分子构型与物质的性质第2课时

合集下载

高中化学第二章分子结构与性质第二节第二课时杂化轨道理论配合物理论训练(含解析)新人教版选修3

高中化学第二章分子结构与性质第二节第二课时杂化轨道理论配合物理论训练(含解析)新人教版选修3

第二课时 杂化轨道理论 配合物理论课后篇素养形成 A 组 定向巩固定向巩固一、杂化轨道理论1.下列分子中的中心原子采取sp 2杂化的是( )3H 8223,采取sp 3杂化;CO 2分子中碳原子采取sp 杂化;氯化铍分子中铍原子采取sp 杂化;三氧化硫分子中S 原子采取sp 2杂化。

2.在乙烯分子中有5个σ键、1个π键,它们分别是( )2杂化轨道形成σ键,未杂化的2p 轨道形成π键 2杂化轨道形成π键,未杂化的2p 轨道形成σ键C.C —H 之间是sp 2杂化轨道形成的σ键,C —C 之间是未参加杂化的2p 轨道形成的π键 D.C —C 之间是sp 2杂化轨道形成的σ键,C —H 之间是未参加杂化的2p 轨道形成的π键 解析乙烯分子中的两个碳原子都是采取sp 2杂化,C —H 键是碳原子的杂化轨道与氢原子的s 轨道形成的σ键,C C 键中一个是sp 2杂化轨道形成的σ键,另一个是未杂化的2p 轨道形成的π键。

3.下列推断不正确的是( )3为平面三角形分子H 4+的电子式为[H ∶∶H]+4分子中的4个C —H 键都是氢原子的1s 轨道与碳原子的2p 轨道形成的sp σ键4分子中的碳原子以4个sp 3杂化轨道分别与4个氢原子的1s 轨道重叠,形成4个C —H σ键3为平面三角形;N H 4+为正四面体形;CH 4中碳原子的1个2s 轨道与3个2p 轨道形成4个sp 3杂化轨道,然后与氢原子的1s 轨道重叠,形成4个σ键。

4.下列说法正确的是( )3杂化的分子,其立体构型都是正四面体形2中,中心原子S 采取sp 杂化轨道成键3型的共价化合物,其中心原子A 均采用sp 3杂化形式成键3分子中,中心原子采取sp 3杂化,但NH 3分子为三角锥形,A 错误;在SCl 2中,中心原子S 与2个Cl 形成2个σ键,同时有2对孤电子对,价层电子对数为4,采取sp 3杂化轨道成键,B 错误;杂化轨道只用于形成σ键或用于容纳未参与成键的孤电子对,C 正确;AB 3型的共价化合物,当中心原子周围存在一对孤电子对时才采用sp 3杂化形式成键,D 错误。

人教版选修3高中化学 第2章第2节 分子的立体构型(第2课时)

人教版选修3高中化学 第2章第2节 分子的立体构型(第2课时)
三角 V形
锥形
sp 杂化和 sp2 杂化这两种形式中,原子还有未参与杂化的 p 轨道,可用于形成 π 键,而杂化轨道只能用于形成 σ 键或 者用来容纳未参与成键的孤电子对。
指出下列分子中,中心原子可能采取的杂化轨道类 型,并预测分子的立体构型。 (1)BeCl2:__________ (2)PCl3:__________ (3)BCl3:____________ (4)CS2:__________ (5)SCl2:____________
4.如图是甲醛分子的模型。根据该图和所学化学键知识回 答下列问题:
甲醛分子的比例模型 甲醛分子的球棍模型 (1)甲醛分子中碳原子的杂化方式是________________, 作出该判断的主要理由是_____________________。 (2) 下 列 是 对 甲 醛 分 子 中 碳 氧 键 的 判 断 , 其 中 正 确 的 是 ________(填序号)。 ①单键 ②双键 ③σ 键 ④π 键 ⑤σ 键和 π 键
(3)sp3 杂化 sp3 杂化轨道是由一个__s____轨道和三个_____p____轨道杂 化 而 得 , 杂 化 轨 道 间 的 夹 角 为 __1_0_9_°__2_8_′_ , 立 体 构 型 为 _正__四__面__体___形,如 CH4 分子。
(1)在形成多原子分子时,中心原子价电子层上的某些能量 相近的原子轨道发生混杂,重新组合成一组新的轨道的过 程,叫做轨道的杂化。双原子分子中,不存在杂化过程。 (2)只有能量相近的轨道才能杂化(ns,np)。
• 1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” • 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 • 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 • 4、好的教师是让学生发现真理,而不只是传授知识。 • 5、数学教学要“淡化形式,注重实质.

