2010中考测试题 数学 (3)
2010年辽宁省沈阳市中考数学试卷 (全word版及答案)

沈阳市2010年中等学校招生统一考试数 学 试 题试题满分150分,考试时间120分钟注意事项:1. 答题前,考生须用0.5mm 黑色字迹的签字笔在本试题卷规定位置填写自己的姓名、准考证号;2. 考生须在答题卡上作答,不能在本试题卷上做答,答在本试题卷上无效;3. 考试结束,将本试题卷和答题卡一并交回;4. 本试题卷包括八道大题,25道小题,共6页。
如缺页、印刷不清,考生须声明,否则后果自 负。
一、选择题 (下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1. 左下图是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是2. 为了响应国家“发展低碳经济、走进低碳生活”的号召,到目前为止沈阳市共有60000户家庭建立了“低碳节能减排家庭档案”,则60000这个数用科学记数法表示为 (A) 60⨯104(B) 6⨯105 (C) 6⨯104 (D) 0.6⨯106 。
3. 下列运算正确的是 (A) x 2+x 3=x 5 (B) x 8÷x 2=x 4 (C) 3x -2x =1 (D) (x 2)3=x 6 。
4. 下列事件为必然事件的是 (A ) 某射击运动员射击一次,命中靶心 (B) 任意买一张电影票,座位号是偶数 (C) 从一个只有红球的袋子里面摸出一个球是红球 (D) 掷一枚质地均匀的硬币落地后正面朝上 。
5. 如图,在方格纸上建立的平面直角坐标系中,将Rt △ABC 绕点C 按顺时针方向旋转90︒,得到Rt △FEC ,则点A 的对应点F 的坐标是(A) (-1,1) (B) (-1,2) (C) (1,2) (D) (2,1)。
6. 反比例函数y = -x15的图像在 (A) 第一、二象限 (B) 第二、三象限 (C) 第一、三象限 (D) 第二、四象限 。
7. 在半径为12的 O 中,60︒圆心角所对的弧长是 (A) 6π (B) 4π (C) 2π (D) π. 。
2010年广东省中考数学试卷以及答案

机密☆启用前2010年广东中考数学试题及答案说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、 试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑, 如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域 内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和 涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-3的相反数是( ) A .3B .31 C .-3D .13-2.下列运算正确的是( ) A .ab b a 532=+B .()b a b a -=-422C .()()22b a b a b a -=-+D . ()222b a b a +=+3.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( ) A.70° B.100° C.110° D.120°4.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元、6元、6元、7元、8元、 9元,则这组数据的中位数与众数分别为( ) A .6,6 B .7,6 C . 7,8 D .6,85. 左下图为主视方向的几何体,它的俯视图是( )二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时,参观者已超过 8000000人次,试用科学记数法表示8000000= .7.分式方程112=+x x的解x = . 8.如图,已知R t △ABC 中,斜边BC 上的高AD =4,cosB =54,则 AC = .9.某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两 年内,商品房每平方米平均价格的年增长率都为x ,试列出关于x 的方程: . 10.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到新正方形A 2B 2C 2D 2(如图(2));以此下去…, 则正方形A 4B 4C 4D 4的面积为 .三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:()001260cos 2214π-+-⎪⎭⎫ ⎝⎛+-.12. 先化简,再求值()x x x x x 224422+÷+++ ,其中 x = 2 .13. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,R t △ABC 的顶点均在格点上,在建立平面直角坐标系以后,点A 的坐标为(-6,1),点B 的坐标为(-3,1),点C 的坐标为 (-3,3).(1)将R t △ABC 沿X 轴正方向平移5个单位得到R t △A 1B 1C 1,试在图上画出R t △A 1B 1C 1的图形,并写出点A 1的坐标。
2010年广东省中考数学真题试题(含答案)

机密☆启用前2010年广东中考数学试题及答案(含答案)说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、 试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑, 如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域 内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和 涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-3的相反数是( ) A .3B .31 C .-3D .13-2.下列运算正确的是( ) A .ab b a 532=+B .()b a b a -=-422C .()()22b a b a b a -=-+D . ()222b a b a +=+3.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( ) A.70° B.100° C.110° D.120°4.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元、6元、6元、7元、8元、 9元,则这组数据的中位数与众数分别为( ) A .6,6 B .7,6 C . 7,8 D .6,85. 左下图为主视方向的几何体,它的俯视图是( )二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时,参观者已超过 8000000人次,试用科学记数法表示8000000= .7.分式方程112=+x x的解x = . 8.如图,已知R t △ABC 中,斜边BC 上的高AD =4,cosB =54,则 AC = .9.某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两 年内,商品房每平方米平均价格的年增长率都为x ,试列出关于x 的方程: . 10.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到新正方形A 2B 2C 2D 2(如图(2));以此下去…, 则正方形A 4B 4C 4D 4的面积为 .三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:()001260cos 2214π-+-⎪⎭⎫ ⎝⎛+-.12. 先化简,再求值()x x x x x 224422+÷+++ ,其中 x = 2 .13. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,R t △ABC 的顶点均在格点上,在建立平面直角坐标系以后,点A 的坐标为(-6,1),点B 的坐标为(-3,1),点C 的坐标为 (-3,3).(1)将R t △ABC 沿X 轴正方向平移5个单位得到R t △A 1B 1C 1,试在图上画出R t △A 1B 1C 1的图形,并写出点A 1的坐标。
2010年中考数学试题及答案

