隧道贯通误差预计开题报告
贯通误差预计

西康铁路秦岭隧道(Ⅰ线)采用TBM施工。
隧道全长18.5 km,两端独头掘进距离长(近10 km),再加上TBM 一次成洞,对贯通精度要求比较高,给洞内控制测量带来了很大的困难。
本文介绍这项工程中控制测量实施方案。
一、控制测量设计众所周知,隧道贯通面上贯通误差的影响值,由洞外、洞内控制测量两部分组成。
由于洞外采用GPS 网作控制来保证洞外控制精度,因此本设计只对洞内控制测量进行设计。
为保证高精度贯通,本设计按总横向中误差150 mm(《铁路测量规则》规定为250 mm),高程中误差25 mm进行设计。
按《测规》规定的分配原则,分配给洞内横向中误差为120 mm,洞内高程中误差17 mm。
1. 平面(横向)测量设计由于Ⅰ线隧道采用TBM施工,其通视条件较好,为提高测量精度,导线边长尽量长,故本方案按边长为650 m的导线测量方案进行设计。
这时洞内横向贯通误差为:按上述布设方案,R x,dy计算如下:(1) 洞内∑R2x计算依据各导线点至贯通面的竖直距离计算的结果为∑R2x=900062125。
(2) 洞内∑dy2计算由于洞内导线沿隧道中线布设,隧道为直线隧道,则dy=0,即∑dy2=0。
(3) 洞内测角精度计算由于采用测距标称精度为±(2 mm+2×10-6D)的全站仪测距,洞内测边误差远小于1/100 000。
因为∑dy2=0,则m2yi=0,所以其中,mβ为洞内测角精度。
代入数据,得则mβ=±0.83″。
实际采用±0.7″,即洞内按一等导线要求和精度指标进行施测可满足在120 mm内贯通要求。
2. 高程测量设计洞内两开挖洞口间长度按19 km计,则高程控制测量的高差中数偶然中误差为:(三等水准限差)所以洞内高差控制测量按三等水准要求即可满足高程贯通中误差影响值为17 mm的要求。
从安全角度考虑,实际操作可按二等水准要求施测。
3. 贯通误差预计(1) 横向贯通误差预计由式当mβ=±0.7″,导线平均边长为650 m时,m y=±102 mm<120 mm(洞内分配值)。
隧道横向贯通误差预计

用GPS 作洞外控制测量的公路隧道横向贯通误差预计隧道一般都要穿越高山,地形条件复杂,传统的导线控制测量方法要跨越山峰,施测难度大,周期长,外业工作量极大。
现代公路施工控制测量中,GPS 由于具有全天侯、高精度、定位速度快、定位点间不需通视等特点,已被广泛采用。
而传统的导线控制测量的贯通误差预计的方法已不再适用。
现本文着重讨论采用GPS 测量控制的隧道贯通误差的估计方法及对GPS 点测量精度的具体要求。
隧道总的横向贯通误差来源有二个方面,一是洞外GPS 控制测量引起的误差,二是洞内导线测量引起的误差。
将地下两相向开挖的洞内导线测量误差及洞外GPS 测量误差各作为一个独立因素。
设隧道总的横向贯通误差为M 横,根据等影响原则,洞外GPS 测量误差和进出口两端进洞导线所产生的横向贯通中误差的容许值均为横横出进M 707.02M m m === (1)根据式(1),规范对洞内、洞外控制测量误差产生的横向贯通中误差的容许值的规定见表1表1 横向贯通中误差容许值 测量部位 横向贯通中误差(mm ) 两相向开挖洞口间长度(m ) <3000 3000~6000进口端 53 71 出口端 53 71 总的横向中误差 75100一、洞内导线横向误差的估算由隧道施工特点,洞内导线的横向误差可按等边直伸形导线进行估算。
在直伸形导线中,测距误差只对导线的纵向误差产生影响,而横向误差主要由测角误差引起。
如图1所示,各折角的测角误差将使导线在隧道贯通面上产生横向位移,即横向误差。
根据误差理论知,各折角的测角误差对隧道贯通面横向影响中误差为35.1n Lm m +ρ=β内 (2) 式中:m 内——洞内导线测量引起的横向贯通中误差 L ——隧道两相向开挖洞口间长度 m β ——导线测角中误差ρ ——206265″ n ——导线边数现行规范对导线平均边长和测角中误差的技术要求见表2由于隧道内观测条件较差,规范规定洞内导线边长直线地段不宜小于200m ,曲线地段不宜小于70 m 。
工程测量报告--隧道贯通误差计算

