可知β∩γ=CR.5.若一直线a在平面α内,则正确的图形是()[答案] A6.下图中正确表示两个相交平面的是()[答案] D[解析]A中无交线;B中不可见线没有画成虚线;C中虚、实线没按画图规则画,也不正确.D的画法正确.画两平面相交时,一定要画出交线,还要注意画图规则,不可见线一般应画成虚线,有时也可以不画.二、填空题7.已知如图,试用适当的符号表示下列点、直线和平面的关系:(1)点C与平面β:________.(2)点A与平面α:________.(3)直线AB与平面α:________.(4)直线CD与平面α:________.(5)平面α与平面β:________.[答案](1)C∉β(2)A∉α(3)AB∩α=B(4)CD⊂α(5)α∩β=BD8.在正方体ABCD-A1B1C1D1中,下列说法正确的是________(填序号).(1)直线AC1在平面CC1B1B内.(2)设正方体ABCD与A1B1C1D1的中心分别为O,O1,则平面AA1C1C与平面BB1D1D 的交线为OO1.(3)由A,C1,B1确定的平面是ADC1B1.(4)由A,C1,B1确定的平面与由A,C1,D确定的平面是同一个平面.[答案](2)(3)(4)[解析](1)错误.如图所示,点A∉平面CC1B1B,所以直线AC1⊄平面CC1B1B.(2)正确.如图所示.因为O∈直线AC⊂平面AA1C1C,O∈直线BD⊂平面BB1D1D,O1∈直线A1C1⊂平面AA1C1C,O1∈直线B1D1⊂平面BB1D1D,所以平面AA1C1C与平面BB1D1D的交线为OO1.(3)(4)都正确,因为AD∥B1C1且AD=B1C1,所以四边形AB1C1D是平行四边形,所以A,B1,C1,D共面.三、解答题9.求证:两两相交且不过同一点的三条直线必在同一个平面内.[分析][解析]已知:AB∩AC=A,AB∩BC=B,AC∩BC=C.求证:直线AB,BC,AC共面.证明:方法一:因为AC∩AB=A,所以直线AB,AC可确定一个平面α.因为B∈AB,C ∈AC,所以B∈α,C∈α,故BC⊂α.因此直线AB,BC,AC都在平面α内,所以直线AB,BC,AC共面.方法二:因为A不在直线BC上,所以点A和直线BC可确定一个平面α.因为B∈BC,所以B∈α.又A∈α,同理AC⊂α,故直线AB,BC,AC共面.方法三:因为A,B,C三点不在同一条直线上,所以A,B,C三点可以确定一个平面α.因为A∈α,B∈α,所以AB⊂α,同理BC⊂α,AC⊂α,故直线AB,BC,AC共面.规律总结:1.利用公理2及三个推论,可以确定平面及平面的个数,公理中要求“不共线的三点”,推论1要求“平面外一点”,推论2要求“两条相交直线”,推论3要求“两条平行线”,因此对公理、推论的条件和结论必须理解清楚.2.对于证明几个点(或几条直线)共面的问题,在由其中几个点(或几条直线)确定一个平面后,只要再证明其他点(或直线)也在该平面内即可.10.如图所示,AB∥CD,AB∩α=B,CD∩α=D,AC∩α=E.求证:B,E,D三点共线.[解析]∵AB∥CD,∴AB,CD共面,设为平面β,∴AC在平面β内,即E在平面β内.而AB∩α=B,CD∩α=D,AC∩α=E,可知B,D,E为平面α与平面β的公共点,根据公理3可得,B,D,E三点共线.能力提升一、选择题1.(2015·天津武清月考)下列说法正确的是()A.两两相交的三条直线确定一个平面B.四边形确定一个平面C.梯形可以确定一个平面D.圆心和圆上两点确定一个平面[答案] C[解析]因为梯形的两腰是相交直线,所以根据确定平面的条件,梯形应确定一个平面.2.下列命题正确的是()A.两个平面如果有公共点,那么一定相交B.两个平面的公共点一定共线C.两个平面有3个公共点一定重合D.