2016年中考数学压轴题70题精选(含答案及解析)

合集下载

2016年中考数学分类汇编二次函数压轴题含答案

2016年中考数学分类汇编二次函数压轴题含答案

2016年中考数学与二次函数有关的压轴题纵观2016年全国各省市中考数学试卷其中与二次函数有关的压轴题,其考点涉及:一次函数、二次函数的性质,函数图像上点的坐标与方程的关系;轴对称和等腰三角形的性质;特殊平行四边形性质;图形的旋转变换;相似三角形的性质;锐角三角函数应用;圆的性质;阅读理解,等.数学思想涉及:分类讨论;数形结合;转化,等.现选取部分省市的2016年中考题展示,以飨读者.一、与特殊平行四边形性质的有关综合题【题1】(2016•成都第28题)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.【考点】二次函数综合题.【分析】(1)把点C代入抛物线解析式即可求出a,令y=0,列方程即可求出点A、B坐标.(2)先求出四边形ABCD面积,分两种情形:①当直线l边AD相交与点M1时,根据S=×10=3,求出点M1坐标即可解决问题.②当直线l边BC相交与点M2时,同理可得点M2坐标.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,得到b=k,利用方程组求出点M坐标,求出直线DN解析式,再利用方程组求出点N坐标,列出方程求出k,即可解决问题.【解答】解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x 1=2,x 2=﹣4, ∴A (﹣4,0),B (2,0).(2)∵A (﹣4,0),B (2,0),C (0,﹣),D (﹣1,﹣3)∴S 四边形ABCD =S △ADH +S 梯形OCDH +S △BOC =×3×3+(+3)×1+×2×=10. 从面积分析知,直线l 只能与边AD 或BC 相交,所以有两种情况: ①当直线l 边AD 相交与点M 1时,则S =×10=3,∴×3×(﹣y)=3∴y=﹣2,点M 1(﹣2,﹣2),过点H (﹣1,0)和M 1(﹣2,﹣2)的直线l 的解析式为y =2x +2.②当直线l 边BC 相交与点M 2时,同理可得点M 2(,﹣2),过点H (﹣1,0)和M 2(,﹣2)的直线l 的解析式为y =﹣x ﹣.综上所述:直线l 的函数表达式为y =2x +2或y =﹣x ﹣.(3)设P (x 1,y 1)、Q (x 2,y 2)且过点H (﹣1,0)的直线PQ 的解析式为y =kx +b , ∴﹣k +b =0, ∴b =k , ∴y =kx +k . 由,∴+(﹣k )x ﹣﹣k =0,∴x 1+x 2=﹣2+3k ,y 1+y 2=kx 1+k +kx 2+k =3k 2,∵点M 是线段PQ 的中点,∴由中点坐标公式的点M (k ﹣1, k 2). 假设存在这样的N 点如图,直线DN ∥PQ ,设直线DN 的解析式为y =kx +k ﹣3 由,解得:x 1=﹣1,x 2=3k ﹣1,∴N (3k ﹣1,3k 2﹣3)∵四边形DMPN 是菱形, ∴DN =DM ,∴(3k )2+(3k 2)2=()2+()2,整理得:3k 4﹣k 2﹣4=0, ∵k 2+1>0, ∴3k 2﹣4=0, 解得k =±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).【题2】(2016•泰安第28题)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y 轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE 为其一边,求点M、N的坐标.【考点】此题是二次函数综合题,主要考查了待定系数法求函数关系式,函数极值额确定方法,平行四边形的性质和判定,解本题的关键是建立函数关系式求极值.【分析】(1)设出抛物线解析式,用待定系数法求解即可;(2)先求出直线AB解析式,设出点P坐标(x,﹣x2+4x+5),建立函数关系式S四边形APCD=﹣2x2+10x,根据二次函数求出极值;(3)先判断出△HMN≌△AOE,求出M点的横坐标,从而求出点M,N的坐标.【解答】解:(1)设抛物线解析式为y=a(x﹣2)2+9,∵抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=﹣1,y=﹣(x﹣2)2+9=﹣x2+4x+5,(2)当y=0时,﹣x2+4x+5=0,∴x1=﹣1,x2=5,∴E(﹣1,0),B(5,0),设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=﹣1,n=5,∴直线AB的解析式为y=﹣x+5;设P(x,﹣x2+4x+5),∴D(x,﹣x+5),∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,∵AC=4,∴S四边形APCD=×AC×PD=2(﹣x2+5x)=﹣2x2+10x,∴当x=﹣=时,∴S四边形APCD最大=,(3)如图,过M作MH垂直于对称轴,垂足为H,∵MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,∴M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8),∵A(0,5),E(﹣1,0),∴直线AE解析式为y=5x+5,∵MN∥AE,∴MN的解析式为y=5x+b,∵点N在抛物线对称轴x=2上,∴N(2,10+b),∵AE2=OA2+0E2=26∵MN=AE∴MN2=AE2,∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2∵M点的坐标为M1(1,8)或M2(3,8),∴点M1,M2关于抛物线对称轴x=2对称,∵点N在抛物线对称轴上,∴M1N=M2N,∴1+(b+2)2=26,∴b=3,或b=﹣7,∴10+b=13或10+b=3∴当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3),【点评】此题是二次函数综合题,主要考查了待定系数法求函数关系式,函数极值额确定方法,平行四边形的性质和判定,解本题的关键是建立函数关系式求极值.【题2】(2016•东营第25题)参考答案:【题3】(2016•扬州第28题)如图1,二次函数2y ax bx =+的图像过点A (-1,3),顶点B 的横坐标为1.(1)求这个二次函数的表达式;(2)点P 在该二次函数的图像上,点Q 在x 轴上,若以A 、B 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标;(3)如图3,一次函数y kx =(k >0)的图像与该二次函数的图像交于O 、C 两点,点T 为该二次函数图像上位于直线OC 下方的动点,过点T 作直线TM ⊥OC ,垂足为点M ,且M 在线段OC 上(不与O 、C 重合),过点T 作直线TN ∥y 轴交OC 于点N 。

2016中考数学压轴题解析版

2016中考数学压轴题解析版

上所述,满足条件的点 P 的坐标为(﹣8,﹣15) 、 (2 ,﹣ ) 、 (10,﹣39) .
.此时点 P 的坐标为(2 ,﹣ ) . ,即 m 2﹣7m﹣30=0.
解得 m= ﹣3(舍去)或 m=10 ,此时点 P 的坐标为(10,﹣39) .
6、十套模拟二:
8、山东模拟二:如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A (3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛 物线于点M,设点P的横坐标为t. 2 y x 3 y x 2x 3 (1)分别求出直线AB和这条抛物线的解析式. (2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面 积. (3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四 边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
(3) 存在点 P , 使得以点 P、 A、 N 为顶点的三角形与△MAO 相似. 设P (m, ) .
在 Rt△MAO 中,AO=3MO ,要使两个三角形相似,由题意可知,点 P 不可能在第一象限.
①设点 P 在第二象限时,∵点 P 不可能在直线 MN 上,∴只能 PN=3NM, ∴ ,即 m 2+11m+24=0.解得 m=﹣3(舍去)或 m=﹣8.又﹣3
2
∴AO=1,OC=3, OB=3,P M= x 2 x 3 ,PN =x. ∴S 四边形 ABPC= S AOC + S POB + S POC
2
y M O N
C
第 25 题图 2(备用)
1 1 1 = AO·OC + OB·PM+ OC ·PN 2 2 2 1 1 1 2 = ×1×3+ ×3×( x 2 x 3 )+ ×3×x 2 2 2 3 2 9 = x x6 2 2 3 3 2 75 = (x ) . ………………………8 分 2 2 8

2016中考数学压轴题专项训练有答案

2016中考数学压轴题专项训练有答案

2016中考数学压轴题专项训练有答案2016中考压轴题专项训练训练目标1.熟悉题型结构,辨识题目类型,调用解题方法;2.书写框架明晰,踩点得分(完整、快速、简洁)。

题型结构及解题方法压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力以及对数学模型和套路的调用整合能力。

考查要点常考类型举例题型特征解题方法问题背景研究求坐标或函数解析式,求角度或线段长已知点坐标、解析式或几何图形的部分信息研究坐标、解析式,研究边、角,特殊图形。

模型套路调用求面积、周长的函数关系式,并求最值速度已知,所求关系式和运动时间相关①分段:动点转折分段、图形碰撞分段;②利用动点路程表达线段长;③设计方案表达关系式。

坐标系下,所求关系式和坐标相关①利用坐标及横平竖直线段长;②分类:根据线段表达不同分类;③设计方案表达面积或周长。

求线段和(差)的最值有定点(线)、不变量或不变关系利用几何模型、几何定理求解,如两点之间线段最短、垂线段最短、三角形三边关系等。

套路整合及分类讨论点的存在性点的存在满足某种关系,如满足面积比为9:10①抓定量,找特征;②确定分类;.③根据几何特征或函数特征建等式。

图形的存在性特殊三角形、特殊四边形的存在性①分析动点、定点或不变关系(如平行);②根据特殊图形的判定、性质,确定分类;根据几何特征或函数特征建等式。

三角形相似、全等的存在性①找定点,分析目标三角形边角关系;②根据判定、对应关系确定分类;③根据几何特征建等式求解。

答题规范动作1.试卷上探索思路、在演草纸上演草。

2.合理规划答题卡的答题区域:两栏书写,先左后右。

作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。

3.作答要求:框架明晰,结论突出,过程简洁。

23题作答更加注重结论,不同类型的作答要点:几何推理环节,要突出几何特征及数量关系表达,简化证明过程;面积问题,要突出面积表达的方案和结论;几何最值问题,直接确定最值存在状态,再进行求解;存在性问题,要明确分类,突出总结。

初中数学试卷中考压轴题精选(含详细答案)

初中数学试卷中考压轴题精选(含详细答案)