九年级数学试题 第1页(共14页)2010年九年级教学质量检测数 学 试 题 注意事项:本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84第Ⅰ卷 选择题 (共36分)一、选择题 (本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填入题后的括号内,每小题选对得3分.)1.数a ,b ,c ,d 所对应的点A 、B 、C 、D 在数轴上的位置如图所示,那么c a +与d b +的大小关系是( ). A.c a +<d b + B.d b c a +=+ C.c a +>d b + D.不能确定2.央行2007年4月12日公布的数据显示, 2007年3月末我国外汇储备余额为12020亿美元,2006年同期我国外汇储备余额为8751亿美元,则同比增长为(精确到0.01%)( ).A.27.20%B.37.36%C.27.2%D.37.4% 3.下列运算中正确的是( ).A.10552x x x =+B.22941)321)(321(y x y x y x -=+-- C.33332244)2(y x x y x -=∙-- D.853)()(x x x -=-∙-- 4.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的 图象交于点A ,已知OA =23,则该函数的解析式为( ). A .x y 3=B .x y 3-=C .x y 9=D .xy 9-= 第4题图九年级数学试题 第2页(共14页)5.如图,CD 切⊙O 于B ,CO 的延长线交⊙O 于A ,若∠C =36°, 则∠ABD 的度数是( ).A.72°B.63°C.54°D.36°6.如图,以□ABCD 对角线的交点为坐标原点,以平行于AD 边的直线为x 轴,建立直角坐标系.若点D 的坐标为(3,2), 则点B 的坐标为( ).A.(3,2)B.(2,3)C.(-2,-3)D.(-3,-2) 7.下列四个三角形,与左图中的三角形相似的是( ).8.定义:如果一元二次方程)0(02≠=++a c bx ax 满足0=++c b a ,那么我们称这个方程为“凤凰”方程. 已知)0(02≠=++a c bx ax 是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ).A .c a =B .b a =C .c b =D .c b a == 9.如图,正方形ABCD 中,E 、F 分别为AB 、BC 的中点, AF 与DE 相交于点O ,则=DO AO( ). A .31B .552C .32D .2110.如图,在三角形纸片ABC 中,∠ACB =90°,BC =3,AB =6,在AC上取一点E ,以BE 为折痕,使AB 一部分与BC 重合,A 与BC 延 长线上的点D 重合,则CE 的长度为( ) . A.3 B.6 C.3 D.3211.小明从如图所示的二次函数c bx ax y ++=2的图象中,观察得出了下面五条信息:①c >0,②abc <0,③a -b +c >0, ④2b >4a c ,⑤2a =-2b ,其中正确结论是( ). A .①②④ B .②③④ C .③④⑤ D .①③⑤A .B .C .D .第5题图第6题图第9题图第10题图第11题图第7题图九年级数学试题 第3页(共14页)12.如图所示,边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t ,大正方形内除去小正方形部分的面积为S (阴影部分),那么S 与t 的大致图象应为( ).第Ⅱ卷非选择题(共84分)二、填空题(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.若9)1(2=+x x,则2)1(xx -的值为 .14.如图,在四边形ABCD 中,AB ∥CD ,∠D=2∠B ,若AD =3,AB =5,则CD =______.15.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到的正方形EFCG ,EF 交AD 与点H ,那么DH 的长为___________.16.如图,正方形ABCD 的边长为1,点E 为AB 的中点,以E 为圆心,1为半径作圆, 分别交AD 、BC 于M 、N 两点,与DC 切于P 点.则图中阴影部分的面积是 . 17.观察下列各式:312311=+,413412=+,514513=+,…… 请你将发现的规律用含自然数n(n ≥1)的等式表示出来 .A.B.C.D.九年级数学试题 第4页(共14页)三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推演步骤.) 18.(本题满分8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定,转动两个转盘停止后,指针所指的两个数字之和为奇数时,甲获胜;为偶数时,乙获胜. (1)用列表法(或画树状图)求甲获胜的概率;(2)你认为这个游戏规则对双方公平吗?请简要说明理由.19.(本题满分9分)在学习实践科学发展观的活动中,某单位在如图所示的办公楼迎街的墙面上垂挂一长为30米的宣传条幅AE ,张明同学站在地面C 处测得条幅顶端A 的仰角为50°,测得条幅底端E 的仰角为30°. 问张明同学是在离该单位办公楼水平距离多远的地方进行测量?(精确到整数米)(参考数据:sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.20,sin 30°=0.50, cos 30°≈0.87,tan 30°≈0.58)20.(本题满分9分)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?21.(本题满分10分)小张骑车往返于甲、乙两地,距甲地的路程y(千米)与时间x(小时)的函数图象如图所示.(1)小张在路上停留_____小时,他从乙地返回时骑车的速度为______千米/时.(2)小李与小张同时从甲地出发,按相同路线匀速前往乙地,到乙地停止...途中小李与小张共相遇3次.请在图中..画出小李距甲地的路程y(千米)与时间x(小时)的函数的大致图象.九年级数学试题第5页(共14页)(3)小王与小张同时出发,按相同的路线前往乙地,距甲地的路程y(千米)与时间x(小时)的函数关系为1012+=xy.小王与小张在途中共相遇几次?请你计算第一次相遇的时间.22.(本题满分10分)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连结AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90º,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为__________ ,线段CF、BD的数量关系为__________ ;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;图1图2C图3E九年级数学试题第6页(共14页)九年级数学试题 第7页(共14页)(2)如果AB ≠AC ,∠BAC 是锐角,点D 在线段BC 上,当∠ACB 满足什么条件时,CF ⊥BC (点C 、F 不重合),并说明理由.23.(本题满分11分)如图,⊙O 是以AB 为直径的△ABC 的外接圆,点D 是劣弧BC的中点,连结AD 并延长,与过C 点的切线交于点P ,OD 与BC 相交于点E . (1)求证:OE =21AC ; (2)求证:22AC BD AP DP ; (3)当AC =6,AB =10时,求切线PC 的长.九年级数学试题 第8页(共14页)24.(本题满分12分)如图,已知抛物线32++-=mx x y 与x 轴的一个交点A (3,0).(1)试分别求出这条抛物线与x 轴的另一个交点B 及与y 轴的交点C 的坐标; (2)设抛物线的顶点为D ,请在图中画出抛物线的草图. 若点E (-2,n )在直线BC 上,试判断E 点是否在经过D 点的反比例函数的图象上,并说明理由;(3)试求tan ∠DAC 的值.2010年九年级教学质量检测数学参考答案一、选择题:ABDDBD BADCCA二、填空题:13. 5 14. 2 15.164π--0.04也可得满分) 17(n =+三、解答题:18.⑴(法1)画树状图由上图可知,所有等可能的结果共有12种,指针所指的两个数字之和为奇数的结果有6种。
2010中考数学试题及答案