高中化学第2章分子结构与性质第2节分子的立体构型第2课时杂化轨道理论简介配合物理论简介学业分层测评新人

高中化学第2章分子结构与性质第2节分子的立体构型第2课时杂化轨道理论简介配合物理论简介学业分层测评新人

杂化轨道理论简介配合物理论简介(建议用时:45分钟)[学业达标]1.鲍林是两位获得诺贝尔奖不同奖项的人之一,杂化轨道是鲍林为了解释分子的立体结构提出的。

下列对sp3、sp2、sp杂化轨道的夹角的比较,得出结论正确的是( ) A.sp杂化轨道的夹角最大B.sp2杂化轨道的夹角最大C.sp3杂化轨道的夹角最大D.sp3、sp2、sp杂化轨道的夹角相等【解析】sp3、sp2、sp杂化轨道的夹角分别为109°28′、120°、180°。

【答案】 A2.了解有机物分子中化学键特征以及成键方式是研究有机物性质的基础。

下列关于有机物分子成键方式的描述不正确的是( )A.烷烃分子中碳原子均采取sp3杂化成键B.炔烃分子中的碳碳三键由1个σ键、2个π键组成C.苯分子中所有碳原子均采取sp2杂化成键,苯环中存在6个碳原子共有的大π键D.甲苯分子中所有碳原子均采取sp2杂化成键【解析】烷烃分子中碳原子均采取sp3杂化成键,由甲烷得到的甲基上的碳原子也采取sp3杂化,A正确、D错误;三键一定是由1个σ键、2个π键组成的,B正确;苯环上的碳原子都采取sp2杂化,C正确。

【答案】 D3.sp3杂化形成的AB4型分子的立体构型为( )A.平面四边形B.正四面体形C.四角锥形D.平面三角形【解析】sp3杂化形成的AB4型分子的立体构型应该为正四面体形,例如甲烷、四氯化碳等。

【答案】 B4.下列分子的立体构型可用sp2杂化轨道来解释的是( ) 【导学号:90990047】①BF3②CH2===CH2③④CH≡CH⑤NH3⑥CH4A.①②③ B.①⑤⑥C.②③④ D.③⑤⑥【解析】①②③均为平面形分子,中心原子是sp2杂化;④为直线形分子,中心原子是sp杂化;NH3是三角锥形、CH4是正四面体形分子,中心原子均是sp3杂化。

【答案】 A5.下列关于杂化轨道的叙述中,不正确的是( )A.分子中中心原子通过sp3杂化轨道成键时,该分子不一定为正四面体结构B.杂化轨道只用于形成σ键或用于容纳未参与成键的孤电子对C.NH3和CH4两个分子中中心原子N和C都是通过sp3杂化轨道成键D.杂化轨道理论与VSEPR模型分析分子的空间构型结果常常相互矛盾【解析】中心原子采取sp3杂化轨道成键的分子可能是正四面体(如CH4)、三角锥(如NH3)或者V形(如H2O),A正确;π键是由未参与杂化的轨道“肩并肩”形成的,B正确;正四面体形的CH4和三角锥形的NH3中,中心原子N和C都是通过sp3杂化轨道成键,C正确;杂化轨道理论和VSEPR模型都是为了解释分子的空间结构而提出的理论,两者不矛盾,可以先通过VSEPR模型判断出分子的构型,再判断出中心原子的杂化类型,D错误。

分子构型与物质的性质(第2、3课时)1

分子构型与物质的性质(第2、3课时)1

分子 BeCl2 BF3
价电子 对数
2
3
几何 构型
直线 形
平面 三角

CH4 4
正四 面体
CO2 2
直线 形
NH3 4
三角 锥形
H2O 4
V形
几何
构型
中心原子的 n= 价电子数

每供个的配价位电原子子数提 ×m
2
请判断下列分子价电子对的几何分布构型
分子 BeCl2 BF3 CH4Байду номын сангаасCO2 NH3 H2O
价电子 对数
2
3
4
2
4
4
几何
构型
中心原子的 n= 价电子数