精品基础教育教学资料,仅供参考,需要可下载使用!一.解答题(共30小题)1.(顺义区)如图,直线l1:y=kx+b平行于直线y=x﹣1,且与直线l2:相交于点P(﹣1,0).(1)求直线l1、l2的解析式;(2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,B n,A n,…①求点B1,B2,A1,A2的坐标;②请你通过归纳得出点A n、B n的坐标;并求当动点C到达A n处时,运动的总路径的长?2.(莆田)如图1,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=.(1)求直线AC的解析式;(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)抛物线y=﹣x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴的正半轴上),且△ODE沿DE折叠后点O落在边AB上O′处.3.(资阳)已知Z市某种生活必需品的年需求量y1(万件)、供应量y2(万件)与价格x (元/件)在一定范围内分别近似满足下列函数关系式:y1=﹣4x+190,y2=5x﹣170.当y1=y2时,称该商品的价格为稳定价格,需求量为稳定需求量;当y1<y2时,称该商品的供求关系为供过于求;当y1>y2时,称该商品的供求关系为供不应求.(1)求该商品的稳定价格和稳定需求量;(2)当价格为45(元/件)时,该商品的供求关系如何?为什么?4.(哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.5.(桂林)如图已知直线L:y=x+3,它与x轴、y轴的交点分别为A、B两点.(1)求点A、点B的坐标.(2)设F为x轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与x轴相切于点F(不写作法,保留作图痕迹).(3)设(2)中所作的⊙P的圆心坐标为P(x,y),求y关于x的函数关系式.(4)是否存在这样的⊙P,既与x轴相切又与直线L相切于点B?若存在,求出圆心P的坐标;若不存在,请说明理由.6.(防城港)如图,在平面直角坐标系,直线y=﹣(x﹣6)与x轴、y轴分别相交于A、D两点,点B在y轴上,现将△AOB沿AB翻折180°,使点O刚好落在直线AD的点C处.(1)求BD的长;(2)设点N是线段AD上的一个动点(与点A、D不重合),S△NBD=S1,S△NOA=S2,当点N运动到什么位置时,S1•S2的值最大,并求出此时点N的坐标;(3)在y轴上是否存在点M,使△MAC为直角三角形?若存在,请写出所有符合条件的点M的坐标,并选择一个写出其求解过程;若不存在,简述理由.7.(大兴安岭)直线y=kx+b(k≠0)与坐标轴分别交于A、B两点,OA、OB的长分别是方程x2﹣14x+48=0的两根(OA>OB),动点P从O点出发,沿路线O⇒B⇒A以每秒1个单位长度的速度运动,到达A点时运动停止.(1)直接写出A、B两点的坐标;(2)设点P的运动时间为t(秒),△OPA的面积为S,求S与t之间的函数关系式(不必写出自变量的取值范围);(3)当S=12时,直接写出点P的坐标,此时,在坐标轴上是否存在点M,使以O、A、P、M为顶点的四边形是梯形?若存在,请直接写出点M的坐标;若不存在,请说明理由.8.(云南)如图,在直角坐标系中,半圆直径为OC,半圆圆心D的坐标为(0,2),四边形OABC是矩形,点A的坐标为(6,0).(1)若过点P(2,0)且与半圆D相切于点F的切线分别与y轴和BC边交于点H与点E,求切线PF所在直线的解析式;(2)若过点A和点B的切线分别与半圆相切于点P1和P2(点P1、P2与点O、C不重合),请求P1、P2点的坐标并说明理由.(注:第(2)问可利用备用图作答).9.(厦门)如图,在直角梯形OABD中,DB∥OA,∠OAB=90°,点O为坐标原点,点A 在x轴的正半轴上,对角线OB,AD相交于点M.OA=2,AB=2,BM:MO=1:2.(1)求OB和OM的值;(2)求直线OD所对应的函数关系式;(3)已知点P在线段OB上(P不与点O,B重合),经过点A和点P的直线交梯形OABD 的边于点E(E异于点A),设OP=t,梯形OABD被夹在∠OAE内的部分的面积为S,求S关于t的函数关系式.10.(天门)如图①,在平面直角坐标系中,A点坐标为(3,0),B点坐标为(0,4).动点M从点O出发,沿OA方向以每秒1个单位长度的速度向终点A运动;同时,动点N从点A出发沿AB方向以每秒个单位长度的速度向终点B运动.设运动了x秒.(1)点N的坐标为(_________,_________);(用含x的代数式表示)(2)当x为何值时,△AMN为等腰三角形;(3)如图②,连接ON得△OMN,△OMN可能为正三角形吗?若不能,点M的运动速度不变,试改变点N的运动速度,使△OMN为正三角形,并求出点N的运动速度.11.(乐山)如图,在平面直角坐标系中,△ABC的边AB在x轴上,且OA>OB,以AB 为直径的圆过点C.若点C的坐标为(0,2),AB=5,A,B两点的横坐标x A,x B是关于x的方程x2﹣(m+2)x+n﹣1=0的两根.(1)求m,n的值;(2)若∠ACB平分线所在的直线l交x轴于点D,试求直线l对应的一次函数解析式;(3)过点D任作一直线l′分别交射线CA,CB(点C除外)于点M,N.则的是否为定值?若是,求出该定值;若不是,请说明理由.12.(黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC 的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的;(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;(4)试探究:当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD 为矩形?并求出此时动点P的坐标.13.(遵义)如图,已知一次函数的图象与x轴,y轴分别相交于A,B两点,点C在AB上以每秒1个单位的速度从点B向点A运动,同时点D在线段AO上以同样的速度从点A向点O运动,运动时间用t(单位:秒)表示.(1)求AB的长;(2)当t为何值时,△ACD与△AOB相似并直接写出此时点C的坐标;(3)△ACD的面积是否有最大值?若有,此时t为何值;若没有,请说明理由.14.(株洲)已知Rt△ABC,∠ACB=90°,AC=4,BC=3,CD⊥AB于点D,以D为坐标原点,CD所在直线为y轴建立如图所示平面直角坐标系.(1)求A,B,C三点的坐标;(2)若⊙O1,⊙O2分别为△ACD,△BCD的内切圆,求直线O1O2的解析式;(3)若直线O1O2分别交AC,BC于点M,N,判断CM与CN的大小关系,并证明你的结论.15.(镇江)探索、研究:下图是按照一定的规律画出的一列“树型”图,下表的n表示“树型”图的序号,a n表示第n个“树型”图中“树枝”的个数.图:表:n 1 2 3 4 …a n 1 3 7 15 …(1)根据“图”、“表”可以归纳出a n关于n的关系式为_________.若直线l1经过点(a1,a2)、(a2,a3),求直线l1对应的函数关系式,并说明对任意的正整数n,点(a n,a n+1)都在直线l1上.(2)设直线l2:y=﹣x+4与x轴相交于点A,与直线l1相交于点M,双曲线y=(x>0)经过点M,且与直线l2相交于另一点N.①求点N的坐标,并在如图所示的直角坐标系中画出双曲线及直线l1、l2.②设H为双曲线在点M、N之间的部分(不包括点M、N),P为H上一个动点,点P的横坐标为t,直线MP与x轴相交于点Q,当t为何值时,△MQA的面积等于△PMA的面积的2倍又是否存在t的值,使得△PMA的面积等于1?若存在,求出t的值;若不存在,请说明理由.③在y轴上是否存在点G,使得△GMN的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.16.(咸宁)如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.操作:将矩形ABCD折叠,使点A落在边DC上.探究:(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.①求b与k的函数关系式;②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.17.(厦门)已知点P(m,n)(m>0)在直线y=x+b(0<b<3)上,点A、B在x轴上(点A在点B的左边),线段AB的长度为b,设△PAB的面积为S,且S=b2+b.(1)若b=,求S的值;(2)若S=4,求n的值;(3)若直线y=x+b(0<b<3)与y轴交于点C,△PAB是等腰三角形,当CA∥PB时,求b的值.18.(乌鲁木齐)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,6),点B坐标为,BC∥y轴且与x轴交于点C,直线OB与直线AC相交于点P.(1)求点P的坐标;(2)若以点O为圆心,OP的长为半径作⊙O(如图2),求证:直线AC与⊙O相切于点P;(3)过点B作BD∥x轴与y轴相交于点D,以点O为圆心,r为半径作⊙O,使点D在⊙O 内,点C在⊙O外;以点B为圆心,R为半径作⊙B,若⊙O与⊙B相切,试分别求出r,R 的取值范围.19.(随州)如图,直角梯形ABCD的腰BC所在直线的解析式为y=﹣x﹣6,点A 与坐标原点O重合,点D的坐标为(0,﹣4),将直角梯形ABCD绕点O顺时针旋转180°,得到直角梯形OEFG(如图1).(1)直接写出E,F两点的坐标及直角梯形OEFG的腰EF所在直线的解析式;(2)将图1中的直角梯形ABCD先沿x轴向右平移到点A与点E重合的位置,再让直角顶点A紧贴着EF,向上平移直角梯形ABCD(即梯形ABCD向上移动时,总保持着AB∥FG),当点A与点F重合时,梯形ABCD停止移动.观察得知:在梯形ABCD移动过程中,其腰BC始终经过坐标原点O.(如图2)①设点A的坐标为(a,b),梯形ABCD与梯形OEFG重合部分的面积为S,试求a与何值时,S的值恰好等于梯形OEFG面积的;②当点A在EF上滑动时,设AD与x轴的交点为M,试问:在y轴上是否存在点P,使得△PAM是底角为30°的等腰三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.(利用图3进行探索)20.(邵阳)如图,直线y=﹣x+2与x轴,y轴分别相交于点A,B.将△AOB绕点O 按顺时针方向旋转α角(0°<α≤360°),可得△COD.(1)求点A,B的坐标;(2)当点D落在直线AB上时,直线CD与OA相交于点E,△COD和△AOB的重叠部分为△ODE(图①).求证:△ODE∽△ABO;(3)除了(2)中的情况外,是否还存在△COD和△AOB的重叠部分与△AOB相似,若存在,请指出旋转角α的度数;若不存在,请说明理由;(4)当α=30°时(图②),CD与OA,AB分别相交于点P,M,OD与AB相交于点N,试求△COD与△AOB的重叠部分(即四边形OPMN)的面积.21.(韶关)如图,在平面直角坐标系中,四边形OABC是矩形,OA=4,AB=2,直线与坐标轴交于D、E.设M是AB的中点,P是线段DE上的动点.(1)求M、D两点的坐标;(2)当P在什么位置时,PA=PB求出此时P点的坐标;(3)过P作PH⊥BC,垂足为H,当以PM为直径的⊙F与BC相切于点N时,求梯形PMBH 的面积.22.(衢州)如图,点B1(1,y1),B2(2,y2),B3(3,y3)…,B n(n,y n)(n是正整数)依次为一次函数y=x+的图象上的点,点A1(x1,0),A2(x2,0),A3(x3,0),…,A n(x n,0)(n是正整数)依次是x轴正半轴上的点,已知x1=a(0<a<1),△A1B1A2,△A2B2A3,△A3B3A4…△A n B n A n+1分别是以B1,B2,B3,…,B n为顶点的等腰三角形.(1)写出B2,B n两点的坐标;(2)求x2,x3(用含a的代数式表示);分析图形中各等腰三角形底边长度之间的关系,写出你认为成立的两个结论;(3)当a(0<a<1)变化时,在上述所有的等腰三角形中,是否存在直角三角形?若存在,求出相应的a的值;若不存在,请说明理由.23.(黔东南州)某商厦试销一种成本为50元/件的商品,规定试销时的销售单价不低于成本,又不高于80元/件,试销中销售量y(件)与销售单价x(元/件)的关系可近似的看作一次函数(如图).(1)求y与x的关系式;(2)设商厦获得的毛利润(毛利润=销售额﹣成本)为s(元),则销售单价定为多少时,该商厦获利最大,最大利润是多少?此时的销售量是多少件?24.(牡丹江)如图,在平面直角坐标系中,已知点A(﹣3,6),点B,点C分别在x轴的负半轴和正半轴上,OB,OC的长分别是方程x2﹣4x+3=0的两根(OB<OC).(1)求B,C两点的坐标;(2)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O、P、C、Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由;(3)若平面内有M(1,﹣2),D为线段OC上一点,且满足∠DMC=∠BAC,∠MCD=45°,求直线AD的解析式.25.(梅州)如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D→C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.(1)求y与x的函数关系式,并求出x,y的取值范围;(2)当PQ∥AC时,求x,y的值;(3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x的值;若不能,说明理由.26.(聊城)某市为了进一步改善居民的生活环境,园林处决定增加公园A和公园B的绿化面积.已知公园A,B分别有如图1,图2所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608m2和1200m2出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表:公园A 公园B路程(千米)运费单价(元)路程(千米)运费单价(元)甲地30 0.25 32 0.25乙地22 0.3 30 0.3(注:运费单价指将每平方米草皮运送1千米所需的人民币)(1)分别求出公园A,B需铺设草坪的面积;(结果精确到1m2)(2)请设计出总运费最省的草皮运送方案,并说明理由.27.(佳木斯)如图,在平面直角坐标系中,已知点A(﹣3,6),点B,点C分别在x轴的负半轴和正半轴上,OB,OC的长分别是方程x2﹣4x+3=0的两根(OB<OC).(1)求点B,点C的坐标;(2)若平面内有M(1,﹣2),D为线段OC上一点,且满足∠DMC=∠BAC,求直线MD 的解析式;(3)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O,P,C,Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.28.(济南)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D 的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.29.(黑龙江)如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA <OB)的长分别是关于x的一元二次方程x2﹣4mx+m2+2=0的两根,C(0,3),且S△ABC=6 (1)求∠ABC的度数;(2)过点C作CD⊥AC交x轴于点D,求点D的坐标;(3)在第(2)问的条件下,y轴上是否存在点P,使∠PBA=∠ACB?若存在,请直接写出直线PD的解析式;若不存在,请说明理由.30.(哈尔滨)如图,梯形ABCD在平面直角坐标系中,上底AD平行于x轴,下底BC 交y轴于点E,点C(4,﹣2),点D(1,2),BC=9,sin∠ABC=.(1)求直线AB的解析式;(2)若点H的坐标为(﹣1,﹣1),动点G从B出发,以1个单位/秒的速度沿着BC边向C点运动(点G可以与点B或点C重合),求△HGE的面积S(S≠0)随动点G的运动时间t′秒变化的函数关系式(写出自变量t′的取值范围);(3)在(2)的条件下,当秒时,点G停止运动,此时直线GH与y轴交于点N.另一动点P开始从B出发,以1个单位/秒的速度沿着梯形的各边运动一周,即由B到A,然后由A到D,再由D到C,最后由C回到B(点P可以与梯形的各顶点重合).设动点P 的运动时间为t秒,点M为直线HE上任意一点(点M不与点H重合),在点P的整个运动过程中,求出所有能使∠PHM与∠HNE相等的t的值.答案与评分标准一.解答题(共30小题)1.(顺义区)如图,直线l1:y=kx+b平行于直线y=x﹣1,且与直线l2:相交于点P(﹣1,0).(1)求直线l1、l2的解析式;(2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,B n,A n,…①求点B1,B2,A1,A2的坐标;②请你通过归纳得出点A n、B n的坐标;并求当动点C到达A n处时,运动的总路径的长?考点:一次函数综合题。