2010中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. πB. 0.33333(无限循环)C. √2D. 1/32. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 83. 函数y = 2x + 3的斜率是:A. 2B. 3C. -2D. -34. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 8D. -85. 下列哪个选项不是同类项?A. 3x^2 和 5x^2B. 2y 和 3yC. 4a 和 -aD. 7b 和 3c6. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π7. 一个长方体的长、宽、高分别是2、3和4,它的体积是:A. 24B. 36C. 48D. 648. 如果一个数列的前三项是1,3,6,那么这个数列是:A. 等差数列B. 等比数列C. 既不是等差也不是等比数列D. 无法确定9. 一个二次方程x^2 - 5x + 6 = 0的根是:A. x = 2, 3B. x = -2, -3C. x = 1, 6D. x = -1, -610. 下列哪个表达式是正确的?A. (a + b)^2 = a^2 + b^2B. (a - b)(a + b) = a^2 - b^2C. a^3 - b^3 = (a - b)(a^2 + ab + b^2)D. a^4 + b^4 = (a + b)^2(a^2 - ab + b^2)二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是______。
12. 如果一个角是30°,那么它的余角是______。
13. 一个正三角形的内角是______。
14. 一个数的绝对值是5,这个数可以是______。
15. 一个数的立方根是2,这个数是______。
16. 一个数的平方是36,这个数是______。
2010年河北中考数学试卷及答案

图9B2010年河北省中考数学试卷一、选择题(本大题共12个小题,每小题2分,共24分) 1.计算3×(-2) 的结果是A .5B .-5C .6D .-6 2.如图1,在△ABC 中,D 是BC 延长线上一点,∠B = 40°,∠ACD = 120°,则∠A 等于 A .60° B .70° C .80° D .90°3.下列计算中,正确的是A .020=B .2a a a =+C 3=±D .623)(a a =4.如图2,在□ABCD 中,AC 平分∠DAB ,AB = 3, 则□ABCD 的周长为A .6B .9C .12D .15 5.把不等式2x -< 4的解集表示在数轴上,正确的是6.如图3,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点, 那么这条圆弧所在圆的圆心是A .点PB .点QC .点RD .点M7.化简ba b b a a ---22的结果是 A .22b a- B .b a +C .b a -D .18.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x张,根据题意,下面所列方程正确的是 A .48)12(5=-+x x B .48)12(5=-+x x C .48)5(12=-+x x D .48)12(5=-+x x 9.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km /h ,水流速度为5 km/h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是10.如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是 A .7 B .8 C .9 D .1011.如图5,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为 A .(2,3) B .(3,2) C .(3,3) D .(4,3) 12.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是A .6B .5C .3D .2二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上) 13.-的相反数是 . 14.如图7,矩形ABCD 的顶点A ,B 在数轴上, CD = 6,点A 对应的数为1-,则点B 所对应的数为 .15.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从图8的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是 .16.已知x = 1是一元二次方程02=++n mx x 的一个根,则 222n mn m ++的值为 .17.某盏路灯照射的空间可以看成如图9所示的圆锥,它的高AO = 8米,母线AB 与底面半径OB 的夹角为α,34tan =α,则圆锥的底面积是 平方米(结果保留π).18.把三张大小相同的正方形卡片A ,B ,C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图10-1摆放时,阴影部分的面积为S 1;若按图10-2摆放时,阴影部分的面积为S 2,则S 1 S 2(填“>”、“<”或“=”). 三、解答题(本大题共8个小题,共78分) 19.(8分)解方程:1211+=-x x .A B C D 图2图10-1 图10-2A BCD 40°120° 图1 图3 图5 图7 图8图4 A B D C 图6-1 图6-2A B C D20.(8分)如图11-1,正方形ABCD 是一个6 × 6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图11-2的程序移动.(1)请在图11-1中画出光点P 经过的路径;(2)求光点P 经过的路径总长(结果保留π).21.(9分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)在图12-1中,“7分”所在扇形的圆心角等于 °. (2)请你将图12-2的统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?22.(9分)如图13,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB ,BC 交于点M ,N .(1)求直线DE 的解析式和点M 的坐标;(2)若反比例函数xmy =(x >0)的图象经过点M ,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上; (3)若反比例函数xmy =(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值范围.图11-2A图11-1B乙校成绩扇形统计图 图12-1乙校成绩条形统计图图12-2图15-2AD O BC 21MN图15-1A D BMN1 2图15-3AD O BC 21MNO 23.(10分)观察思考某种在同一平面进行传动的机械装置如图14-1,图14-2是它的示意图.其工作原理是:滑块Q 在平直滑道l 上可以左右滑动,在Q 滑动的过程中,连杆PQ 也随之运动,并且PQ 带动连杆OP 绕固定点O 摆动.在摆动过程中,两连杆的接点P 在以OP 为半径的⊙O 上运动.数学兴趣小组为进一步研 究其中所蕴含的数学知识,过点O 作OH ⊥l 于点H ,并测得OH = 4分米,PQ = 3分米,OP = 2分米.解决问题(1)点Q 与点O 间的最小距离是 分米;点Q 与点O 间的最大距离是 分米;点Q 在l 上滑到最左端的位置与滑到最右端位置间的距离是 分米.(2)如图14-3,小明同学说:“当点Q 滑动到点H 的位置时,PQ 与⊙O 是相切的.”你认为他的判断对吗?为什么?(3)①小丽同学发现:“当点P 运动到OH 上时,点P 到l 的距离最小.”事实上,还存在着点P 到l 距离最大的位置,此时,点P 到l 的距离是 分米;②当OP 绕点O 左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数.24.(10分)在图15-1至图15-3中,直线MN 与线段AB 相交于点O ,∠1 = ∠2 = 45°.(1)如图15-1,若AO = OB ,请写出AO 与BD 的数量关系和位置关系; (2)将图15-1中的MN 绕点O 顺时针旋转得到图15-2,其中AO = OB .