每供个的配价位电原子子数提 ×m
2
请判断下列分子价电子对的几何分布构型
分子 价电子 对数
中心原子的 n= 价电子数

每供个的配价位电原子子数提 ×m
2
注意:
①中心原子的价电子数等于中心原子的最外 层电子数。
②配位原子中卤素原子、氢原子提供一个价 电子,氧原子和硫原子按不提供价电子计算。
中心原子的 n= 价电子数

每供个的配价位电原子子数提 ×m
2
请判断下列分子价电子对的几何分布构型
分子 BeCl2 BF3 CH4 CO2 NH3 H2O 价电子 对数
2
请判断下列分子的几何构型
分子 BeCl2 BF3
价电子 对数
2
3
几何 构型
直线 形
平面 三角

CH4 4
正四 面体
CO2 2
直线 形
NH3 4
H2O 4
中心原子的 n= 价电子数

第2章第3节分子结构与物质的性质第2课时课件(68张)

第2章第3节分子结构与物质的性质第2课时课件(68张)

(3)下列物质中,哪些形成分子内氢键?哪些形成分子间氢键?
提示:含F、O、N元素的物质中分子内或分子之间能形成氢键,则①②③⑩只能 形成分子间氢键,④⑥⑦由于基团相距较远,所以也形成分子间氢键;⑤中含有2 个氧原子,因O的电负性较大并且距离较近,所以形成分子内氢键,⑧中含有3个 氧原子和1个N原子,因O、N的电负性较大并且距离较近,所以形成分子内氢键, ⑨中含有3个氧原子和1个N原子,因O、N的电负性较大并且距离较近,所以形成 分子内氢键,故形成分子内氢键的为⑤⑧⑨;形成分子间氢键的为①②③④⑥⑦ ⑩。
答案:Ⅰ.SiH4 H2Se Ⅱ.(1)1s22s22p63s23p63d104s1 (2)2 2 (3)三角锥形
(4)HNO3是极性分子,易溶于极性溶剂水中;HNO3分子易与水分子之间形成氢 键
【补偿训练】
关于氢键,下列说法正确的是
()
A.氢键比分子间作用力强,所以它属于化学键
B.冰中存在氢键,水中不存在氢键
(1)请写出如图中d单质对应元素原子的电子排布式: ____________。 (2)单质a、b、f对应的元素以原子个数比1∶1∶1形成的分子中含_______个 σ键,________个π键。 (3)a与b对应的元素形成的10电子中性分子X的立体构型为________。
(4)上述六种元素中的一种元素形成的含氧酸的结构为
【迁移·应用】 1.下列叙述正确的是 ( ) A.F2、Cl2、Br2、I2单质的熔点依次升高,与分子间作用力大小有关 B.H2S的相对分子质量比H2O的大,其沸点比水的高 C.稀有气体的化学性质比较稳定,是因为其键能很大 D.干冰升华时破坏了共价键
【解析】选A。本题主要考查分子间作用力、氢键、共价键对物质性质的影响。 A项,从F2→I2,相对分子质量增大,分子间作用力增大,熔点升高。B项,H2O分子 之间有氢键,其沸点高于H2S。C项,稀有气体分子为单原子分子,分子之间无化 学键,其化学性质稳定是因为原子的最外层为8电子稳定结构(He为2个)。D项, 干冰升华破坏的是范德华力,并未破坏共价键。

高中化学 专题 分子空间结构与物质性质

高中化学 专题 分子空间结构与物质性质

第2课时分子的极性(时间:30分钟)考查点一等电子原理1. 1919年,Langmuir提出等电子原理:原子数相同、电子总数相同的分子,互称为等电子体。

等电子体的结构相似、物理性质相近。

(1)根据上述原理,仅由第2周期元素组成的共价分子中,互为等电子体的是:和;和.(2)此后,等电子原理又有所发展。

例如,由短周期元素组成的微粒,只要其原子数相同,各原子最外层电子数之和相同,也可互称为等电子体,它们也具有相似的结构特征。

在短周期元素组成的物质中,与NO2-互为等电子体的分子有:、。

解析(1)第2周期元素中,只有B、C、N、O、F可形成共价型分子,同素异形体间显然不能形成等电子体,若为含2个原子的等电子体,则可能是某元素的单质与其相邻元素间的化合物,如N2和CO,在此基础上增加同种元素的原子可得其他的等电子体,如N2O和CO2。