2016年广东省中考数学压轴题及答案

2016年广东省中考数学压轴题及答案

2016年广东省中考数学压轴题1.某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶成本50元/千克,在第一个月的试销时间内发现,销量w(kg)与销售单价x(元/kg)满足关系式:w=﹣2x+240.(1)设该绿茶的月销售利润为y(元),求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,y的值最大?(销售利润=单价×销售量﹣成本﹣投资)(2)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?2.如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:(指坡面的铅直高度与水平宽度的比),且AB=20m.身高为1。

7m的小明站在大堤A点,测得髙压电线杆顶端点D 的仰角为30°.已知地面CB宽30m,求髙压电线杆CD的髙度(结果保留三个有效数字,≈1.732).3.如图,矩形OABC在平面直角坐标系中,并且OA、OC的长满足:|OA﹣2|+(OC﹣6)2=0.(1)求A、B、C三点的坐标.(2)把△ABC沿AC对折,点B落在点B1处,AB1与x轴交于点D,求直线BB1的解析式.(3)在直线AC上是否存在点P使PB1+PD的值最小?若存在,请找出点P的位置,并求出PB1+PD的最小值;若不存在,请说明理由.(4)在直线AC上是否存在点P使|PD﹣PB|的值最大?若存在,请找出点P的位置,并求出|PD﹣PB|最大值.4.如图,抛物线y=ax 2+bx+1经过点(2,6),且与直线y=x+1相交于A ,B 两点,点A 在y 轴上,过点B 作BC ⊥x 轴,垂足为点C (4,0).(1)求抛物线的解析式;(2)若P 是直线AB 上方该抛物线上的一个动点,过点P 作PD ⊥x 轴于点D ,交AB 于点E ,求线段PE 的最大值;(3)在(2)的条件,设PC 与AB 相交于点Q,当线段PC 与BE 相互平分时,请求出点Q 的坐标.5.(本题满分9分)如图,已知直线x y 21=与双曲线xk y =交于A 、B 两点, 点B 的坐标为(-4,—2),C 为第一象限内双曲线xk y =上一点,且点C 在 直线x y 21=的上方. (1)求双曲线的函数解析式;(2)若△AOC 的面积为6,求点C 的坐标.y xO B A C第5题图参考答案:1。