过空间任意三点,一定有一个平面[答案] D[解析]如果两个平面重合,则排除A、B;两个平面相交,则有一条交线,交线上任取3个点都是两个平面的公共点,故排除C;而D中的三点不论共线还是不共线,则一定能找到一个平面过这3个点.3.设P表示一个点,a、b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是()①P∈a,P∈α⇒a⊂α②a∩b=P,b⊂β⇒a⊂β③a∥b,a⊂α,P∈b,P∈α⇒b⊂α④α∩β=b,P∈α,P∈β⇒P∈bA.①②B.②③C.①④D.③④[答案] D[解析]当a∩α=P时,P∈a,P∈α,但a⊄α,∴①错;a∩β=P时,②错;如图∵a∥b,P∈b,∴P∉a,∴由直线a与点P确定唯一平面α,又a∥b,由a与b确定唯一平面β,但β经过直线a与点P,∴β与α重合,∴b⊂α,故③正确;两个平面的公共点必在其交线上,故④正确,选D.4.如图,α∩β=l,A∈α,C∈β,C∉l,直线AD∩l=D,过A,B,C三点确定的平面为γ,则平面γ、β的交线必过()A.点A B.点BC.点C,但不过点D D.点C和点D[答案] D[解析]A、B、C确定的平面γ与直线BD和点C确定的平面重合,故C、D∈γ,且C、D∈β,故C,D在γ和β的交线上.二、填空题5.过同一点的4条直线中,任意3条都不在同一平面内,则这4条直线确定的平面的个数是________.[答案] 6[解析]如图.6.如图所示,A,B,C,D为不共面的四点,E,F,G,H分别在线段AB,BC,CD,DA上.(1)如果EH∩FG=P,那么点P在直线________上.(2)如果EF∩GH=Q,那么点Q在直线________上.[答案](1)BD(2)AC[解析](1)若EH∩FG=P,那么点P∈平面ABD,P∈平面BCD,而平面ABD∩平面BCD =BD,所以P∈BD.(2)若EF∩GH=Q,则点Q∈平面ABC,Q∈平面ACD,而平面ABC∩平面ACD=AC,所以Q∈AC.三、解答题7.在正方体ABCD-A1B1C1D1中,E为AB的中点,F为AA1的中点,求证:(1)E 、C 、D 1、F 、四点共面; (2)CE 、D 1F 、DA 三线共点. [证明] (1)分别连结EF 、A1B 、D 1C , ∵E 、F 分别是AB 和AA 1的中点, ∴EF ∥A 1B 且EF =12A 1B .又∵A 1D 1綊B 1C 1綊BC , ∴四边形A 1D 1CB 是平行四边形, ∴A 1B ∥CD 1,从而EF ∥CD 1. EF 与CD 1确定一个平面. ∴E 、F 、D 1、C 四点共面. (2)∵EF 綊12CD 1,∴直线D 1F 和CE 必相交.设D 1F ∩CE =P , ∵D 1F ⊂平面AA 1D 1D ,P ∈D 1F ,∴P ∈平面AA 1D 1D . 又CE ⊂平面ABCD ,P ∈EC ,∴P ∈平面ABCD , 即P 是平面ABCD 与平面AA 1D 1D 的公共点. 而平面ABCD ∩平面AA 1D 1D =直线AD ,∴P ∈直线AD (公理3),∴直线CE 、D 1F 、DA 三线共点.8.(2015·江苏淮安模拟)如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是AA 1,D 1C 1的中点,过D ,M ,N 三点的平面与正方体的下底面相交于直线l .(1)画出直线l 的位置;(2)设l ∩A 1B 1=P ,求线段PB 1的长.[解析] (1)延长DM 交D 1A 1的延长线于E ,连接NE ,则NE 即为直线l 的位置.(2)∵M 为AA 1的中点,AD ∥ED 1, ∴AD =A 1E =A 1D 1=a . ∵A 1P ∥D 1N ,且D 1N =12a ,∴A 1P =12D 1N =14a ,于是PB 1=A 1B 1-A 1P =a -14a =34a .。