(2)NO2-的最外层的电子数为:5+6×2+1=18,平均每个原子的最外层电子数为6,则可能为O3或SO2,经过讨论知其他情况下,只能形成离子化合物,不合题意.答案(1)N2CO CO2N2O (2)SO2O32。

1949年度诺贝尔化学奖授予为研究臭氧做出贡献的化学家。

臭氧能吸收有害紫外线,保护人类赖以生存的空间。

O3分子的结构如图:呈V形,键角116.5°。

三个原子以一个O原子为中心,与另外两个O原子分别构成一个非极性共价键;中间O原子提供2个电子,旁边两个O原子提供1个电子,构成一个特殊的化学键(虚线内部分)——三个O原子均等的享有着4个电子。

请回答:(1)题中非极性共价键是键,特殊的化学键是键。

(2)臭氧与氧气是。

(3)下列物质的分子与O3分子的结构最相似的是____________________。

A.H2OB.CO2C。

SO2 D。

BeCl2(4)分子中某一原子有1对没有跟其他原子共用的电子叫孤电子对,那么O3分子有对孤电子对。

解析每个原子提供的一个未成对电子形成σ键,若再形成为π键,运用等电子原理找结构相似的分子。

化学-分子结构与性质教案

化学-分子结构与性质教案

第2课时 必备知识——分子结构与性质知识清单[基本概念]①σ键;②π键;③键参数(键能、键长、键角);④配位键及配合物;⑤范德华力;⑥氢键;⑦极性键和非极性键;⑧极性分子和非极性分子;⑨手性分子[基本规律]①价层电子对互斥理论及应用;②杂化轨道理论及应用;③分子间作用力及对物质性质的影响知识点1 共价键1.共价键的本质共价键的本质是原子之间形成共用电子对(即原子轨道重叠后,高概率地出现在两个原子核之间的电子与两个原子核之间的电性作用。

)2.共价键的特征共价键具有饱和性和方向性。

3.共价键的类型分类依据类型σ键电子云“头碰头”重叠形成共价键的原子轨道重叠方式π键电子云“肩并肩”重叠极性键共用电子对发生偏移形成共价键的电子对是否偏移非极性键共用电子对不发生偏移单键原子间有一对共用电子对双键原子间有两对共用电子对原子间共用电子对的数目三键原子间有三对共用电子对(1)一般情况下,两种元素的电负性相差不大时,才能形成共用电子对,形成共价键;当两种元素的电负性相差很大(大于1.7)时,一般不会形成共用电子对,而形成离子键。

(2)同种非金属元素原子间形成的共价键为非极性键,不同种非金属元素原子间形成的为极性键。

4.键参数(1)概念(2)键参数对分子性质的影响一般情况下,共价键的键能越大,键长越短,分子越稳定。

5.等电子原理(1)等电子体原子总数相同,价电子总数相同的粒子互称为等电子体。

例如,N 2和CO 、O 3与SO 2是等电子体。

(2)等电子原理等电子体具有相似的化学键特征,它们的许多性质相近,此原理称为等电子原理。

例如,CO 和N 2都存在三键,性质较稳定。

常见的等电子体及其空间构型微粒通式价电子总数空间构型CO 2、SCN -、NO、N + 2- 3AX 216e -直线形CO 、NO 、SO 32-3- 3AX 324e -平面三角形SO 2、O 3、NO -2AX 218e -V 形SO 、PO 2- 43-4AX 432e -正四面体形PO 、SO 、ClO 3- 32-3- 3AX 326e -三角锥形CO 、N 2AX 10e -直线形CH 4、NH + 4AX 48e -正四面体形[通关1] (易错排查)判断正误(1)在任何情况下,都是σ键比π键强度大( )(2)s­s σ键与s­p σ键的电子云形状对称性相同( )(3)σ键能单独形成,而π键一定不能单独形成( )(4)σ键可以绕键轴旋转,π键一定不能绕键轴旋转( )(5)碳碳三键和碳碳双键的键能分别是碳碳单键键能的3倍和2倍( )答案 (1)× (2)√ (3)√ (4)√ (5)×[通关2] (2020·江苏卷,21A 节选)(1)与NH 互为等电子体的一种分子为________(填+4化学式)。