求证:AC = BD ,AC ⊥ BD ;(3)将图15-2中的OB 拉长为AO 的k 倍得到图15-3,求ACBD的值.l图14-3l 图14-2图14-125.(12分)如图16,在直角梯形ABCD 中,AD ∥BC ,90B ∠=︒,AD = 6,BC = 8,33=AB ,点M 是BC 的中点.点P 从点M 出发沿MB 以每秒1个单位长的速度向点B 匀速运动,到达点B 后立刻以原速度沿BM 返回;点Q 从点M 出发以每秒1个单位长的速度在射线MC 上匀速运动.在点P ,Q 的运动过程中,以PQ 为边作等边三角形EPQ ,使它与梯形ABCD 在射线BC 的同侧.点P ,Q 同时出发,当点P 返回到点M 时停止运动,点Q 也随之停止. 设点P ,Q 运动的时间是t 秒(t >0).(1)设PQ 的长为y ,在点P 从点M 向点B 运动的过程中,写出y 与t 之间的函数关系式(不必写t 的取值范围).(2)当BP = 1时,求△EPQ 与梯形ABCD 重叠部分的面积.(3)随着时间t 的变化,线段AD 会有一部分被△EPQ 覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接..写出t 的取值范围;若不能,请说明理由.26.(12分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =1001-x +150, 成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为 常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳1001x 2元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费).(1)当x = 1000时,y = 元/件,w 内 = 元;(2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围); (3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线的顶点坐标是24(,)24b ac b a a--.2(0)y ax bx c a =++≠P Q图16 (备用图)2010年河北省中考数学试题参考答案一、选择题二、填空题13.5 14.5 15.4116.1 17.36 π 18. =三、解答题 19.解:)1(21-=+x x , 3=x .经检验知,3=x 是原方程的解.20.解:(1)如图1;【注:若学生作图没用圆规,所画路线光滑且基本准确即给4分】 (2)∵90π346π180⨯⨯=, ∴点P 经过的路径总长为6 π.21.解:(1)144;(2)如图2;(3)甲校的平均分为8.3分,中位数为7分;由于两校平均分相等,乙校成绩的中位数大于甲 校的中位数,所以从平均分和中位数角度上判断,乙校的成绩较好.(4)因为选8名学生参加市级口语团体赛,甲校得10分的有8人,而乙校得10分的只有5人,所以应选甲校.22.解:(1)设直线DE 的解析式为b kx y +=, ∵点D ,E 的坐标为(0,3)、(6,0),∴ ⎩⎨⎧+==.60,3b k b解得 ⎪⎩⎪⎨⎧=-=.3,21b k ∴ 321+-=x y .∵ 点M 在AB 边上,B (4,2),而四边形OABC 是矩形, ∴ 点M 的纵坐标为2.又 ∵ 点M 在直线321+-=x y 上,∴ 2 = 321+-x .∴ x = 2.∴ M (2,2).(2)∵xm y =(x >0)经过点M (2,2),∴ 4=m .∴x y 4=.又 ∵ 点N 在BC 边上,B (4,2),∴点N 的横坐标为4.∵ 点N 在直线321+-=x y 上, ∴ 1=y .∴ N (4,1). ∵ 当4=x 时,y =4x= 1,∴点N 在函数 xy 4=的图象上. (3)4≤ m ≤8.23.解:(1)4 5 6;(2)不对.∵OP = 2,PQ = 3,OQ = 4,且42≠32 + 22,即OQ 2≠PQ 2 + OP 2, ∴OP 与PQ 不垂直.∴PQ 与⊙O 不相切. (3)① 3;②由①知,在⊙O 上存在点P ,P '到l 的距离为3,此时,OP 将不能再向下转动,如图3.OP 在绕点O 左右摆动过程中所扫过的最大扇形就是P 'OP .连结P 'P ,交OH 于点D .∵PQ ,P 'Q '均与l 垂直,且PQ =P '3Q '=, ∴四边形PQ Q 'P '是矩形.∴OH ⊥P P ',PD =P 'D . 由OP = 2,OD = OH -HD = 1,得∠DOP = 60°. ∴∠PO P ' = 120°.∴ 所求最大圆心角的度数为120°.24.解:(1)AO = BD ,AO ⊥BD ;(2)证明:如图4,过点B 作BE ∥CA 交DO 于E ,∴∠ACO = ∠BEO .又∵AO = OB ,∠AOC = ∠BOE , ∴△AOC ≌ △BOE .∴AC = BE . 又∵∠1 = 45°, ∴∠ACO = ∠BEO = 135°. ∴∠DEB = 45°.∵∠2 = 45°,∴BE = BD ,∠EBD = 90°.∴AC = BD . 延长AC 交DB 的延长线于F ,如图4.∵BE ∥AC ,∴∠AFD = 90°.∴AC ⊥BD .(3)如图5,过点B 作BE ∥CA 交DO 于E ,∴∠BEO = ∠ACO .又∵∠BOE = ∠AOC , ∴△BOE ∽ △AOC .∴AOBO ACBE =.又∵OB = kAO ,由(2)的方法易得 BE = BD .∴k ACBD =.D 图1图4A D OB C21 MNE FA O BC1D 2图5MNE分数图2 l图325.解:(1)y = 2t ;(2)当BP = 1时,有两种情形:①如图6,若点P 从点M 向点B 运动,有 MB = BC 21= 4,MP = MQ = 3,∴PQ = 6.连接EM ,∵△EPQ 是等边三角形,∴EM ⊥PQ .∴33=EM . ∵AB = 33,∴点E 在AD 上.∴△EPQ 与梯形ABCD 重叠部分就是△EPQ ,其面积为39.②若点P 从点B 向点M 运动,由题意得 5=t .PQ = BM + M Q -BP = 8,PC = 7.设PE 与AD 交于点F ,Q E 与AD 或AD 的延长线交于点G ,过点P 作PH ⊥AD 于点H ,则 HP = 33,AH = 1.在Rt △HPF 中,∠HPF = 30°, ∴HF = 3,PF = 6.∴FG = FE = 2.又∵FD = 2, ∴点G 与点D 重合,如图7.此时△EPQ 与梯形ABCD的重叠部分就是梯形FPCG ,其面积为3227.(3)能.4≤t ≤5.26.解:(1)140 57500;(2)w 内 = x (y -20)- 62500 = 1001-x 2+130 x 62500-, w 外 = 1001-x 2+(150a -)x . (3)当x = )1001(2130-⨯-= 6500时,w 内最大;分由题意得 2214()(62500)1300(150)100114()4()100100a ⨯-⨯----=⨯-⨯-, 解得a 1 = 30,a 2 = 270(不合题意,舍去).所以 a = 30.(4)当x = 5000时,w 内 = 337500, w 外 =5000500000a -+.若w 内 < w 外,则a <32.5; 若w 内 = w 外,则a = 32.5; 若w 内 > w 外,则a >32.5.所以,当10≤ a <32.5时,选择在国外销售;当a = 32.5时,在国外和国内销售都一样;当32.5< a ≤40时,选择在国内销售.图7图6。
2010年江苏中考数学试题(含答案)
二0一0年江苏常州市升学统一考试数学试卷说明:1.本试卷共5页,全卷满分120分,考试时间为120分钟。
考生应将答案全部填写在答题卡相应位置上,写在本试卷上无效,考试结束后,请将本试卷和答题卡一并交回,考试时不允许使用计算器。
2.答题前,考生务必将自己的姓名,考试证号填写在试卷上,并填写好答题卡上的考生信息。
3.作图必须用2B 铅笔,并请加黑加粗,描写清楚。
一、选择题(本大题共有8小题,每小题2分,共16分。
在每小题所给的四个选项中,只有一个是正确的)1.用激光测距仪测得之间的距离为14000000米,将14000000用科学记数法表示为A.71410⨯ B. 61410⨯ C.71.410⨯ D.80.1410⨯2.函数2y x=的图像经过的点是 A.(2,1) B.(2,1)- C.(2,4) D.1(,2)2-3.函数13y x =-的自变量x 的取值范围是 A.0x ≠ B.3x > C.3x ≠- D.3x ≠4.如图所示几何体的主视图是5.下列运算错误的是235= B. 236= 623= D.2(2)2= 6.若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为A.外离B.外切C.相交D.内切 7.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资。