(完整版)高一数学必修2第二章测试题及答案解析,推荐文档

(完整版)高一数学必修2第二章测试题及答案解析,推荐文档

c 可以平行,可以相交,也可以异面,故④错误.
7[答案] D [解析] 如图所示.由于 AA1⊥平面 A1B1C1D1,EF⊂平面 A1B1C1D1,则 EF⊥AA1,所以①正确;当 E,F 分别是线段 A1B1,B1C1 的中点时,EF∥A1C1,又 AC∥A1C1,则 EF∥AC,所以 ③不正确;当 E,F 分别不是线段 A1B1,B1C1 的中点时,EF 与 AC 异面,所以②不正确;由于平面 A1B1C1D1∥平面 ABCD,EF⊂平面 A1B1C1D1,所以 EF∥平面 ABCD,所以④正确.
14.正方体 ABCD-A1B1C1D1 中,二面角 C1-AB-C 的平面角等于 ________. 15.设平面 α∥平面 β,A,C∈α,B,D∈β,直线 AB 与 CD 交于点 S,且点 S 位于平面 α,β 之间,AS=8,BS=6,CS=12,则 SD=________. 16.将正方形 ABCD 沿对角线 BD 折成直二面角 A-BD-C,有如下 四个结论: ①AC⊥BD;②△ACD 是等边三角形;③AB 与平面 BCD 成 60°的角; ④AB 与 CD 所成的角是 60°.其中正确结论的序号是________.
4.长方体 ABCD-A1B1C1D1 中,异面直线 AB,A1D1 所成的角等于( ) A.30° B.45° C.60° D.90°
5.对两条不相交的空间直线 a 与 b,必存在平面 α,使得( ) A.a⊂α,b⊂α B.a⊂α,b∥α C.a⊥α,b⊥α D.a⊂α,b⊥α
6.下面四个命题: ①若直线 a,b 异面,b,c 异面,则 a,c 异面; ②若直线 a,b 相交,b,c 相交,则 a,c 相交; ③若 a∥b,则 a,b 与 c 所成的角相等; ④若 a⊥b,b⊥c,则 a∥c.其中真命题的个数为( ) A.4 B.3 C.2 D.1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1 柱、锥、台、球的的结构特征练习一一、选择题1、下列命题中,正确命题的个数是()(1)桌面是平面;(2)一个平面长2米,宽3米;(3)用平行四边形表示平面,只能画出平面的一部分;(4)空间图形是由空间的点、线、面所构成。

A 、 1 B、 2C、 3D、 42、下列说法正确的是()A、水平放置的平面是大小确定的平行四边形B、平面ABCD就是四边形ABCD的四条边围来的部分C、 100个平面重叠在一起比10个平面重叠在一起厚D、平面是光滑的,向四周无限延展的面3、下列说法中表示平面的是()A、水面B、屏面C、版面D、铅垂面4、下列说法中正确的是()A、棱柱的面中,至少有两个面互相平行B、棱柱的两个互相平行的平面一定是棱柱的底面C、棱柱的一条侧棱的长叫做棱柱的高D、棱柱的侧面是平行四边形,但它的底面一定不是平行四边形5、长方体的三条棱长分别是AA/=1,AB=2,AD=4,则从A点出发,沿长方体的表面到C/的最短距离是()A、 5B、 7C、 D、6、若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是()A、三棱锥B、四棱锥C、五棱锥D、六棱锥]7、过球面上两点可能作出球的大圆()A、 0个或1个B、有且仅有1个C、无数个D、一个或无数个8、一个圆柱的母线长为5,底面半径为2,则圆柱的轴截面的面积为()A、 10B、 20C、 40D、 15二、填空题9、用一个平面去截一个正方体,截面边数最多是----------------条。

10、正三棱台的上、下底面边长及高分别为1、2、2,则它的斜高是------------。

11、一个圆柱的轴截面面积为Q,则它的侧面面积是----------------。

12、若圆锥的侧面面积是其底面面积的2倍,则这个圆锥的母线与底面所成的角为----------------,圆锥的侧面展开图扇形的圆心角为----------------。