化学同步鲁科版选修3学案:第2章 第2节 第2课时 分子的空间构型与分子性质 Word版含解析

化学同步鲁科版选修3学案:第2章 第2节 第2课时 分子的空间构型与分子性质 Word版含解析

第2课时分子的空间构型与分子性质[课标要求]1.了解极性分子和非极性分子。

2.了解“手性分子”在生命科学等方面的应用。

1.对称分子:依据对称轴的旋转或借助对称面的反映能够复原的分子。

2.手性碳原子:连接四个不同原子或原子团的碳原子。

3.手性分子:含有手性碳原子的分子。

4.极性分子:分子内存在正、负两极的分子;非极性分子:分子内没有正、负两极的分子。

5.含有极性键的双原子分子是极性分子,只含有非极性键的分子和分子空间构型对称的分子是非极性分子。

分子的对称性1.对称分子2.手性分子1.在有机物分子中,当碳原子连有4个不同的原子或原子团时,这种碳原子称为“手性碳原子”,凡具有一个手性碳原子的化合物一定具有光学活性。

下列分子中含有“手性碳原子”的是()A.CBr2F2B.CH3CH2OHC.CH3CH2CH3D.CH3CH(OH)COOH解析:选D手性碳原子连接四个不同的原子或原子团。

2.下列分子含有“手性”碳,属于手性分子的是()A.B.H2NCH2COOHC.D.CH2CH2解析:选C抓住“手性”的含义,C原子上连接有四个不同的原子或原子团,即为手性碳原子。

分子的极性1.分子极性的实验探究2.极性分子和非极性分子[特别提醒]相似相溶原理是指极性溶质易溶于极性溶剂,非极性溶质易溶于非极性溶剂。

1.极性分子中一定含有极性键,一定不含非极性键吗? 提示:一定含有极性键,可能含有非极性键。

2.非极性分子中一定含有非极性键吗?提示:分子结构对称时,可能含有极性键,而不含有非极性键。

判断分子极性的方法 (1)根据分子的对称性判断分子结构对称,正电荷重心和负电荷重心重合,则为非极性分子,正、负电荷重心不重合,则为极性分子。

(2)根据键的极性判断(3)经验规律①化合价法:若中心原子A 的化合价的绝对值等于该元素所在的主族序数,则为非极性分子,否则为极性分子。

②孤对电子法:若中心原子有孤对电子则为极性分子,否则为非极性分子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CH4

NH3
1对
H2O
2对
CO2
4对
分子构型与物质的性质
请回答下列各题:
CH4、NH3、H2O、CO2分子的空间构型 及键角分别怎样?
CH4
正四面体
109.50
NH3
三角锥形 107.30
H2O
V形
104.50
CO2
直线形
1800
确定分子(或离子)空间构型的简易方法
用分子或离子中的价电子对数去判断!
直线 形
NH3 4
三角 锥形
H2O 4
V形
对于ABm型分子(A是中心原子,B是配 位原子),分子中的价电子对数可以用下式 计算:
中心原子的 n= 价电子数

每供个的配价位电原子子数提 ×m
2
对于ABm型分子,若价电子对数与配位 原子数目相等,则分子的空间构型与价电 子对的几何分布构型相同。
对于ABm型分子(A是中心原子,B是配 位原子),分子中的价电子对数可以用下式 计算:
对于ABm型分子(A是中心原子,B是配 位原子),分子中的价电子对数可以用下式
计算:
中心原子的 n= 价电子数

每供个的配价位电原子子数提 ×m
2
价电子对数目为2、3、4时,价电子对
的几何分布分别呈直线形、平面三角形、
正四面体构型。
确定分子(或离子)空间构型的简易方法
用分子或离子中的价电子对数去判断!
分子 BeCl2 BF3
价电子 对数
2
3
几何 构型
直线 形
平面 三角