2016年中考数学压轴题及分类汇编解读

2016年中考数学压轴题及分类汇编解读

2016中考数学压轴题:函数相似三角形问题(一) 例1直线113y x=-+分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.(1) 写出点A、B、C、D的坐标;(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“11闸北25”,拖动点Q在直线BG上运动,可以体验到,△ABQ的两条直角边的比为1∶3共有四种情况,点B上、下各有两种.思路点拨1.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角.2.用待定系数法求抛物线的解析式,用配方法求顶点坐标.3.第(3)题判断∠ABQ=90°是解题的前提.4.△ABQ 与△COD 相似,按照直角边的比分两种情况,每种情况又按照点Q 与点B 的位置关系分上下两种情形,点Q 共有4个.满分解答(1)A (3,0),B (0,1),C (0,3),D (-1,0).(2)因为抛物线y =ax 2+bx +c 经过A (3,0)、C (0,3)、D (-1,0) 三点,所以930,3,0.a b c c a b c ++=⎧⎪=⎨⎪-+=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为y =-x 2+2x +3=-(x -1)2+4,顶点G 的坐标为(1,4). (3)如图2,直线BG 的解析式为y =3x +1,直线CD 的解析式为y =3x +3,因此CD //BG .因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB ⊥CD .因此AB ⊥BG ,即∠ABQ =90°.因为点Q 在直线BG 上,设点Q 的坐标为(x ,3x +1),那么22(3)10BQ x x x =+=±. Rt △COD 的两条直角边的比为1∶3,如果Rt △ABQ 与Rt △COD 相似,存在两种情况:①当3BQ BA =时,10310x ±=.解得3x =±.所以1(3,10)Q ,2(3,8)Q --.②当13BQ BA =时,101310x ±=.解得13x =±.所以31(,2)3Q ,41(,0)3Q -.图2 图3考点伸展第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB ⊥BG ;二是BQ ==.我们换个思路解答第(3)题:如图3,作GH ⊥y 轴,QN ⊥y 轴,垂足分别为H 、N .通过证明△AOB ≌△BHG ,根据全等三角形的对应角相等,可以证明∠ABG =90°. 在Rt △BGH 中,sin 1∠=cos 1∠=①当3BQ BA=时,BQ =.在Rt △BQN 中,sin 13QN BQ =⋅∠=,cos 19BN BQ =⋅∠=.当Q 在B 上方时,1(3,10)Q ;当Q 在B 下方时,2(3,8)Q --.②当13BQ BA =时,BQ =31(,2)3Q ,41(,0)3Q -.例2Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)ky k x=≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系;(2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式;(3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“11杨浦24”,拖动点A 在x 轴上运动,可以体验到,直线AB 保持斜率不变,n 始终等于m 的2倍,双击按钮“面积BDE =2”,可以看到,点E 正好在BD 的垂直平分线上,FD //x 轴.拖动点P 在射线FD 上运动,可以体验到,△AEO 与△EFP 相似存在两种情况.思路点拨1.探求m 与n 的数量关系,用m 表示点B 、D 、E 的坐标,是解题的突破口. 2.第(2)题留给第(3)题的隐含条件是FD //x 轴.3.如果△AEO 与△EFP 相似,因为夹角相等,根据对应边成比例,分两种情况.满分解答(1)如图1,因为点D (4,m )、E (2,n )在反比例函数ky x=的图像上,所以4,2.m k n k =⎧⎨=⎩ 整理,得n =2m . (2)如图2,过点E 作EH ⊥BC ,垂足为H .在Rt △BEH 中,tan ∠BEH =tan ∠A =12,EH =2,所以BH =1.因此D (4,m ),E (2,2m ),B (4,2m +1). 已知△BDE 的面积为2,所以11(1)2222BD EH m ⋅=+⨯=.解得m =1.因此D (4,1),E (2,2),B (4,3).因为点D(4,1)在反比例函数kyx=的图像上,所以k=4.因此反比例函数的解析式为4yx =.设直线AB的解析式为y=kx+b,代入B(4,3)、E(2,2),得34,22.k bk b=+⎧⎨=+⎩解得12k=,1 b=.因此直线AB的函数解析式为112y x=+.图2 图3 图4(3)如图3,因为直线112y x=+与y轴交于点F(0,1),点D的坐标为(4,1),所以FD// x轴,∠EFP=∠EAO.因此△AEO与△EFP相似存在两种情况:①如图3,当EA EFAO FP=时,2552FP=.解得FP=1.此时点P的坐标为(1,1).②如图4,当EA FPAO EF=时,2525=.解得FP=5.此时点P的坐标为(5,1).考点伸展本题的题设部分有条件“Rt△ABC在直角坐标系内的位置如图1所示”,如果没有这个条件限制,保持其他条件不变,那么还有如图5的情况:第(1)题的结论m与n的数量关系不变.第(2)题反比例函数的解析式为12yx=-,直线AB为172y x=-.第(3)题FD不再与x轴平行,△AEO与△EFP也不可能相似.图52016中考数学压轴题函数相似三角形问题(二) 例3如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2动感体验请打开几何画板文件名“10义乌24”,拖动点I上下运动,观察图形和图像,可以体验到,x2-x1随S的增大而减小.双击按钮“第(3)题”,拖动点Q在DM上运动,可以体验到,如果∠GAF=∠GQE,那么△GAF与△GQE相似.思路点拨1.第(2)题用含S的代数式表示x2-x1,我们反其道而行之,用x1,x2表示S.再注意平移过程中梯形的高保持不变,即y2-y1=3.通过代数变形就可以了.2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.3.第(3)题的示意图,不变的关系是:直线AB与x轴的夹角不变,直线AB与抛物线的对称轴的夹角不变.变化的直线PQ的斜率,因此假设直线PQ与AB的交点G 在x轴的下方,或者假设交点G在x轴的上方.满分解答(1)抛物线的对称轴为直线1x =,解析式为21184y x x=-,顶点为M (1,18-).(2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=.当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3).(3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF . 因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD .由于3tan 4GAF ∠=,tan 5DQ t PQD QP t ∠==-,所以345t t =-.解得207t =.图3 图4考点伸展第(3)题是否存在点G 在x 轴上方的情况?如图4,假如存在,说理过程相同,求得的t 的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.例4如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上. (1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.图1动感体验请打开几何画板文件名“10宝山24”,拖动点A ′向右平移,可以体验到,平移5个单位后,四边形A A ′B ′B 为菱形.再拖动点D 在x 轴上运动,可以体验到,△B ′CD 与△ABC 相似有两种情况.思路点拨1.点A 与点B 的坐标在3个题目中处处用到,各具特色.第(1)题用在待定系数法中;第(2)题用来计算平移的距离;第(3)题用来求点B ′ 的坐标、AC 和B ′C 的长.2.抛物线左右平移,变化的是对称轴,开口和形状都不变.3.探求△ABC 与△B ′CD 相似,根据菱形的性质,∠BAC =∠CB ′D ,因此按照夹角的两边对应成比例,分两种情况讨论.满分解答(1) 因为点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上,所以444,20.m m n m m n -+=⎧⎨++=⎩ 解得43m =-,4n =. (2)如图2,由点A (-2,4) 和点B (1,0),可得AB =5.因为四边形A A ′B ′B 为菱形,所以A A ′=B ′B = AB =5.因为438342+--=x x y ()2416133x =-++,所以原抛物线的对称轴x =-1向右平移5个单位后,对应的直线为x =4.因此平移后的抛物线的解析式为()3164342,+--=x y .图2(3) 由点A (-2,4) 和点B′(6,0),可得A B′=45.如图2,由AM//CN,可得''''B N B CB M B A=,即2845=.解得'5B C=.所以35AC=.根据菱形的性质,在△ABC与△B′CD中,∠BAC=∠CB′D.①如图3,当''AB B CAC B D=时,535=,解得'3B D=.此时OD=3,点D的坐标为(3,0).②如图4,当''AB B DAC B C=时,355=,解得5'3B D=.此时OD=133,点D的坐标为(133,0).图3 图4考点伸展在本题情境下,我们还可以探求△B′CD与△AB B′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.我们也可以讨论△B′CD与△C B B′相似,这两个三角形有一组公共角∠B,根据对应边成比例,分两种情况计算.2016中考数学压轴题函数相似三角形问题(三) 例5如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.,图1动感体验请打开几何画板文件名“09临沂26”,拖动点P 在抛物线上运动,可以体验到,△PAM 的形状在变化,分别双击按钮“P 在B 左侧”、“ P 在x 轴上方”和“P 在A 右侧”,可以显示△PAM 与△OAC 相似的三个情景.双击按钮“第(3)题”, 拖动点D 在x 轴上方的抛物线上运动,观察△DCA 的形状和面积随D 变化的图象,可以体验到,E 是AC 的中点时,△DCA 的面积最大.思路点拨1.已知抛物线与x 轴的两个交点,用待定系数法求解析式时,设交点式比较简便. 2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程. 4.把△DCA 可以分割为共底的两个三角形,高的和等于OA .满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4.如果2==CO AO PM AM ,那么24)4)(1(21=----x x x .解得5=x 不合题意.如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x .此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM .解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4.解方程24)4)(1(21=---xx x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4 (3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=. 因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m . 当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6考点伸展第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S . 由于225212-+-=m m n ,所以m m S 42+-=.例6如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域; (2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图备用图动感体验请打开几何画板文件名“09闸北25”,拖动点D可以在射线BA上运动.双击按钮“第(2)题”,拖动点D可以体验到两圆可以外切一次,内切两次.双击按钮“第(3)题”,再分别双击按钮“DE为腰”和“DE为底边”,可以体验到,△DEF为等腰三角形.思路点拨1.先解读背景图,△ABC是等腰三角形,那么第(3)题中符合条件的△DEF也是等腰三角形.2.用含有x的式子表示BD、DE、MN是解答第(2)题的先决条件,注意点E的位置不同,DE、MN表示的形式分两种情况.3.求两圆相切的问题时,先罗列三要素,再列方程,最后检验方程的解的位置是否符合题意.4.第(3)题按照DE为腰和底边两种情况分类讨论,运用典型题目的结论可以帮助我们轻松解题.满分解答(1)如图2,作BH⊥AC,垂足为点H.在Rt△ABH中,AB=5,cosA=310 AHAB=,所以AH=32=12AC.所以BH垂直平分AC,△ABC为等腰三角形,AB=CB=5.因为DE//BC,所以AB ACDB EC=,即53y x=.于是得到53y x=,(0x>).(2)如图3,图4,因为DE//BC,所以DE AEBC AC=,MN ANBC AC=,即|3|53DE x-=,1|3|253xMN-=.因此5|3|3xDE-=,圆心距5|6|6xMN-=.图2 图3 图4 在⊙M中,115226Mr BD y x===,在⊙N中,1122Nr CE x==.①当两圆外切时,5162x x+5|6|6x-=.解得3013x=或者10x=-.如图5,符合题意的解为3013x=,此时5(3)15313xDE-==.②当两圆内切时,5162x x-5|6|6x-=.当x<6时,解得307x=,如图6,此时E在CA的延长线上,5(3)1537xDE-==;当x>6时,解得10x=,如图7,此时E在CA的延长线上,5(3)3533xDE-==.图5 图6 图7 (3)因为△ABC是等腰三角形,因此当△ABC与△DEF相似时,△DEF也是等腰三角形.如图8,当D 、E 、F 为△ABC 的三边的中点时,DE 为等腰三角形DEF 的腰,符合题意,此时BF =2.5.根据对称性,当F 在BC 边上的高的垂足时,也符合题意,此时BF =4.1.如图9,当DE 为等腰三角形DEF 的底边时,四边形DECF 是平行四边形,此时12534BF =.图8 图9 图10 图11考点伸展第(3)题的情景是一道典型题,如图10,如图11,AH 是△ABC 的高,D 、E 、F 为△ABC 的三边的中点,那么四边形DEHF 是等腰梯形.例 7如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA ⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.图1动感体验请打开几何画板文件名“08杭州24”,拖动点A 在y 轴上运动,可以体验到,AQ 与BC 保持平行,OA ∶OB 与OA ∶OB ′保持3∶2.双击按钮“t =3”,“t =0.6”,“t =-0.6”,“t =-3”,抛物线正好经过点B (或B ′).思路点拨1.数形结合思想,把OC OB OA ⋅=2转化为212t x x =⋅.2.如果AQ ∥BC ,那么以OA 、AQ 为邻边的矩形是正方形,数形结合得到t =b . 3.分类讨论tan ∠ABO =23,按照A 、B 、C 的位置关系分为四种情况.A 在y 轴正半轴时,分为B 、C 在y 轴同侧和两侧两种情况;A 在y 轴负半轴时,分为B 、C 在y 轴同侧和两侧两种情况.满分解答(1)因为平移2tx y -=的图象得到的抛物线F 的顶点为Q (t ,b ),所以抛物线F 对应的解析式为b t x t y +--=2)(.因为抛物线与x 轴有两个交点,因此0>b t .令0=y ,得-=t OB t b,+=t OC tb . 所以-=⋅t OC OB (|||||tb)( +t t b)|-=2|t 22|OA t tb ==.即22bt t t-=±.所以当32t b =时,存在抛物线F 使得||||||2OC OB OA ⋅=. (2)因为AQ //BC ,所以t =b ,于是抛物线F 为t t x t y +--=2)(.解得1,121+=-=t x t x .①当0>t 时,由||||OC OB <,得)0,1(-t B .如图2,当01>-t 时,由=∠ABO tan 23=||||OB OA =1-t t ,解得3=t .此时二次函数的解析式为241832-+-=x x y .如图3,当01<-t 时,由=∠ABO tan 23=||||OB OA =1+-t t ,解得=t 53.此时二次函数的解析式为-=y 532x +2518x +12548.图2 图3②如图4,如图5,当0<t 时,由||||OC OB <,将t -代t ,可得=t 53-,3-=t .此时二次函数的解析式为=y 532x +2518x -12548或241832++=x x y .图4 图5考点伸展第(2)题还可以这样分类讨论:因为AQ //BC ,所以t =b ,于是抛物线F 为2()y t x t t =--+.由3tan 2OA ABO OB ∠==,得23OB OA =. ①把2(,0)3B t 代入2()y t x t t =--+,得3t =±(如图2,图5). ②把2(,0)3B t -代入2()y t x t t =--+,得35t =±(如图3,图4).2016中考数学压轴题函数等腰三角形问题(一)例1如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示);(2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2动感体验请打开几何画板文件名“11湖州24”,拖动点P 在OC 上运动,可以体验到,△APD 的三个顶点有四次机会可以落在对边的垂直平分线上.双击按钮“第(3)题”, 拖动点P 由O 向C 运动,可以体验到,点H 在以OM 为直径的圆上运动.双击按钮“第(2)题”可以切换.思路点拨1.用含m 的代数式表示表示△APD 的三边长,为解等腰三角形做好准备. 2.探求△APD 是等腰三角形,分三种情况列方程求解.3.猜想点H 的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt △OHM 的斜边长OM 是定值,以OM 为直径的圆过点H 、C .满分解答(1)因为PC //DB ,所以1CP PM MC BD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-. ①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3).②当PA =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H 5.考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单: ①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以12PC MB CM BA ==.因此12PC =,32m =. ②如图4,当PA =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43m =.第(2)题的思路是这样的:如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.图6 图7例2如图1,已知一次函数y =-x +7与正比例函数43y x 的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“11盐城28”,拖动点R由B向O运动,从图像中可以看到,△APR的面积有一个时刻等于8.观察△APQ,可以体验到,P在OC上时,只存在AP=AQ的情况;P在CA上时,有三个时刻,△APQ是等腰三角形.思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR的面积等于8,按照点P的位置分两种情况讨论.事实上,P在CA上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ,按照点P的位置分两种情况讨论,点P的每一种位置又要讨论三种情况.满分解答(1)解方程组7,4,3y xy x=-+⎧⎪⎨=⎪⎩得3,4.xy=⎧⎨=⎩所以点A的坐标是(3,4).令70y x=-+=,得7x=.所以点B的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8APR ACP POR CORA S S S S =--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠PAQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1. 我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-.如图5,当AP =AQ 时,解方程520733t t -=-,得418t =.如图6,当QP =QA 时,点Q 在PA 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当PA =PQ 时,那么12cos AQA AP ∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =.综上所述,t=1或418或5或22643时,△APQ是等腰三角形.图5 图6 图7考点伸展当P在CA上,QP=QA时,也可以用2cosAP AQ A=⋅∠来求解.2016中考数学压轴题函数等腰三角形问题(二) 例3如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1动感体验请打开几何画板文件名“10闸北25”,拖动点M在CA上运动,可以看到△BNP 与△MNA的形状随M的运动而改变.双击按钮“△BNP∽△MNA”,可以体验到,此刻两个三角形都是直角三角形.分别双击按钮“BP=BN,N在AB上”、“NB=NP”和“BP=BN,N在AB的延长线上”,可以准确显示等腰三角形BNP的三种情况.思路点拨1.第(1)题求证MN∶NP的值要根据点N的位置分两种情况.这个结论为后面的计算提供了方便.2.第(2)题探求相似的两个三角形有一组邻补角,通过说理知道这两个三角形是直角三角形时才可能相似.3.第(3)题探求等腰三角形,要两级(两层)分类,先按照点N的位置分类,再按照顶角的顶点分类.注意当N在AB的延长线上时,钝角等腰三角形只有一种情况.4.探求等腰三角形BNP ,N 在AB 上时,∠B 是确定的,把夹∠B 的两边的长先表示出来,再分类计算.满分解答(1)如图2,图3,作NQ ⊥x 轴,垂足为Q .设点M 、N 的运动时间为t 秒. 在Rt △ANQ 中,AN =5t ,NQ =4t ,AQ =3t .在图2中,QO =6-3t ,MQ =10-5t ,所以MN ∶NP =MQ ∶QO =5∶3. 在图3中,QO =3t -6,MQ =5t -10,所以MN ∶NP =MQ ∶QO =5∶3. (2)因为△BNP 与△MNA 有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP ∽△MNA ,在Rt △AMN 中,35AN AM =,所以531025t t =-.解得3031t =.此时CM 6031=.图2 图3 图4(3)如图5,图6,图7中,OP MP QN MN =,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-.(Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=.(Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=. (Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB =PN 的情况.②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7考点伸展如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些.例4如图1,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12ym,要使△DEF为等腰三角形,m的值应为多少?图1动感体验请打开几何画板文件名“10南通27”,拖动点E在BC上运动,观察y随x变化的函数图像,可以体验到,y是x的二次函数,抛物线的开口向下.对照图形和图像,可以看到,当E是BC的中点时,y取得最大值.双击按钮“m=8”,拖动E到BC的中点,可以体验到,点F是AB的四等分点.拖动点A可以改变m的值,再拖动图像中标签为“y随x”的点到射线y=x上,从图形中可以看到,此时△DCE≌△EBF.思路点拨1.证明△DCE∽△EBF,根据相似三角形的对应边成比例可以得到y关于x的函数关系式.2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF为等腰三角形,那么得到x=y;一段是计算,化简消去m,得到关于x的一元二次方程,解出x的值;第三段是把前两段结合,代入求出对应的m的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EBCE BF=,即8m x x y -=.整理,得y 关于x 的函数关系为218y x x m m=-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2.(3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m =,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如: 由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+,那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.2016中考数学压轴题函数相似三角形问题(三)例5已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由; (3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1动感体验请打开几何画板文件名“09重庆26”,拖动点G 在OC 上运动,可以体验到,△DCG 与△DEF 保持全等,双击按钮“M 的横坐标为1.2”,可以看到,EF =2,GO =1.拖动点P 在AB 上运动的过程中,可以体验到,存在三个时刻,△PCG 可以成为等腰三角形.思路点拨1.用待定系数法求抛物线的解析式,这个解析式在第(2)、(3)题的计算中要用到.2.过点M 作MN ⊥AB ,根据对应线段成比例可以求FA 的长. 3.将∠EDC 绕点D 旋转的过程中,△DCG 与△DEF 保持全等.4.第(3)题反客为主,分三种情况讨论△PCG 为等腰三角形,根据点P 的位置确定点Q 的位置,再计算点Q 的坐标.满分解答(1)由于OD 平分∠AOC ,所以点D 的坐标为(2,2),因此BC =AD =1. 由于△BCD ≌△ADE ,所以BD =AE =1,因此点E 的坐标为(0,1).设过E 、D 、C 三点的抛物线的解析式为c bx ax y ++=2,那么⎪⎩⎪⎨⎧=++=++=.039,224,1c b a c b a c 解得65-=a ,613=b 1=c .因此过E 、D 、C 三点的抛物线的解析式为1613652++-=x x y .(2)把56=x 代入1613652++-=xx y ,求得512=y .所以点M 的坐标为⎪⎭⎫⎝⎛512,56. 如图2,过点M 作MN ⊥AB ,垂足为N ,那么DADNFA MN =,即25622512-=-FA .解得1=FA . 因为∠EDC 绕点D 旋转的过程中,△DCG ≌△DEF ,所以CG =EF =2.因此GO =1,EF =2GO .(3)在第(2)中,GC =2.设点Q 的坐标为⎪⎭⎫ ⎝⎛++-161365,2x x x . ①如图3,当CP =CG =2时,点P 与点B (3,2)重合,△PCG 是等腰直角三角形.此时G Q Q x x y -=,因此11613652-=++-x x x 。