13、在赤道上,东经1400与西经1300的海面上有两点A、B,则A、B两点的球面距离是多少海里---------------。

(1海里是球心角1/所对大圆的弧长)。

三、解答题14、一个正三棱柱的底面边长是4,高是6,过下底面的一条棱和该棱所对的上底面的顶点作截面,求这截面的面积。

15、圆锥底面半径是6,轴截面顶角是直角,过两条母线的截面截去底面圆周的16,求截面面积。

答案:一、选择题1、B ;2、D ;3、D ;4、A ;5、A ;6、D ;7、D ;8、B二、填空题9、610、736 11、Q 12、600,1800 13、5400三、解答题14、解:如图,正三棱柱ABC —A /B /C /,符合题意的截面为A /BC ,在R t A /B /B 中,A /B /=4,BB /=6∴A /B=//2/2A B BB +=2246+ =213在等腰A /BC 中,BO=142⨯=2 A /OBC ,∴A /O=/22A B BO - =()222132-=43 ∴S A /BC =12BC ·A /O=12·4·43=83 ∴这截面的面积为8315、解:由题意知:SA=SB=SC=62,∠BOC=26π=3π,∴OB=OC=BC=6。

∴∴S SCB =12·6· 解题提示: 通过解三角形可使问题自然获解。

1.1.2 简单组合体的结构特征练习一一、 选择题1、平面是绝对的平、无厚度、可以无限延展的抽象的数学概念。

其中正确命题的个数是( )A 、 1个B 、 2个C 、 3个D 、 4个2、在空间中,下列说法中正确的是( )A 、 一个点运动形成直线B 、 直线平行移动形成平面或曲面C 、 直线绕定点运动形成锥面D 、 矩形上各点沿同一方向移动形成长方体3、在四面体中,平行于一组相对棱,并平分其余各棱的截面的形状是( )A 、 等边三角形B 、 等腰梯形C 、 长方体D 、 正方形4、在四棱锥的四个侧面中,直角三角形最多可有( )A 、 1个B 、 2个C 、 3个D 、 4个5、设有三个命题:甲:底面是平行四边形的四棱柱是平行六面体乙:底面是矩形的平行六面体是长方体丙:直四棱柱是直平行六面体以上命题中,真命题的个数是( )A 、 0个B 、 1个C、 2个D、 3个6、边长为5cm的长方形EFGH是圆柱的轴截面,则从E点沿圆柱的侧面到相对顶点G的最短距离是()A、 10cmB、 cmC、 cmD、7、半径为5的球,截得一条直线的线段长为8,则球心到直线的距离是()A、 B、 2C、 D、 3二、填空题8、、空间中构成几何体的基本元素是------------、--------------、---------------------。

9、、用六根长度相等的火柴,最多搭成----------------个正三角形。

10、下列关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱。

其中真命题的序号是----------------。

11、能否不通过拉伸把球面切割为平面图形-----------------(填能、否)三、解答题12、圆锥的底面半径为r,母线长是底面半径的3倍,在底在圆周上有一点A,求一个动点P自A出发在侧面上绕一周到A点的最短距离。

13、已知棱棱锥的底面积是150cm2,平行于底面的一个截面面积是54cm2,截得棱台的高为12cm,求棱锥的高。

14、如图,侧棱长为23的正三棱锥V—ABC中, AVB=BVC=CVA=400,过A作截面AEF,求截面三角形AEF周长的最小值。

15、从北京(靠近北纬400,东经1200,以下经纬度均取近似值)飞往南非首都约翰内斯堡(南纬300,东经300)有两条航空线可选择:甲航空线:从北京沿纬度弧向西飞到土耳其首都安卡拉(北纬400,东经300),然后向南飞到目的地;乙航空线:从北京向南飞到澳大利亚的珀斯(南纬300,东经1200),然后向西飞到目的地。

请问:哪一条航空线最短?(地球视为半径R=6370km的球)(提示:把北京、约翰内斯堡、安卡拉、珀斯分别看作球面上的A、B、C、D四点,则甲航程为A、C »AC与C、B两地间的球面距离»BC之和,乙航程是A、D两地间的球面距离»AD加上两地间的纬度长D、B两地间的纬度线长。