CH4 4
正四 面体
CO2 2
直线 形
NH3 4
正四 面体
H2O 4
正四 面体
中心原子的 n= 价电子数

每供个的配价位电原子子数提 ×m
2
请判断下列分子的几何构型
分子 BeCl2 BF3
价电子 对数
2
3
几何
构型
CH4 4
CO2 2
价电子 对数
2
3
CH4 4
CO2 2
NH3 4
H2O 4
几何 构型
直线 形
平面 三角

中心原子的 n= 价电子数

每供个的配价位电原子子数提 ×m
2
请判断下列分子的几何构型
分子 BeCl2 BF3 CH4 CO2 NH3 H2O
价电子 对数
2
3
4
2
4
4
几何 构型
直线 形
平面 三角

正四 面体
中心原子的 n= 价电子数
价电子 对数
2
3
几何 构型
直线 形
平面 三角

CH4 4
正四 面体
CO2 2
直线 形
NH3 4
三角 锥形
H2O 4
中心原子的 n= 价电子数

每供个的配价位电原子子数提 ×m
2
请判断下列分子的几何构型
分子 BeCl2 BF3
价电子 对数
2
3
几何 构型
直线 形
平面 三角

CH4 4
正四 面体
CO2 2

每供个的配价位电原子子数提 ×m
2
请判断下列分子的几何构型
分子 BeCl2 BF3
价电子 对数
2
3
几何 构型
直线 形
平面 三角

CH4 4
正四 面体
CO2 2
直线 形
NH3 4
H2O 4
中心原子的 n= 价电子数

每供个的配价位电原子子数提 ×m
2
请判断下列分子的几何构型
分子 BeCl2 BF3
中心原子的 n= 价电子数

每供个的配价位电原子子数提 ×m
2
注意:
①中心原子的价电子数等于中心原子的最外 层电子数。
②配位原子中卤素原子、氢原子提供一个价 电子,氧原子和硫原子按不提供价电子计算。
中心原子的 n= 价电子数

每供个的配价位电原子子数提 ×m
2
请判断下列分子价电子对的几何分布构型
分子 BeCl2 BF3 价电子 对数
中心原子的 n= 价电子数

每供个的配价位电原子子数提 ×m
2
对于ABm型分子,若价电子对数与配位原 子数目相等,则分子的空间构型与价电子对
的几何分布构型相同。
若价电子对数与配位原子数目不等,则中 心原子的孤电子对影响分子的空间构型。
中心原子的 n= 价电子数

每供个的配价位电原子子数提 ×m
2
请判断下列分子的几何构型
几何
CH4
CO2
NH3
H2O
构型
中心原子的 n= 价电子数

每供个的配价位电原子子数提 ×m
2
请判断下列分子价电子对的几何分布构型
分子 BeCl2 BF3
价电子 对数
2
3
几何
构型
CH4 4
CO2 2
NH3 4
H2O 4
中心原子的 n= 价电子数

每供个的配价位电原子子数提 ×m
2
请判断下列分子价电子对的几何分布构型
分子 BeCl2 BF3
价电子 对数
2
3
几何 构型
直线 形
平面 三角

CH4 4
正四 面体
CO2 2
直线 形
NH3 4
三角 锥形
H2O 4
V形
分子构型与物质的性质
请回答下列各题: 分子 碳原子的杂化类型 分子的几何构型 CH4 C2H4 C2H2
分子构型与物质的性质
请回答下列各题:
分子 碳原子的杂化类型 分子的几何构型
CH4
sp3
C2H4
sp2
C2H2
sp
正四面体型 平面形 直线形
分子构型与物质的性质
请回答下列各题:
写出CH4、NH3、H2O、CO2的电子式, 分析分子中孤电价电子数

每供个的配价位电原子子数提 ×m
2
请判断下列分子的几何构型
分子 BeCl2 BF3 CH4 CO2 NH3 H2O
价电子 对数
2
3
4
2
4
4
几何 直线 构型 形
中心原子的 n= 价电子数

每供个的配价位电原子子数提 ×m
2
请判断下列分子的几何构型
分子 BeCl2 BF3
相关文档
最新文档