2016年中考数学压轴题及解析分类汇编

中考数学压轴题及解析分类汇编2016年中考数学压轴题及解析分类汇编2016中考数学压轴:相似三角形问题2016中考数学压轴题函数相似三角形问题(一)2016中考数学压轴题函数相似三角形问题(二)2016中考数学压轴题函数相似三角形问题(三)2016中考数学压轴:等腰三角形问题2016中考数学压轴题函数等腰三角形问题(一)2016中考数学压轴题函数等腰三角形问题(二)2016中考数学压轴题函数等腰三角形问题(三)2016中考数学压轴:直角三角形问题2016中考数学压轴题函数直角三角形问题(一)2016中考数学压轴题函数直角三角形问题(二)2016中考数学压轴题函数直角三角形问题(三)2016中考数学压轴:平行四边形问题2016中考数学压轴题函数平行四边形问题(一)2016中考数学压轴题函数平行四边形问题(二) 2016中考数学压轴题函数平行四边形问题(三) 2016中考数学压轴:梯形问题2016中考数学压轴题函数梯形问题(一)2016中考数学压轴题函数梯形问题(二)2016中考数学压轴题函数梯形问题(三)2016中考数学压轴:面积问题2016中考数学压轴题函数面积问题(一)2016中考数学压轴题函数面积问题(二)2016中考数学压轴题函数面积问题(三)2016中考数学压轴题:函数相似三角形问题(一)例1、直线113y x=-+分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.(1) 写出点A、B、C、D的坐标;(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.。

细数2016十省中考压轴题(含解析)

细数2016十省中考压轴题(含解析)
2016中考已经结束,对于那些中考数学压轴题是怎样的呢?今天小编为大家整理了有关2016十省中考压轴题的相关内容,以供同学们阅读。

1、2016年四川省巴中市中考数学第31题2、2016年浙江省丽水市中考数学第24题3、2016年福建省福州市中考数学第27题4、2016年广东省广州市中考数学第27题5、2016年山东省滨州市中考数学第24题6、2016年山东省德州市中考数学第24题7、2016年四川省南充市2016年中考数学第25题8、2016年湖北省黄石市2016年中考数学第25题9、2016年浙江省衢州市2016年中考数学第24题10、2016年四川省内江市2016年中考数学第28题今天有关2016十省中考压轴题的内容就介绍到这里了。

2016年中考数学压轴题精选及详解

2016年中考数学压轴题精选解析Word 版中考压轴题分类专题三——抛物线中的等腰三角形基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对称轴上),若ABP ∆为等腰三角形,求点P 坐标。

分两大类进行讨论: (1)AB 为底时(即PA PB =):点P 在AB 的垂直平分线上。

利用中点公式求出AB 的中点M ;利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出AB 的垂直平分线的斜率k ;利用中点M 与斜率k 求出AB 的垂直平分线的解析式;将AB 的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。

(2)AB 为腰时,分两类讨论:①以A ∠为顶角时(即AP AB =):点P 在以A 为圆心以AB 为半径的圆上。

②以B ∠为顶角时(即BP BA =):点P 在以B 为圆心以AB 为半径的圆上。

利用圆的一般方程列出A (或B )的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。

中考压轴题分类专题四——抛物线中的直角三角形基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对称轴上),若ABP ∆为直角三角形,求点P 坐标。

分两大类进行讨论:(1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。

利用中点公式求出AB 的中点M ;利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。

(2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥):利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出PA (或PB )的斜率k ;进而求出PA (或PB )的解析式;将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。