今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增加D.平均数和中位数都增加8.如图,一次函数122y x =-+的图像上有两点A 、B ,A 点的横坐标为2,B 点的横坐标为(042)a a a <<≠且,过点A 、B 分别作x 的垂线,垂足为C 、D ,AOC BOD ∆∆、的面积分别为12S S 、,则12S S 、的大小关系是A. 12S S >B. 12S S =C. 12S S <D. 无法确定二、填空题(本大题共有9小题,第9小题4分,其余8小题每小题2分,共20分。
2010年山西省中考数学试题与答案
2010年山西省中考数学试题一、选择题(本大题10个小题,每题2分,共20分.)1.-3的绝对值是( )A .-3B .3C .-13D .132.如图,直线a ∥b ,直线c 分别与a 、b 相交于点A 、B 。
已知∠1=35º, 则∠2的度数为()A .165ºB .155ºC .145ºD .135º3.山西是我国古代文明发祥地之一,其总面积约为16万平方千米,这个数据用科学记数法表示为()A .0.16×106平方千米B .16×104平方千米C .1.6×104平方千米D .1.6×105平方千米4.下列运算正确的是()A .(a -b )2=a 2-b 2B .(-a 2)3=-a 6C .x 2+x 2=x 4D .3a 3·2a 2=6a 65.在R t △ABC 中,∠C =90º,若将各边长度都扩大为原来的2倍,则∠A 的正弦值()A .扩大2倍B .缩小2倍C .扩大4倍D .不变6.估算31-2的值()A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间7.在一个不透明的袋中,装有若干个除颜色不同外其余都相同的球,如果袋中有3个红球且摸到红球的概率为 14,那么袋中球的总个数为() A .15个 B .12个 C .9个 D .3个8.下图是由7个完全相同的小立方块搭成的几何体,那么这个几何体的左视图是()9.现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm .从中任取一根木棒,能组成三角形的个数为()A .1个B .2个C .3个D .4个10.如图,直线y =k x +b 交坐标轴于A (-3,0)、B(0,5)两点,则不等式-k x -b <0的解集为()A .x >-3B .x <-3C .x >3D .x <3第Ⅱ卷选择题(共100分)二、填空题(本大题共8个小题,每小题3分,共24分.把答案写在题中横线上)11.计算:9x 3÷(—3x 2) =______________.12.在R t △ABC 中,∠ACB =90°,D 是AB 的中点,CD =4cm ,则AB =________ cm .13.随意地抛一粒豆子,恰好落在图中的方格中(每个方格除颜外完全一样),那么这粒豆子停在黑色方格中的概率是______________.A B C D A B 2 1a b c(第2题)(第5题) (第10题) +b(第13题) (第15题) (第17题)C图1 图2 B (第18题)14.方程2x +1 -1x -2=0的解为______________. 15.如图,A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上,△ABP 的面积为2,则这个反比例函数的解析式为______________.16.哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1、2、3.将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则弟弟胜;和为偶数,则哥哥胜该游戏对双方______________(填“公平”或“不公平”).17.图1是以AB 为直径的半圆形纸片,AB =6cm ,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 方向平移至扇形O ’A ’C ’ .如图2,其中O ’是OB 的中点.O ’C ’交BC ⌒ 于点F ,则BF ⌒ BF 的长为_______cm .18.如图,在△ABC 中,AB =AC =13,BC =10,D 是AB 的中点,过点D 作DE ⊥AC 于点E ,则DE 的长是______________.三、解答题(本大题共8个小题,共76分.解答应写出文字说明、证明过程或演算步骤)19.(每小题5分,共10分)(1)计算:9 +(-12)-1-2sin45º+(3-2)0 (2)先化简,再求值:(3x x -1 -x x +1)·x 2-12x ,其中x =-3 20.(本题6分)山西民间建筑的门窗图案中,隐含着丰富的数学艺术之美.图1是其中一个代表,该窗格图案是以图2为基本图案经过图形变换得到的.图3是图2放大后的部分,虚线给出了作图提示,请用圆规和直尺画图.(1)根据图2将图3补充完整;(2)在图4的正方形中,用圆弧和线段设计一个美观的轴对称或中心对称图形.(1) 将图3补充完整得3分(画出虚线不扣分)(2) 图略,答案不唯一,只要符合题目要求均得3分21.(本题10分)某课题小组为了解某品牌电动自行车的销售情况,对某专卖店第一季度该品牌A 、B 、C 、D 四种型号的销量做了统计,绘制成如下两幅统计图(均不完整).(1)该店第一季度售出这种品牌的电动自行车共多少辆?(2)把两幅统计图补充完整;(3)若该专卖店计划订购这四款型号电动自行车1800辆,求C 型电动自行车应订购多少辆?60(第21题 图1)60 150 210 120180240辆数B 35% AC 30%D (第21题 图2) A B DE (第22题) O22.(本题8分)如图,四边形ABCD 是平行四边形,以AB 为直径的⊙O 经过点D ,E 是⊙O 上一点,且∠AED =45º.(1)试判断CD 与⊙O 的关系,并说明理由.(2)若⊙O 的半径为3cm ,AE =5 cm .求∠ADE 的正弦值.23.(本题10分)已知二次函数y =x 2-2x -3的图象与x 轴交于A 、B两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1)求点A 、B 、C 、D 的坐标,并在下面直角坐标系中画出该二次函数的大致图象;(2)说出抛物线y =x 2-2x -3可由抛物线y =x 2如何平移得到?(3)求四边形OCDB 的面积.24.(本题8分)某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服.(1)该店订购这两款运动服,共有哪几种方案?(2)若该店以甲款每套400无,乙款每套300元的价格全部出售,哪种方案获利最大?25.(本题10分)如图1,已知正方形ABCD 的边CD 在正方形DEFG 的边D E 上,连接AE 、GC .(1)试猜想AE 与GC 有怎样的位置关系,并证明你的结论.(2)将正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图2,连接AE 和CG 。
2010年湖北省武汉市中考数学试题跟答案
2010年湖北省武汉市中考数学试题亲爱的同学,在你答题前,请认真阅读下面以及“答卷”上的注意事项:1.本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成.全卷共6页,三大题,满分l20分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答卷”相应位置,并在“答卷”背面左上角填写姓名和准考证号后两位.3.答第Ⅰ卷(选择题)时,选出每小题答案后,用2B 铅笔把“答卷”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后。