)答案:一、选择题1、A;2、B;3、D;4、D;5、B;6、C;7、D二、填空题8、点、线、面。

9、410、②④11、不能三、解答题12、解:如图,扇形SAA 1为圆锥的侧面展开图,AA 1即为所求的最短路程。

已知SA=SA 1=3r ,ASA 1=1200,在等腰三角形SAA 1中可求得:AA 1=33r 。

13、导析:本题主要考查平行于底面的截面的性质,即棱锥被平行于底面的平面所截,该截面面积与底面面积之比等于截得小锥的高与原锥的高的比的平方。

解:不妨高是三棱锥。

设棱锥的高为h ,∵ 212h h -⎛⎫ ⎪⎝⎭=54150∴ h=30(cm)14、解:将三棱锥沿侧棱VA 剪开,并将其侧面展开平铺在一个平面上,如图。

线段AA 1的长为所求三角形AEF 周长的最小值,取AA 1的中点D ,则VDAA 1, AVD=600,可求AD=3,则AA 1=6。

15、解:设球心为O ,O 1、O 2分别是北纬400圆与南纬300圆的圆心,则∠AO 1C=∠DO 2B=1200-300=900 从而»AC =2π·O 1C=2πRcos400, »BD =2π·O 2B=2πRcos300=34πR , »CB =R ·∠COB=R (40+30)·180π =718R , »AD = R ·∠AOD=R (40+30)·180π =718R 故甲航程为s 1=»AC +»CB=2πR cos400+718R , 故乙航程为s 2=»BD+»AD = 3πR+718R 由cos400<cos300,知s 1<s 2,所以甲航空线较短。

1.2.1 空间几何体的三视图练习一一、 选择题1、关于三视图,判断正确的是( )A 、 物体的三视图唯一确定物体B 、 物体唯一确定它的三视图C 、 俯视图和左视图的宽相等D 、 商品房广告使用的三视图的主视图一定是正面的投影2、 下列说法正确的是( )A 、 作图时,虚线通常表达的是不可见轮廓线B 、 视图中,主视图反映的是物体的长和高,左视图反映的是长和宽,而俯视图反映的是高和宽C 、 在三视图中,仅有点的两个面上的投影,不能确定点的空间位置D 、 用2:1的比例绘图时,这是缩小的比例3、一个几何体由几个相同的小正方体组合而成,它的主视图、左视图、俯视图如图所示,则这个组合体包含的小正方体的个数是( )A 、 7B 、 6C 、 4D 、 54、一个物体的三视图如图所示,则该物体形状的名称为( )A、三棱柱B、四棱柱C、圆柱D、圆锥二、填空题5、对于一个几何体的三视图要证主视图与左视图一样________,主视图和俯视图一样________,俯视图和左视图一样________.6、对于正投影,垂直于投射面的直线或线段的正投影是---------------------。

7、一个几何体的三视图是全等的平面图形,这样的几何体可能是------------。

(写出符合的一种几何体即可)8、如果一个几何体的视图之一是三角形,那么这个几何体可能是--------------。

(写出两个几何体即可)。

三、做图9、画出下面几何体的三视图。

10、据下面三视图,想象物体的原形。

11、画出下面几何体的三视图。

12、画出下面几何体的三视图13、画出下面几何体的三视图14、已知某几何体的主视图,左视图和俯视图,求作此几何体。

主视图左视图15、已知某几何体,求作此几何体的主视图,左视图和俯视图。

答案:一、选择题1、C;2、A;3、C;4、B二、填空题5、高长宽6、点7、球或正方体8、三棱锥;圆锥三、做图9、解:10、解:由几何体的三视图知道:本题图的几何体是一个简单组合体,上部是个圆柱,下部是个正四棱柱。

且圆柱的下底面圆和正四棱柱的上底面正方形内切。

11、解:评述:本题主要考查三视图的画法。

12、解:三视图如下13、解:如图主视图左视图俯视图14、解:如图15、俯视图1.2.1 空间几何体的三视图练习二一、选择题1、若一个几何体的主视图和左视图都是等腰三角形,俯视图是圆,则这个几何体可能是()A、圆柱B、三棱柱C、圆锥D、球体2、若一个几何体的主视图和左视图都是等腰三角形,俯视图是圆,则这个几何体可能是()A、圆柱B、三棱柱C、圆锥D、球体3、甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到的是“6”,乙说他看到的是“ ”,丙说他看到的是“ ”,丁说他看到的是“9”,则下列说法正确的是( )A、甲在丁的对面,乙在甲的左边,丙在丁的右边B、丙在乙的对面,丙的左边是甲,右边是乙C、甲在乙的对面,甲的右边是丙,左边是丁D、甲在丁的对面,乙在甲的右边,丙在丁的右边二、填空题4、一个几何体的三视图是全等的平面图形,这样的几何体可能是------------------。

相关文档
最新文档