2016年中考数学选择压轴题专题练习及解析

2016年中考数学《选择压轴题》专题练习1. (2015年广东3分)如图,已知正ΔABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设ΔEFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【 】A. B.C. D.2. (2015年广东深圳3分)如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①ADG FDG ∆∆≌;②2GB AG =;③GDE BEF ∆∆∽;④725BEF S ∆=.在以上4个结论中,正确的有【 】 A. 1 B. 2 C.3D. 43. (2015年广东汕尾4分)对于二次函数2 2y x x =-+有下列四个结论:①它的对称轴是直线1x =;②设22111222 2 2y x x y x x =-+=-+,,则当21>x x 时,有21>y y ;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<<2x 时,>0y .其中正确结论的个数为【 】 A. 1 B.2 C. 3 D. 44. (2015年广东广州3分)已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为【 】A. 10B. 14C. 10或14D. 8或10 5. (2015年广东佛山3分)下列给出5个命题:①对角线互相垂直且相等的四边形是正方形;②六边形的内角和等于720°; ③相等的圆心角所对的弧相等; ④顺次连结菱形各边中点所得的四边形是矩形;⑤三角形的内心到三角形三个顶点的距离相等.其中正确命题的个数是【 】A. 2个B. 3个C. 4个D. 5个 6. (2015年广东梅州3分)对于二次函数2 2y x x =-+有下列四个结论:①它的对称轴是直线1x =;②设22111222 2 2y x x y x x =-+=-+,,则当21>x x 时,有21>y y ;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<<2x 时,>0y .其中正确结论的个数为【 】 A. 1 B.2 C. 3 D. 47. (2015年浙江衢州)如图,已知等腰,ABC AB BC ∆= ,以AB 为直径的圆交AC 于点D ,过点D 的O e 的切线交BC 于点E ,若5,4CD CE == ,则O e 的半径是【 】 A. 3 B. 4 C.256 D. 2588. (2015年浙江绍兴4分)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走. 如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走【 】 A. ②号棒 B. ⑦号棒 C. ⑧号棒 D. ⑩号棒 9. (2015年浙江台州4分)(2015年浙江义乌3分)某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人” ;乙说:“两项都参加的人数小于5人” .对于甲、乙两人的说法,有下列四个命题,其中真命题的是【 】A.若甲对,则乙对B.若乙对,则甲对C.若乙错,则甲错D.若甲粗,则乙对10. (2015年浙江温州4分)如图,C 是以AB 为直径的半圆O 上一点,连结AC ,BC ,分别以AC ,BC 为边向外作正方形ACDE ,BCFG ,DE ,FG ,»»AC BC,的中点分别是M ,N ,P ,Q. 若MP+NQ=14,AC+BC=18,则AB 的长是【 】 A.29 B.790C. 13D. 16 11. (2015年浙江舟山3分)(2015年浙江嘉兴4分) 如图,抛物线221y x x m =-+++交x 轴于点A (a ,0)和B (b , 0),交y 轴于点C ,抛物线的顶点为D .下列四个命题:①当>0x 时,>0y ;②若1a =-,则4b =;③抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x +,则12>y y ;④点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m =时,四边形EDFG周长的最小值为. 其中真命题的序号是【 】A. ①B. ②C. ③D. ④ 12.(2015年浙江杭州3分)设二次函数11212())0(()y a x x x x a x x =--≠≠,的图象与一次函数()20y dx e d =+≠的图象交于点1(0)x ,,若函数21y y y =+的图象与x 轴仅有一个交点,则【 】A. 12()a x x d -=;B. 21()a x x d -=; C. 212()a x x d -=;D. ()212a x x d +=(第11题) (第13题) (第14题) 13.(2015年浙江湖州3分)如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点A 是函数1y x=(x <0)图象上一点,AO 的延长线交函数2k y x=(x >0,k 是不等于0的常数)的图象于点C ,点A 关于y 轴的对称点为A ′,点C 关于x 轴的对称点为C ′,连接CC ′,交x 轴于点B ,连结AB ,AA ′,A ′C ′,若ΔABC 的面积等于6,则由线段AC ,CC ′,C ′A ′,A ′A 所围成的图形的面积等于【 】【来A.8B.10C.D.14.(2015年浙江金华3分)如图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则EFGH的值是【 】【 A.26B. 2C. 3D. 215.(2015年浙江丽水3分)如图,在方格纸中,线段a ,b ,c ,d 的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有【 】A. 3种B. 6种C. 8种D. 12种(第15题) (第16题)16.(2015年浙江宁波4分) 如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形. 若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形标号为【 】A. ①②B. ②③C. ①③D. ①②③ 17. (2015年安徽4分)如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是【 】A.B .C .D .18. (2015年北京3分)一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成. 为记录寻宝者的进行路线,在BC 的中点M 处放置了一台定位仪器,设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为【 】A 、A→O→B B 、B→A→CB 、C 、B→O→CD 、C→B→O19. (2015年上海4分)如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是【 】A 、AD BD =B 、OD CD =C 、CAD CBD ∠=∠ D 、OCA OCB ∠=∠ 20. (2015年重庆A4分)如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A ,B 两点,则菱形ABCD 的面积为【 】A. 2 B. 4C.D.(第19题) (第20题) (第21题)21. (2015年重庆B4分)如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,∠BOC =60°,顶点C 的坐标为(m,,反比例函数ky x=的图像与菱形对角线AO 交于D 点,连接BD ,当BD ⊥x 轴时,k 的值是【 】A.B. -C.D. -22. (2015年江苏苏州3分)如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为【 】A .4km B.(2+km C. D.(4km(第22题) (第23题)23. (2015年江苏无锡3分)如图,Rt △ABC 中,∠ACB =90º,AC =3,BC =4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为【 】A.35 B. 45 C. 23D. 24. (2015年福建福州3分)已知一个函数图像经过()()1422-- ,,,两点,在自变量x 的某个取值范围内,都有函数值y 随x 的增大而减小,则符合上述条件的函数可能是【 】A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数25. (2015年福建泉州3分)在同一平面直角坐标系中,函数2y ax bx =+与y bx a =+的图象可能是【 】A.B.C.D.26. (2015年福建厦门4分)如图,在ΔABC 中,AB =AC ,D 是边BC 的中点,一个圆过点A ,交边AB 于点E ,且与BC 相切于点D ,则该圆的圆心是【 】A .线段AE 的中垂线与线段AC 的中垂线的交点B .线段AB 的中垂线与线段AC 的中垂线的交点 C .线段AE 的中垂线与线段BC 的中垂线的交点D .线段AB 的中垂线与线段BC 的中垂线的交点(第26题) (第28题)27. (2015年内蒙古呼和浩特3分)函数22x xy x+=的图象为【 】A.B.C.D.28. (2015年江苏徐州3分)若函数y kx b =-的图像如图所示,则关于x 的不等式()3>0kx b --的解集为【 】A. <2xB. >2xC. <5xD. >5x 29.(2015年福建漳州4分)在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是【 】A. 4,2,1B. 2,1,4C. 1,4,2D. 2,4,1 30. (2015年湖南株洲3分)有两个一元二次方程:M :20ax bx c ++=N :20cx bx a ++=,其中0a c +=,以下列四个结论中,错误的是【 】A 、如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;B 、如果方程M 有两根符号相同,那么方程N 的两根符号也相同;C 、如果5是方程M 的一个根,那么15是方程N 的一个根; D 、如果方程M 和方程N 有一个相同的根,那么这个根必是1x =.31. (2015年江西南昌3分)如图,在ΔABC 中,AB =BC =4,AO =BO ,P 是射线CO 上的一个动点,∠AOC =60°,则当ΔP AB 为直角三角形时,AP 的长为 ▲ .(第31题) (第32题)32. (2015年江西3分)已知抛物线()20y ax bx c a ++>=过()()2023- ,,,两点,那么抛物线的对称轴【 】A. 只能是x =-1B. 可能是y 轴C. 在y 轴右侧且在直线x =2的左侧D. 在y 轴左侧 33. (2015年四川成都3分)如图,正六边形ABCDEF 内接于圆O ,半径为4,则这个正六边形的边心距OM 和弧BC 的长分别为【 】A.2、3πB. 32、π C. 3、23π D. 32、43π34. (2015年四川宜宾3分)在平面直角坐标系中,任意两点()()1122,,,A x y B x y 规定运算:①()1212,⊕=++A B x x y y ;②1212=⊗+A B x x y y ;③当x 1= x 2且y 1= y 2时,A =B.有下列四个命题: (1)若A (1,2),B (2,–1),则(),31⊕= A B ,0=⊗A B ;(2)若⊕=⊕A B B C ,则A =C ; (3)若=⊗⊗A B B C ,则A =C ; (4)对任意点A 、B 、C ,均有()()⊕⊕=⊕⊕A B C A B C 成立.其中正确命题的个数为【 】A. 1个B. 2个C. 3个D. 4个 35. (2015年四川资阳3分)如图,在ΔABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①AB =②当点E 与点B 重合时,12MH =;③AF BE EF +=;④MG•MH =12,其中正确结论为【 】A. ①②③B. ①③④C. ①②④D. ①②③④ 36. (2015年四川泸州3分)在平面直角坐标系中,点A ,B ,动点C 在x 轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为【 】A.2B.3C.4D.537. (2015年广东茂名3分)张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时加工这种零件x 个,则下面列出的方程正确的是【 】A. 1201005x x =- B. 1201005x x =-C.1201005x x=+ D. 1201005x x =+(第35题) (第38题)38. (2015年广东珠海3分)如图,在⊙O 中,直径CD 垂直于弦AB ,若∠C=25°,则∠BOD 的度数是( ) A. 25° B. 30° C. 40° D. 50°39. (2015年贵州铜仁4分)如图,在平面直角坐标系系中,直线12y k x =+与x 轴交于点A ,与y 轴交于点C ,与反比例函数2k y x=在第一象限内的图象交于点B ,连接BO .若113OBCS tan BOC =∠=V ,,则k 2的值是【 】A. 3-B. 1C. 2D. 340. (2015年河南3分)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是【 】A. (2014,0)B. (2015,-1)C. (2015,1)D. (2016,0)41. (2015年湖北黄冈3分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象是【 】A. B. C. D. 42. (2015年湖北黄石3分)如图是自行车骑行训练场地的一部分,半圆O 的直径AB =100,在半圆弧上有一运动员C 从B 点沿半圆周匀速运动到M (最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A 点停止.设运动时间为t ,点B 到直线OC 的距离为d ,则下列图象能大致刻画d 与t 之间的关系是【 】A.B.C.D.43. (2015年江苏连云港3分)如图是本地区一种产品30天的销售图象,图①是产品日销售量y (单位:件)与时间t (单位;天)的函数关系,图②是一件产品的销售利润z (单位:元)与时间t (单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是【 】A. 第24天的销售量为200件;B. 第10天销售一件产品的利润是15元;C. 第12天与第30天这两天的日销售利润相等;D. 第30天的日销售利润是750元44. (2015年江苏南京2分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,则DM 的长为【 】 A.133 B. 92C.D.(第44题) (第45题)45. (2015年江苏泰州3分)如图,ΔABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交 AC 、AD 、AB 于点E 、O 、F ,则图中全等的三角形的对数是【 】 A. 1对 B. 2对 C. 3对 D. 4对 46. (2015年陕西3分)下列关于二次函数()2211y ax ax a =-+>的图象与x 轴交点的判断,正确的是【 】A. 没有交点B. 只有一个交点,且它位于y 轴右侧C. 有两个交点,且它们均位于y 轴左侧D. 有两个交点,且它们均位于y 轴右侧 47. (梅州市2015年3分)对于二次函数x x y 22+-=.有下列四个结论:①它的对称轴是直线1=x;②设12112x x y +-=,22222x x y +-=,则当12x x >时,有12y y >;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当20<<x 时,0>y .其中正确的结论的个数为( )A .1B .2C .3D .4 48. (3分)(2015•济南)如图,抛物线y=﹣2x 2+8x ﹣6与x 轴交于点A 、B ,把抛物线在x 轴及其上方的部分记作C 1,将C 1向右平移得C 2,C 2与x 轴交于点B ,D .若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2 D.﹣3<m<﹣49.(2015•菏泽3分)如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CB D.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)50.(2015年四川省自贡市3分)如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的小值是()A、2102-B、6 C、2132-D、4参考答案1.【答案】D.【考点】由实际问题列函数关系式(几何问题);二次函数的性质和图象.【分析】根据题意,有AE=BF=CG,且正三角形ABC的边长为2,∴2===-BE CF AG x. ∴△AEG、△BEF、△CFG三个三角形全等.在△AEG 中,2==-,A E x A G x ,∴()1224=⋅⋅⋅=-V AEGS AE AG sinA x x .∴()2332442=-=-=-+V V ABC AEGy S S x x x x .∴其图象为开口向上的二次函数.故选D. 2. 【答案】C.【考点】折叠问题;正方形的性质;全等、相似三角形的判定和性质;勾股定理.【分析】由折叠和正方形的性质可知,0,90D F D C D A D F C C ==∠=∠=, ∴090DFG A ∠=∠=.又∵DG DG =,∴()ADG FDG HL ∆∆≌. 故结论①正确.∵正方形ABCD的边长为12,BE =EC ,∴6BE EC EF ===.设AG FG x ==,则6,12E G x B G x =+=-,在Rt BEG ∆中,由勾股定理,得222EG BE BG =+,即()()222662x x +=+-,解得,4x =.