再选涂其他答案.不得答在“试卷”上.4.第Ⅱ卷(非选择题)用0.5毫米黑色笔迹签字笔书写在“答卷”上,答在“试卷”上无效. 预祝你取得优异成绩!第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑. 1. 有理数-2的相反数是 ( ) A .2 B .-2 C .12 D .-122. 函数1y x =-中自变量x 的取值范围是( )A .x ≥1.B .x ≥-1.C .x ≤1.D .x ≤-1.3. 如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是( )(第3题图)A .x >-1,x >2B .x >-1,x <2C .x <-1, x <2D .x <-1,x >24. 下列说法:①“掷一枚质地均匀的硬币一定是正面朝上”;②“从一副普通扑克牌中任意抽取一张,点数一定是6”.A . ①②都正确.B .只有①正确.C .只有②正确.D .①②都错误5. 2010年上海世博会开园第一个月共售出门票664万张,664万用科学计数法表示为( ) A .664×104 B .66.4×l05 (C)6.64×106 D .0.664×l076. 如图,△ABC 内有一点D ,且DA=DB=DC ,若∠DAB=20°,∠DAC=30°,则∠BDC 的大小是( )(第6题图)A .100°B .80°C .70°D .50°7. 若x 1,x 2是方程x 2=4的两根,则x 1+x 2的值是( ) A .8 B .4 C .2 D .08. 如图所示,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图( )正面A.B.C.D.9.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.(第8题图)从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()(第9题图)A.(13,13)B.(―13,―13)C.(14,14)D.(-14,-14)10.如图,⊙O的直径AB的长为10,弦AC长为6,∠AC'B的平分线交⊙O于D,则CD长为()A.7B.72C.82D.9(第10题图)11.随着经济的发展,人们的生活水平不断提高.下图分别是某景点2007—2009年游客总人数和旅游收入年增长率统计图.已知该景点2008年旅游收入4500万元.(第11题图)下列说法:①三年中该景点2009年旅游收入最高;②与2007年相比,该景点2009年的旅游收入增加[4500×(1+29%)-4500×(1-33%)]万元;③若按2009年游客人数的年增长率计算,2010年该景点游客总人数将达到280255280(1)255-⨯+万人次。
2010年江西省中考数学试题及答案(word版)
AB CD E H第8题输入x 平方 乘以3 减去5 输出 江西省2010中等学校招生考试数学试题一、选择题(本大题共8个小题,每小题3分,共24分)每小题只有一个正确选项 1.计算-2-6的结果是A .-8B .8C .-4D .4 2.计算-(-3a )2的结果是A .-6a 2B .-9a 2C .6a 2D .9a 2 3.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图4.已知等腰三角形的两条边长分别是7和3A .8 B .7 C .4 D .35.不等式组⎩⎨⎧>+-<-1262x x 的解集是A .x >-3B .x >3C .-3<x <3D .无解 6.如图,反比例函数y =4x图象的对称轴的条数是A .0B .1C .2D .37.化简3-3(1-3)的结果是A .-3B .3C .-3D . 38.如图,已知矩形纸片ABCD ,点E 是AB 的中点,点G 是BC 上的一点,∠BEG =60º. 现沿直线E 将纸片折叠,使点B 落在纸片上的点H 处,连接AH ,则与∠BEG 相等的解的个数为A .4B .3C .2D .1二、填空题(本大题共8个小题,每小题3分,共24分)9. 因式分解2a 2-8=___________10.按照下面所示的操作步骤,若输入x 的值为-2,则输出的值为___________11. 选做题(从下面两题中任选一题,如果做了两题的,只按第(1)题评分)(1)如图,从点C 测得树的顶端的仰角为33º,BC =20米,则树高AB ≈___________米(用计算器计算,结果精确到0.1米)(2)计算:sin30º·cos30º-tan30º=___________(结果保留根号).12.一大门的栏杆如图所示,BA 的垂直于地面AE 于A ,CD 平行于地面AE ,则∠ABC +∠BCD =____度. 13.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8A B C D AB C33º第11题xyO第6题元.设购买了甲种票x 张,乙种票y 张,由此可列出方程组:_________________. 14.如图所示,半圆AB 平移到半圆CD 的位置时所扫过的面积为_________________.15.如图,以点P 为圆心的圆弧与x 轴交于A 、B 两点,点P 的坐标为(4,2),点A 的坐标为(2,0)则点B 的坐标为_________________.16.如图,一根直立于水平地面上的木杆AB 在灯光下形成影子,当木杆绕点A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设垂直于地面时的影长为AC (假定AC >AB ),影长的最大值为m ,最小值为n ,那么下列结论:①m >AC ;②m =AC ;③n =AB ;④影子的长度先增大后减小.其中正确结论的序号是(多填或错填的得0分,少填的酌情给分)三、(本大题共3个小题,第17小题6分,第18、19小题各7分,共20分) 17.已知直线经过点(1,2)和点(3,0),求这条直线的解析式. 18,解方程:x -2x +2 +4x 2-4=1.19.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形). (1)求事件“转动一次,得到的数恰好是0”发生的概率; (2)写出此情境下一个..不可能发生的事件; (3)用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.四、(本大题共2个小题,每小题各8分,共16分)20.某校九年级全体500名女生进行仰卧起坐训练,下面两图是随机抽取的若干名女生训练前后“1分钟仰卧起坐”测试的成绩统计图(其中,右下图不完整).A B0 1 -1 xyAB 第15题 ·OP x y A B D C1 -1 1 12 O(1)根据上图提供的信息,补全右上图;(2)根据上图提供的信息判断,下列说法不正确...的是A.训练前各成绩段中人数最多的是第三成绩段B.“33—35”成绩段中,训练前成绩的平均数一定大于训练后成绩的平均数C.训练前后成绩的中位数所落在成绩段由第三成绩到了第四成绩段(3)规定39个以上(含39个)为优秀等级,请根据两次测试成绩,估算该校九年级全体女生优秀等级人数训练后比训练前增加了多少人.21.剃须刀由刀片和刀架组成.某时期,甲、乙两厂家分别生产老式剃须刀(刀片不可更换)和新式剃须刀(刀片可更换).有关销售策略与售价等信息如下表所示:老式剃须刀新式剃须刀刀架刀片售价2.5(元/把) 1(元/把) 0.55(元/片)成本2(元/把) 5(元/把) 0.5(元/片)某段时间内,甲厂家销售了8400把剃须刀,乙厂家销售的刀片数量是刀架数量的50倍,乙厂家获得的利润是甲厂家的两倍,问这段时间内乙厂家销售了多少把刀架?多少片刀片?五、(本大题共2个小题,第22小题8分,第23小题9分,共17分)22.“6”字形图中,FM是大⊙O的直径,BC与大⊙O相切于B,OB与小⊙O相交于A,AD∥BC,CD ∥BH∥FM,DH⊥BH于H,设∠FOB=α,OB=4,BC=6.(1)求证:AD为小⊙O的切线;(2)在图中找出一个..可用α表示的角,并说明你这样表示的理由;(根据所写结果的正确性及所需推理过程的难易程度得分略有差异)(3)当α=30º时,求DH的长(结果保留根号).23.图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2.当伞收紧时,点P 与点A 重合;当伞慢慢撑开时,动点P 由A 向B 移动;当点P 到达点B 时,伞张得最开.已知伞在撑开的过程中,总有PM =PN =CM =CN =6.0分米,CE =CF =18.0分米,BC =2.0分米.设AP =x 分米. (1)求x 的取值范围;(2)若∠CPN =60º,求x 的值;(3)设阳光直射下,伞下的阴影(假定为圆面)面积为y ,求y 关于x 的关系式(结果保留).六、(本大题共2个小题,第24小题9分,第25小题10分,共19分)24.