∴4,8AG GF BG === .∴2GB AG =. 故结论②正确.∵6BE EF ==,∴BEF ∆是等腰三角形.易知GDE ∆不是等腰三角形,∴GDE ∆和BEF ∆不相似. 故结论③错误. ∵11682422BEG S BE BG ∆=⋅⋅=⋅⋅=,∴67224105BEFBEG EF S S EG ∆∆=⋅=⋅=.故结论④正确. 综上所述,4个结论中,正确的有①②④三个.故选C. 3. 【答案】C.【考点】二次函数的图象和性质.【分析】∵()22211y x x x =-+=--+,∴二次函数图象的对称轴是直线1x =.故结论①正确.∴当1x ≥时,y 随x 的增大而减小,此时,当21>x x 时,有21<y y .故结论②错误.∵2 20y x x =-+=的解为120,2x x == ,∴二次函数x 轴的两个交点是(0,0)和(2,0) .故结论③正确.∵二次函数图象与x 轴的两个交点是(0,0)和(2,0),且有最大值1,∴当0<<2x 时,>0y .故结论④正确. 综上所述,正确结论有①③④三个.故选C. 4. 【答案】B.【考点】一元二次方程的解和解一元二次方程;确定三角形的条件.【分析】∵2是关于x 的方程2230x mx m -+=的一个根,∴4430m m -+=,解得4m =. ∴方程为28120x x -+=,解得122,6x x == .∵这个方程的两个根恰好是等腰三角形ABC 的两条边长, ∴根据三角形三边关系,只能是6,6,2.∴三角形ABC 的周长为14.故选B.5.【答案】A.【考点】命题和定理;正方形的判定;多边形内角和定理;圆周角定理;三角形中位线定理;菱形的性质;矩形的判定;三角形的内心性质.【分析】根据相关知识对各选项进行分析,判作出断: ①对角线互相垂直且相等的平行四边形才是正方形,命题不正确.②根据多边形内角和公式,得六边形的内角和等于()62180720-⨯︒=︒,命题正确.③同圆或等圆满中,相等的圆心角所对的弧才相等,命题不正确.④根据三角形中位线定理、菱形的性质和矩形的判定可知:顺次连结菱形各边中点所得的四边形是矩形,命题正确. ⑤三角形的内心到三角形三边的距离相等,命题不正确.其中正确命题的个数是2个.故选A.6. 【答案】C.【考点】二次函数的图象和性质.【分析】∵()22211y x x x =-+=--+,∴二次函数图象的对称轴是直线1x =.故结论①正确. ∴当1x ≥时,y 随x 的增大而减小,此时,当21>x x 时,有21<y y .故结论②错误.∵220y x x =-+=的解为120,2x x == ,∴二次函数图象与x 轴的两个交点是(0,0)和(2,0) .故结论③正确.∵二次函数图象与x 轴的两个交点是(0,0)和(2,0),且有最大值1,∴当0<<2x 时,>0y .故结论④正确.综上所述,正确结论有①③④三个.故选C. 7. 【答案】D .【考点】等腰三角形的性质;切线的性质;平行的判定和性质;矩形的判定和性质;勾股定理;方程思想的应用. 【分析】如答图,连接OD ,过点B 作BF OD ⊥于点F , ∵AB BC =,∴A C ∠=∠.∵AO DO =,∴A ADO ∠=∠.∴C ADO ∠=∠.∴//OD BC .∵DE 是O e 的切线,∴DE OD ⊥.∴DE BC ⊥. ∴90CED ∠=︒,且四边形DEBF 是矩形. ∵5,4CD CE == ,∴由勾股定理,得3DE =. 设O e 的半径是x , 则(),3,244OB x BF OF x BE x x x ===-=--=- .∴由勾股定理,得222OB OF BF =+,即()22234x x =+-,解得258x =.∴O e 的半径是258.故选D . 8. 【答案】D.【考点】探索规律题(图形变化类).【分析】当一根棒条没有被其它棒条压着时,就可以把它往上拿走. 如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒,故选D.9. 【答案】B.【考点】逻辑判断推理题型问题;真假命题的判定. 【分析】针对逻辑判断问题逐一分析作出判断:A.若甲对,即只参加一项的人数大于14人,等价于等于15或16或17或18或19人,则两项都参加的人数为5或4或3或2或1人,故乙不对;B.若乙对,即两项都参加的人数小于5人,等价于等于4或3或2或1人,则只参加一项的人数为等于16或17或18或19人,故甲对;C.若乙错,即两项都参加的人数大于或等于5人,则只参加一项的人数小于或等于15人,故甲可能对可能错;D.若甲粗,即只参加一项的人数\小于或等于14人,则两项都参加的人数大于或等于6人,故乙错.综上所述,四个命题中,其中真命题是“若乙对,则甲对”. 故选B.10. 【答案】C.【考点】正方形的性质;垂径定理;梯形的中位线定理;方程思想、转换思想和整体思想的应用.【分析】如答图,连接OP 、OQ ,∵DE ,FG ,»»AC BC,的中点分别是M ,N ,P ,Q , ∴点O 、P 、M 三点共线,点O 、Q 、N 三点共线. ∵ACDE ,BCFG 是正方形, ∴AE=CD=AC ,BG=CF=BC.设AB=2r ,则,OM MP r ON NQ r =+=+ . ∵点O 、M 分别是AB 、ED 的中点, ∴OM是梯形ABDE的中位线.∴()()()1112222OM AE BD AE CD BC AC BC =+=++=+,即()122M P r A CB C +=+.同理,得()122NQ r BC AC +=+.两式相加,得()322MP NQ r AC BC ++=+.∵MP+NQ=14,AC+BC=18,∴3142182132r r +=⨯⇒=.故选C. 11. 【答案】C.【考点】真假命题的判断;二次函数的图象和性质;曲线上点的坐标与方程的关系;轴对称的应用(最短线路问题);勾股定理.【分析】根据二次函数的图象和性质对各结论进行分析作出判断:①从图象可知当>>0x b 时,<0y ,故命题“当>0x 时,>0y ”不是真命题;②∵抛物线221y x x m =-+++的对称轴为212x =-=-,点A 和B 关于轴对称,∴若1a =-,则3b =,故命题“若1a =-,则4b =”不是真命题;③∵故抛物线上两点P (1x ,1y )和Q (2x ,2y )有12<1<x x ,且12>2x x +,∴211>1x x --,又∵抛物线221y x x m =-+++的对称轴为1x =,∴12>y y ,故命题“抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x +,则12>y y ” 是真命题;④如答图,作点E 关于x 轴的对称点M ,作点D 关于y 轴的对称点N ,连接MN ,ME 和ND 的延长线交于点P ,则MN 与x 轴和y 轴的交点G ,F 即为使四边形EDFG 周长最小的点.2∵2m =, ∴223y x x =-++的顶点D 的坐标为(1,4),点C 的坐标为(0,3).∵点C 关于抛物线对称轴的对称点为E ,∴点E 的坐标为(2,3).∴点M 的坐标为()2,3- ,点N 的坐标为()1,4- ,点P 的坐标为(2,4).∴DE MN ==∴当2m =时,四边形EDFG 周长的最小值为DE MN +=故命题“点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m =时,四边形EDFG 周长的最小值为 不是真命题. 综上所述,真命题的序号是③.故选C.12. 【答案】B.【考点】一次函数与二次函数综合问题;曲线上点的坐标与方程的关系.【分析】∵一次函数()20y dx e d =+≠的图象经过点1(0)x ,,∴110dx e e dx =+⇒=-.∴()211y dx dx d x x =-=-.∴()()[]2112112()()()y y y a x x x x d x x x x a x x d =+=--+-=--+.又∵二次函数112()()(0)y ax x x x a x x =--≠≠,的图象与一次函数()20y dx e d =+≠的图象交于点1(0)x ,,函数21y y y =+的图象与x 轴仅有一个交点,∴函数21y y y =+是二次函数,且它的顶点在x 轴上,即()2211y y y a x x =+=-.∴()[]()()212121()()x x a x x d a x x a x x d a x x --+=-⇒-+=-.. 令1x x =,得()1211()a x x d a x x -+=-,即1221()0()0a xx d ax x d -+=⇒--=.故选B. 13. 【答案】B.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;轴对称的性质;特殊元素法和转换思想的应用. 【分析】如答图,连接A ′C , ∵点A 是函数1y x= (x <0)图象上一点,∴不妨取点A ()1,1-- . ∴直线AB :y x =.∵点C 在直线AB 上,∴设点C (),x x .∵△ABC 的面积等于6,∴()1162x x ⋅⋅+=,解得123,4x x ==- (舍去).∴点C ()3,3 .∵点A 关于y 轴的对称点为A ′,点C 关于x 轴的对称点为C ′,∴点A ′()1,1- ,点C ′()3,3- .∴由线段AC ,CC ′,C ′A ′,A ′A 所围成的图形的面积等于'''1124621022AA C CA C S S ∆∆+=⨯⨯+⨯⨯=.故选B.14. 【答案】C.【考点】正方形和等边三角形的性质;圆周角定理;锐角三角函数定义;特殊角的三角函数值;等腰直角三角形的判定和性质,特殊元素法的应用.【分析】如答图,连接AC,EC ,AC 与EF 交于点M .则根据对称性质,AC 经过圆心O ,∴AC 垂直 平分EF ,01EAC FAC EAF 302∠=∠=∠=.不妨设正方形ABCD 的边长为2,则A C =∵AC 是⊙O 的直径,∴0AEC 90∠=. 在Rt ACE ∆中,A E c o=⋅=1CE AC sin EAC 2=⋅∠=在Rt MCE ∆中,∵0FEC FAC 30∠=∠=,∴1CM CE sin EAC 2=⋅∠=易知G C H ∆是等腰直角三角形,∴GF 2CM ==又∵A EF ∆是等边三角形,∴EF AE ==.∴EF GH ==故选C. 15. 【答案】B .【考点】网格问题;勾股定理;三角形构成条件;无理数的大小比较;平移的性质;分类思想的应用. 【分析】由图示,根据勾股定理可得:a b c d =∵<,<,,<<a b c a d c b d c b a d b d +++=-+ ,∴根据三角形构成条件,只有,,a b d 三条线段首尾相接能组成三角形.如答图所示,通过平移,,a b d 其中两条线段,使得和第三条线段首尾相接组成三角形,能组成三角形的不同平移方法有6种.故选B .16. 【答案】A.【考点】多元方程组的应用(几何问题).【分析】如答图,设原住房平面图长方形的周长为2l ,①的长和宽分别为,a b ,②③的边长分别为,c d .根据题意,得2a c d c b d a b c l =+⎧⎪=+⎨⎪++=⎩ ①②③,-①②,得2a c c b a b c -=-⇒+=,将2a b c +=代入③,得1422c l c l =⇒=(定值), 将122c l =代入2a b c +=,得()122a b l a b l+=⇒+=(定值),而由已列方程组得不到d .∴分割后不用测量就能知道周长的图形标号为①②.故选A. 17. 【答案】A .【考点】一次函数和二次函数综合问题;曲线上点的坐标与方程的关系;数形结合思想的应用. 【分析】∵y =ax 2+(b -1)x +c =ax 2+bx +c -x ,∴函数y =ax 2+(b -1)x +c 的图象上点的纵坐标是二次函数y 2=ax 2+bx +c 图象上点的纵坐标与一次函数y 1=x 图象上点的纵坐标之差.∵一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,而P 、Q 两点都在第一象限,∴函数y =ax 2+(b -1)x +c 的图象与x 轴相交于两点,且这两点都在x 轴的正方向.故选A . 18. 【答案】C【考点】单动点问题;函数图象的识别;垂线段最短的性质;排他法的应用.【分析】从图2可知,寻宝者与定位仪器之间的距离开始和结束时是相同的,因此,可排除A 、D 选项;从图2可知,寻宝者与定位仪器之间的距离的最近点,相对于开始和结束时位置离中点更近,因此,如答图,过点M分别作,,,OB OC AB AC 的垂线,垂足分别为点,,,E F P Q ,此时,根据垂线段最短的性质,点,,,E F P Q 是寻宝者与定位仪器之间的距离的最近点. 显然,,OE OF BE CF AP =<==,即点,E F离中点的距离小于开始和结束时的距离;点,P Q离中点的距离大于开始和结束时的距离.∴寻宝者的行进路线可能为B→O→C. 故选C.19.【答案】B.【考点】菱形的判定;垂径定理;平行四边形的判定.【分析】要判定四边形OACB为菱形,根据菱形的判定可知,一组邻边相等的平行四边形是菱形,由于OA OB=,且半径OC⊥AB,根据垂径定理有AD BD=,从而根据对角线互相平分的四边形是平行四边形的判定,只要另一条对角线也平分即可,从而只要添加条件OD CD=即可. 因此,这个条件可以是OD CD=.故选B.20.【答案】D.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;菱形的性质;勾股定理.【分析】∵A,B两点的纵坐标分别为3,1,反比例函数3 yx =的图像经过A,B两点,∴A(1,3),B(3,1).∴AB=∵四边形ABCD是菱形,∴AD AB==AD 与BC的距离为2.∴菱形ABCD的面积为2=故选D.21.【答案】D.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;菱形的性质;锐角三角函数定义;特殊角的三角函数值.【分析】如答图,AC交y轴于点H,则CH⊥y轴.∵∠BOC=60°,∴∠COH=30°,∵点C的坐标为(m,),∴,CH m OH==∴6cosOHOCCOH===∠.∵四边形ABOC是菱形,∴6OB OC==,∠BOD=30°.∵BD⊥x轴,∴6BD OB tan BOD=⋅∠==∴点D的坐标为(6,-.∵点D在反比例函数kyx=的图像上,∴()6-⋅=-故选D.22.【答案】B.【考点】解直角三角形的应用(方向角问题);矩形的判定和性质;等腰直角三角形的判定和性质.【分析】如答图,过点B作BE⊥AC交AC于点E,过点E作EF⊥CD交CD于点F,则根据题意,四边形BDEF是矩形,△ABE、△EFC和△ADC都是等腰直角三角形,∵AB=2,∴DF=BF= AB=2,AE=∵∠EBC=∠BCE=22.5°,∴CE=BE=2.∴CF==∴2CD DF CF=+=km).∴船C离海岸线l的距离为(2+km.故选B.23.【答案】B.【考点】翻折变换(折叠问题);折叠的性质;等腰直角三角形的判定和性质;勾股定理.【分析】根据折叠的性质可知34CD AC B C BC ACE DCE BCF B CF CE A=='==∠=∠∠=∠'⊥,,,,,∴431B D DCE B CF ACE BCF '=-=∠+∠'=∠+∠,.∵90ACB ∠=︒,∴45ECF ∠=︒. ∴ECF V 是等腰直角三角形. ∴45EF CE EFC =∠=︒,.∴135BFC B FC ∠=∠'=︒. ∴90B FD ∠'=︒. ∵1122ABC S AC BC AB CE =⋅⋅=⋅⋅V ,∴AC BC AB CE ⋅=⋅.在Rt ABC V 中,根据勾股定理,得A B=5,∴123455CE CE ⋅=⋅⇒=.∴125EF CE ==. 在Rt AECV 中,根据勾股定理,得95AE ==,∴95ED AE ==.∴35DF EF ED =-=.在Rt B FD 'V 中,根据勾股定理,得45B F '==.故选B .24. 【答案】D.【考点】正比例函数、一次函数、反比例函数、二次函数的图象和性质.【分析】∵函数图像经过()()1422-- ,,,两点,∴该函数不可能是正比例函数.∵若一次函数的图像经过()()1422-- ,,,两点,则函数值y 随x 的增大而增大, ∴该函数不可能是一次函数.∵若反比例函数的图像经过()()1422-- ,,,两点,则函<0和>0x 两个范围内,函数值y 随x的增大而增大,∴该函数不可能是反比例函数.∵若二次函数的图像经过()()1422-- ,,,两点,则当图像开口向下,对称轴在2x =右侧时,在对称轴右侧,函数值y 随x 的增大而减小;当图像开口向上,对称轴在1x =左侧时,在对称轴左侧,函数值y 随x 的增大而减小.2∴该函数可能是二次函数.故选D. 25. 【答案】C .【考点】一次函数、二次函数图象与系数的关系. 【分析】根据一次函数、二次函数图象与系数的关系对各选项逐一分析,作出判断:A 、对于直线y bx a =+来说,由图象可以判断,00a b >,>;而当00a b >,>时,对于抛物线2y ax bx=+来说,对称轴02bx a=-<,应在y 轴的左侧,故不合题意,图形错误.B 、对于直线y bx a =+来说,由图象可以判断,00a b <,<;而当0a <时,对于抛物线2y ax bx =+来说,图象应开口向下,故不合题意,图形错误.C 、对于直线y bx a =+来说,由图象可以判断,00a b <,>;而当00a b <,>时,对于抛物线2y ax bx=+来说,图象开口向下,对称轴>02bx a=-位于y 轴的右侧,故符合题意.D 、对于直线y bx a =+来说,由图象可以判断,00a b >,>;而当0a >时,对于抛物线2y ax bx =+来说,图象开口向下,故不合题意,图形错误.故选C .26. 【答案】C.【考点】线段中垂线的性质;切线的性质;垂径定理. 【分析】根据线段中垂线的性质、切线的性质和垂径定理,该圆的圆心是线段AE 的中垂线与线段BC 的中垂线的交点. 故选C. 27. 【答案】D.【考点】代数式化简;一次函数的图象;分类思想的应用.【分析】∵()()22>022<0x x x x y x x x ⎧++⎪==⎨--⎪⎩,∴当>0x 时,函数的图象为直线2y x =+的一部分;当<0x 时,函数的图象为直线2y x =--的一部分.符合此条件的是图象D.故选D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年中考数学压轴题70题精选(含答案)【001】如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),ΔABC 的面积为45。