如图,已知经过原点的抛物线y =-2x 2+4x 与x 轴的另一交点为A ,现将它向右平移m (m >0)个单位,所得抛物线与x 轴交于C 、D 两点,与原抛物线交于点P . (1)求点A 的坐标,并判断△PCA 存在时它的形状(不要求说理);(2)在x 轴上是否存在两条相等的线段,若存在,请一一找出,并写出它们的长度(可用含m 的式子表示);若不存在,主说明理由;(3)设△CDP 的面积为S ,求S 关于m 的关系式.25.课题:两个重叠的正多形,其中的一个绕某一顶点旋转所形成的有关问题.实验与论证OAB C DEFH G MxyD A C O P设旋转角∠A 1A 0B 1=α(α<∠A 1A 0 A 2),θ3、θ4、θ5、θ6所表示的角如图所示.图1 图2 图3 图4ααααθ4θ6θ5θ3HHHHB 4A 4B 23345A 5A 4B 3A 3A 3A 3A 22A 2B 2B 2B 1B 1B 1A A 0A 1A A 1A 2B 2A 0B 11(1)用含α的式子表示解的度数:θ3=_______,θ4=_______,θ5=_______;(2)图1—图4中,连接A 0H 时,在不添加其他辅助线的情况下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想设正n 边形A 0A 1 A 2…A n -1与正n 边形A 0B 1 B 2…B n -1重合(其中,A 1与B 1重合),现将正边形A 0B 1B 2…B n -1绕顶点A 0逆时针旋转α(0º<α<180ºn).(3)设θn 与上述“θ3、θ4、…”的意义一样,请直接写出θn 的度数;(4)试猜想在正n 边形的情形下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.江西省2010中等学校招生考试数学试题参考答案及评分意见一、选择题(本大题共8个小题,每小题3分,共24分)每小题只有一个正确选项 1.A 2.B 3.D 4.B 5.B 6.C 7.A 8.B 二、填空题(本大题共8个小题,每小题3分,共24分) 9.2(a +2)(a -2) 10.7 11.(1)13.0 (2) -31212.270 13.⎩⎨⎧=+=+370810,40y x y x 14.6 15.(6,0) 16.①③④说明:(1)第11题(1)题中填成了“13”,不扣分;(2)第16题,填了②的,不得分;未填②的,①、③、④中每填一个得1分. 三、(本大题共3个小题,第17小题6分,第18、19小题各7分,共20分) 17.解:设这条直线的解析式为y =kx +b ,把两点的坐标(1,2),(3,0)代入,得⎩⎨⎧=+=+.03,2b k b k ………………………………2分 解得⎩⎨⎧=-=.3,1b k ………………………………5分所以这条直线的解析式为y =-x +3……6分 18.解:方程两边同乘以x 2-4,得(x -2)2+4= x 2-4…………………………3分 解得x =3……………………………………6分 检验:x =3,x 2-4≠0所以,是原分式方程的解……………………7分19.解:(1)P (所指的数为0)= 13 ; …………………2分(2)(答案不唯一)如:事件“转动一次,得到的数恰好是3” …………………4分或事件“转动两次,第一次得到的数与第二次得到的数之和为2” …………………4分 (3)方法一:画树状图如下:第一次 -1 0 1第二次 -1 0 1 -1 0 1 -1 0 1 ……………6分 所有可能出现的结果共有9种,其中满足条件的结果有5种所以,P (所指的两数的绝对值相等)= 59 ……………7分-1 0 1 -1 (-1, -1) (-1, 0) (-1, 1) 0 (0, -1) (0,0) (0, 1) 1(1, -1)(1,0)(1,1)……………6分所有可能出现的结果共有9种,其中满足条件的结果有5种所以,P (所指的两数的绝对值相等)= 59……………7分20.解:(1)如图所示:第二次第一次························································· 2分 (2)B . ···················································· 3分 (3)依题意知:50050911500502010⨯+-⨯+ =100(人)答:估计该校九年级全体女生训练后优秀等级增加的人数为100人. ·················· 5分 21.解:设这段时间内乙厂家销售了x 把刀架.依题意,得8400)25.2(2)51(50)05.055.0(⨯-⨯=-+•-x x . ················ 3分 解得400=x . ·························· 4分 销售出的刀片数:50×400=20000片刀片.答:这段时间内乙厂家销售了400把刀架,20000片刀片 ······················· 5分说明:列二元一次方程解答的,参照给分. 22.解:(1)证明:∵BC 是大⊙O 的切线,∴∠CBO =90°.∵BC ∥AD , ∴∠BAD =90°.即OA ⊥AD . 又∵点A 在小⊙O 上,∴AD 是小⊙O 的切线. ······························· 2分 (2)∵CD ∥BG ,CB ∥DG ,∴四边形BGDC 是平行四边形. ∴6==BC DG . ··································································· 3分 ∵BH ∥FM ,∴︒=∠=∠30FOB GBO .∴︒=∠60DGH . 又∵BH DH ⊥,∴33660sin =⨯=︒DH . ····································································· 5分 23.解:(1)∵,12,2=+==PN CN AC BC∴10212=-=AB∴AP 的取值范围为:0≤AP ≤10. ················································ 1分 (2)∵,60,︒=∠=CPN PN CN ∴PCN ∆等边三角形. ∴6=CP . ∴6612=-=-=PC AC AP .即当︒=∠60CPN 时,6=x 分米. ··················································· 2分(3)伞张得最开时,点P 与点B 重合. 连接MN ,EF .分别交AC 于H O , ∵CN CM BN BM ===,∴四边形为BNCM 菱形,∴AC BC MN ,⊥是ECF ∠的平分线,1222===BC OC . 在Rt CON ∆中 3516222=-=-=OC CN ON .∵CF CE =,AC 是ECF ∠的平分线, ∴EF AC ⊥.∴CON ∆~CHF ∆. ∴CFCNHF ON =.∴18635=HF 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年中考模拟题数 学 试 卷(三)一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分) 1. -3的相反数是( )A.3 B.31 C.-3 D.-31 2.下列计算正确的是( )A.2a a a +=B.33(2)6a a =C.22(1)1a a -=- D.32a a a ÷=3.如图,将边长为4个单位的等边△ABC 沿边BC 向右平移2个单位得到△DEF ,则四边形ABFD 的周长为( ) A .12 B . 16 C .20 D .24 4.下列命题中,真命题是( ) A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形5.用配方法解方程x 2+x -1=0,配方后所得方程是( ) A .(x -12)2=34 B .(x +12)2=34C .(x +12)2=54D .(x -12)2=546.在半径为1的⊙O 中,弦AB =1,则的长是( )A .π6B .π4C .π3D .π27.估计2009+1的值是( ) A .在42和43之间 B .在43和44之间 C .在44和45之间D .在45和46之间8.已知如图,抛物线y =ax 2+bx +c 与x 轴交于点A(-1,0)和点B ,化简22)()(b c c a -++的结果为 ①c ②b ③ b -a ④ a -b +2c ,其中正确的有( )A .一个B .两个C .三个D .四个 二、填空题(每小题3分,共24分)9.从一副扑克牌(除去大小王)中摸出两张牌都是梅花的概率为 .FE DCB A10.如图,直线y =kx(k >0)与双曲线y=x3交于A (a ,b ), B (c ,d )两点,则3ad -5bc =___________.11. 分解因式:x 3-x y2= .12.如图,四边形ABCD 是平行四边形,E 为BC 边的中点,DE 、AC 相交于点F ,若△CEF 的面积为6,则△ADF 的面积为 . 13. 等腰三角形的腰长为2,腰上的高为1,则它的底角等于 .14.有边长为1的等边三角形卡片若干张,使用这些三角形卡片拼出边长为2、3、4……的等边三角形(如图所示),根据图形推断,每个等边三角形所用的等边三角形所用的卡片数S 与边长n 的关系式是 .15.如果一个三角形的三边长为5、12、13,与其相似的三角形的最长的边为39,那么较大的三角形的周长 ,面积 .16.△ABC 是⊙O 的内接三角形,∠BAC =60°,D 是的中点,AD =a,则四边形ABDC 的面积为 .三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分)17. 32-221+450-2(2006-sin45°)018.已知a =2-3,求代数式1212-+-a a a -aa a a -+-2212的值=_____.19. 如图,在平面直角坐标系中,点A的坐标为(3,-3),点B的坐标为(-1,3),回答下列问题(1)点C的坐标是 .(2)点B关于原点的对称点的坐标是 . (3)△ABC 的面积为 . (4)画出△ABC 关于x轴对称的 △A'B'C'20 .已知: 如图, AB 是⊙O 的直径,⊙O过AC 的中点D , DE 切⊙O于点D , 交BC 于点E . (1)求证: DE ⊥BC ;(2)如果CD =4,CE =3,求⊙O的半径.C四、(每小题10分,共20分)21.初三年(4)班要举行一场毕业联欢会,主持人同时转动下图中的两个转盘(每个转盘分别被四等分和三等分),由一名同学在转动前来判断两个转盘上指针所指的两个数字之和是奇数还是偶数,如果判断错误,他就要为大家表演一个节目;如果判断正确,他可以指派别人替自己表演节目.现在轮到小明来选择,小明不想自己表演,于是他选择了偶数. 小明的选择合理吗?从概率的角度进行分析(要求用树状图或列表方法求解)22.如图,在一块如图所示的三角形余料上裁剪下一个正方形,如果△ABC 为直角三角形,且∠ACB =90°,AC =4,BC =3,正方形的四个顶点D 、E 、F 、G 分别在三角形的三条边上. 求正方形的边长.五、(本题12分)23.已知:如图所示的一张矩形纸片ABCD (AD AB >),将纸片折叠一次,使点A 与C 重合,再展开,折痕EF 交AD 边于E ,交BC 边于F ,分别连结AF 和CE . (1)求证:四边形AFCE 是菱形;(2)若10cm AE =,ABF △的面积为224cm ,求ABF △的周长;(3)在线段AC 上是否存在一点P ,使得2AE 2=AC·AP ?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由.六、(本题12分)请你根据上述内容,解答下列问题:(1)该公司“高级技工”有__________人。
(2)该公司的工资极差是 元(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案 你认为用哪个数据向小张介绍员工的月工资实际水平更合理些。
40人的平均工资,说说你的看法。
七、(本题12分)25.某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元。
(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式。
(2)如果每套定价700元,软件公司售出多少套可以收回成本?(3)某承包商与软件开发公司签订合同,买下公司生产的全部软件,但700元的单价要打折,并且公司仍然要负责安装调试。
如果公司总共可生产该软件1500套,并且公司希望从这个软件项目上获得不少于280000元的利润,最多可以打几折?八(本题14分)26、.如图,抛物线y=x2-4x-1顶点为D,与x轴相交于A、B两点,与y轴相交于点C.(1)求这条抛物线的顶点D的坐标;(2)经过点(0,4)且与x轴平行的直线与抛物线y=x2-4x-1相交于M、N两点(M在N的左侧),以MN为直径作⊙P,过点D作⊙P的切线,切点为E,求点DE的长;(3)上下平移(2)中的直线MN,以MN为直径的⊙P能否与x轴相切?如果能够,求出⊙P的半径;如果不能,请说明理由.2010年中考模拟题(三) 数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.A ; 2.D ; 3.B ; 4.D ; 5.D 6.C ; 7.D ; 8.C 二、填空题(每小题3分,共24分)9.17110.6; 11.x(x +y)(x -y) 12.24; 13.15°或75° 14.S =n 2(n≥2) 15.90,270; 16.243a 三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.解:原式=32-22+202-2×1…………………3分=202…………………6分18. 解:∵a =2-3>0 ∴a -1=1-3<0…………………1分∴原式=)1()1(1)1(22-----a a a a a=a -1+a1…………………6分 当a=2-3时原式=2-3-1+2+3=3…………………2分 19.(1)(-3,-2)…………………2分(2)(1,-3)…………………4分 (3)16…………………6分 (4)图略…………………8分20.证明: (1)连结OD …………………1分∵DE 切⊙O 于点D∴DE ⊥OD, ∴∠ODE =900 …………………2分 又∵AD =DC, AO =OB ∴OD//BC∴∠DEC =∠ODE =900, ∴DE ⊥BC …………………4分 (2)连结BD. …………………5分∵AB 是⊙O 的直径, ∴∠ADB =900 …………………6分 ∴BD ⊥AC, ∴∠BDC =900又∵DE ⊥BC, △RtCDB ∽△RtCED …………………7分∴CE DC DC BC =, ∴BC =3163422==CE DC …………………9分 又∵OD =21BC ∴OD =3831621=⨯, 即⊙O 的半径为38…………………10分四.(每小题10分,共20分)21.解:小明的选择不合理…………………2分;列表得…………6分;共出现12中等可能的结果,其中出现奇数的次数是7次,概率为127,出现偶数的次数为5次,概率为125 ∵125127>,即出现奇数的概率较大 所以小明的选择不合理.…………………10分22.解:作CH ⊥AB 于H ,∵四边形DEFG 为正方形,∴CM ⊥GF 由勾股定理可得AB =5根据三角形的面积不变性可求得CH =512…………………2分设GD =x ∵GF ∥AB∴∠CGF =∠A ,∠CFG =∠B ∴△ABC ∽△GFC∴AB GF CH CM = 即 5512512xx=-…………………6分整理得:12-5x =512x 解得:x =3760…………………9分答:正方形的边长为3760…………………10分 五.23.(1)证明:由题意可知OA =OC ,EF ⊥AO ∵AD ∥BC∴∠AEO =∠CFO ,∠EAO =∠FCO ∴△AOE ≌△COF ∵AE =CE ,又AE ∥CF∴四边形AECF 是平行四边形 ∵AC ⊥EF ∴四边形AEFC 是菱形(2)∵四边形AECF 是菱形 ∴AF =AE =10…………………4分 设AB =a,BF =b,∵△ABF 的面积为24 a 2+b 2=100,ab =48(a +b )2=196 a+b=14或a+b=-14(不合题意,舍去) △ABF 的周长为a+b+10=24…………………8分(3)存在,过点E 作AD 的垂线,交AC 于点P ,点P 就是符合条件的点 证明:∵∠AEP =∠AOE =90°,∠EAO =∠EAP ∴△AOE ∽△AEP ∴AEAO AP AE = ∴ AE 2=AO·AP∵四边形AECF 是菱形,∴AO =21AC ∴AE 2=21AC·AP ∴2AE 2=AC·AP …………………12分 六.24.(1)15…………………2分(2)20050…………………4分(3)员工的说法更合理些。
这组数据的平均数是2026元,中位数是1700元,众数是1600元由于个别较大数据的影响,平均数不能准确地代表平近水平,此时中位数或众数可以较好的反映工资的平均水平,因此员工的说法更合理一些。