(1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与ΔABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ABCD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由。

【002】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC 于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形? 请直接写出相应的t值。

【003】抛物线)0(2≠++=a c bx ax y 的顶点为M ,与x 轴的交点为A 、B (点B 在点A 的右侧),△ABM 的三个内角∠M 、∠A 、∠B 所对的边分别为m 、a 、b 。

若关于x 的一元二次方程0)(2)(2=+++-a m bx x a m 有两个相等的实数根。

(1)判断△ABM 的形状,并说明理由。

(2)当顶点M 的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形。

(3)若平行于x 轴的直线与抛物线交于C 、D 两点,以CD 为直径的圆恰好与x 轴相切,求该圆的圆心坐标。

【004】一次函数y ax b =+的图象分别与x 轴、y 轴交于点,M N ,与反比例函数ky x=的图象相交于点,A B .过点A 分别作AC x ⊥轴,AE y ⊥轴,垂足分别为,C E ;过点B 分别作BF x ⊥轴,BD y ⊥轴,垂足分别为F D ,,AC 与BD 交于点K ,连接CD . (1)若点A B ,在反比例函数ky x=的图象的同一分支上,如图1,试证明: ①AEDK CFBK S S =四边形四边形; ②AN BM =.(2)若点A B ,分别在反比例函数ky x=的图象的不同分支上,如图2,则AN 与BM 还相等吗?试证明你的结论.)【005】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A 的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S 与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.【006】如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M . (1)求抛物线对应的函数表达式;(2)经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过AB E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由; (4)当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论).【007】如图9,已知正比例函数和反比例函数的图象都经过点(33)A ,. (1)求正比例函数和反比例函数的解析式;(2)把直线O A 向下平移后与反比例函数的图象交于点(6)B m ,,求m 的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x 轴、y 轴分别交于C 、D ,求过A 、B 、D 三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形O ECD 的面积1S 与四边形O ABD 的面积S 满足:123S S?若存在,求点E 的坐标; 若不存在,请说明理由.【008】如图,在平面直角坐标系xOy 中,半径为1的圆的圆心O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C .(1)求抛物线的解析式;(2)抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长. (3)过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.【009】如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.【010】如图,抛物线24y ax bx a =+-经过(10)A -,、(04)C ,两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标;(3)在(2)的条件下,连接BD ,点P 为抛物线上一点, 且45DBP ∠=°,求点P 的坐标.7),且顶点C的横坐标为4,该图象在【011】如图,二次函数的图象经过点D(0,39x 轴上截得的线段AB的长为6.⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.【012】如图,已知抛物线2y x bx c =++经过(10)A ,,(02)B ,两点,顶点为D . (1)求抛物线的解析式;(2)将OAB △绕点A 顺时针旋转90°后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为1B ,顶点为1D ,若点N 在平移后的抛物线上,且满足1NBB △的面积是1NDD △面积的2倍,求点N 的坐标.(第26【013】如图,点P 是双曲线11(00)k y k x x=<<,上一动点,过点P 作x 轴、y 轴的垂线,分别交x 轴、y 轴于A 、B 两点,交双曲线y =xk 2(0<k 2<|k 1|)于E 、F 两点. (1)图1中,四边形PEOF 的面积S 1= ▲ (用含k 1、k 2的式子表示); (2)图2中,设P 点坐标为(-4,3). ①判断EF 与AB 的位置关系,并证明你的结论;②记2PEF OEF S S S ∆∆=-,S 2是否有最小值?若有,求出其最小值;若没有,请说明理由。

【014】一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC.(1)若m为常数,求抛物线的解析式;(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?(3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得△BCD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.【015】如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。

(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。

【016】如图,已知ABC ∆为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x 轴上,点B 坐标为(3,m )(0m >),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D .(1)求点A 的坐标(用m 表示); (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结 BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.【017】阅读材料:如图12-1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:如图12-2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结PA ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆; (3)是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.图12-2 xCOy ABD1 1【018】已知二次函数22-++=a ax x y 。

(1)求证:不论a 为何实数,此函数图象与x 轴总有两个交点。

(2)设a<0,当此函数图象与x 轴的两个交点的距离为13时,求出此二次函数的解析式。

(3)若此二次函数图象与x 轴交于A 、B 两点,在函数图象上是否存在点P ,使得△PAB 的面积为2133,若存在求出P 点坐标,若不存在请说明理由。

【019】如图,已知射线DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.动点C 从点(50)M ,出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒.(1)请用含t 的代数式分别表示出点C 与点P 的坐标;(2)以点C 为圆心、12t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点(点A 在点B 的左侧),连接PA 、PB .①当C ⊙与射线DE 有公共点时,求t 的取值范围; ②当PAB △为等腰三角形时,求t 的值.【020】已知抛物线22y x x a =-+(0a <)与y 轴相交于点A ,顶点为M .直线12y x a =-分别与x 轴,y 轴相交于B C ,两点,并且与直线AM 相交于点N . (1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则()()M N , , , ; (2)如图,将NAC △沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连结CD ,求a 的值和四边形ADCN 的面积;(3)在抛物线22y x x a =-+(0a <)上是否存在一点P ,使得以P A C N ,,,为顶点的四边形是平行四边形?若存在,求出P 点的坐标;若不存在,试说明理由.第(2)题备用图(第24题)【021】已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为65,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ 与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.26题图x【022】已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数xy 1=的图像分别交于点A 和点B ,又有定点P (2,0) .(1)若0>a ,且tan ∠POB=91,求线段AB 的长;(2)在过A ,B 两点且顶点在直线x y =上的抛物线中,已知线段AB=38,且在它的对称轴左边时,y 随着x 的增大而增大,试求出满足条件的抛物线的解析式; (3)已知经过A ,B ,P 三点的抛物线,平移后能得到259x y =的图像,求点P 到直线AB 的距离。

相关文档
最新文档