《工程测量学》实习报告隧道贯通误差计算2011 年 4 月24 日1 基本要求------------------------------------------------------------------------------------- 32 实习目的-------------------------------------------------------------------------------------3 3平面网的模拟计算与分析(COSA)---------------------------------------- 34 控制网的优化设计-------------------------------------------------------------- 45 总结--------------------------------------------------------------------------------- 51实习任务分别采用COSA系列软件和自研发软件进行平面网平差和贯通误差计算,熟悉COSA软件的使用并与自研发软件对比。
2 实习目标1) 对比进出口点与不同定向组合的横、纵向贯通误差,分析导致贯通误差最小的组合及其意义2) 分别用两个软件进行平差和贯通误差计算,对比所得结果,分别分析其相对中误差,最弱点及最弱边精度,隧道贯通误差估算结果的差异。
3 平面网平差与隧道贯通误差计算(COSA)3.1观测方案文件:人工生成简化的观测方案文件“网名.FA2”(只含一组精度),单击“生成初始观测方案文件”菜单项。
平面网观测方案文件结构:第1行(观测精度指标部分):方向中误差,边长固定误差(mm),比例误差(ppm)第2行到第K行(控制点坐标部分):点名,点类型(0-已知点,1-未知点),X坐标,Y坐标…,……,……,……第K+1行(已知方位角部分,有已知方位角值时才有此行):测站点,照准点,A,方位角值从第K+2行起(观测方案部分):测站点点号L(代表方向):照准点点号1,....., 照准点点号n(按顺时针方向排序)S(代表边长): 照准点点号1,....., 照准点点号n(按顺时针方向排序)观测值方案文件示例(网名.FA2)0.7,1,1J,0,398.9779,377.7966J1,1,410.7532,490.5660J2,1,287.2544,386.3646J3,1,343.9037,290.1835C,1,1507.0854,400.0228C1,1,1490.7444,490.5660C2,1,1559.4496,376.2656C3,1,1464.0045,296.1208J,J1,A,84.0388JL:J1,J3,C,C3S:J1,J3,C,C3J1L:J,J2,J3,C1S:J,J2,J3,C1J2L:J1,J3,C1S:J1,J3,C1J3L:J,J1,J2,C2,C3S:J,J1,J2,C2,C3CL:C1,C2,C3,JS:C1,C2,C3,JC1L:C,C2,C3,J1,J2S:C,C2,C3,J1,J2C2L:C,C1,C3,J3S:C,C1,C3,J3C3,L:C,C1,C2,J,J3S:C,C1,C2,J,J33.2生成正态标准随机数单击“生成正态标准随机数”,将弹出一对话框,要求您输入生成随机数的相关参数,第一个参数用于控制生成不相同的随机数序列,其取值可取1-10的任意整数。
隧道贯通误差测量报告

隧道贯通误差测量报告1、前言由于隧道施工测量过程中不可避免的误差,在实际隧道开挖贯通面处存在偏差。
隧道贯通面误差主要有三个方面:即沿隧道中线方向的长度偏差为纵向贯通误差;垂直于隧道中线的左右偏差为横向贯通误差;有两进出口端高程控制点分别测得贯通面同一点的高差为高程贯通误差,其中纵向及高程贯通误差对隧道正确贯通影响不大,目前隧道贯通误差主要为横向贯通误差。
2、编制依据(1) 《工程测量规范》(GB50026-2007(2) 《国家三、四等水准测量规范》(GB/T12897-2006)(3) 《公路隧道施工技术规范》(JTG F60-2009)3、工程概况标段内隧道共1座,为隧道,该隧道设计为分离式隧道。
隧道桩号范围为左线LK79+874 LK80+515路线总长为639m 右线RK79+880- RK80+490路线总长为610m隧道洞口段围岩级别为V级,洞身段为V级、W级、皿级,设置人行横洞1处。
双向四车道高速公路,隧道设计速度:80km/h。
4、贯通误差测量实测方案及误差规定(1)贯通误差测量实测方案隧道采用双洞单向开挖,由隧道左右洞出口向进口开挖,根据隧道左右洞进出口导线布设情况:左洞出口于Z4设站,以Z3-1定向,测量GPS控制点GD006即点GD006 1;右洞出口于Y4设站,以Y3-1定向,测量GPS控制点GD006即点GD006 2分别将GD006 1和GD006 GD006 2和GD006勺坐标、高程投影至线路中线及其垂直方向上,所得差值即为隧道纵向和横向误差,测得两组高程之差即为竖向贯通误差。
(2)误差规定隧道贯通误差根据《工程测量规范》(GB50026-2007规定乩6. 2隧道工程的硼工中线在贯通面上的贯画吴差’不应大于表8. 6. 2 W.«8.az |g道工程贯通限差注;作业时,可櫃18隧勇期工方法和随道用輦的不站肖贾通请菱的调整不会显著馬响Bi诡中线几何形狀和工程性獻1,躺向駅限差可适胡宽IF•曲.8,6, 3检宜控制测量隧道控量对贯诵中的影响值,不应大于表8. 6. 3的规定.* 8^3制测量对贯通申误羞辦ffl的限值5、贯通误差测量实测数据左洞进口导线实测数据右洞进口导线实测数据详细数据见附表1、26、贯通测量实测数据分析根据实测数据及:左洞:横向贯通误差为:8.0mm < 45mm高程贯通误差为:5.2mm < 25mm右洞:横向贯通误差为:0.0mm < 45mm高程贯通误差为:4.8mm < 25mm以上实测数据计算值与限差值对比得知,隧道左右洞横向贯通误差及高程贯通误差没有超过限差。
大丫山隧道贯通测量开题报告

大丫山隧道贯通测量开题报告贵州大学本科生毕业论文(设计)开题报告表目录内容提要写作提纲正文一、资产减值准备的理论概述 (4)(一)固定资产减值准备的概念 (4)(二)固定资产减值准备的方法 (5)(三)计提资产减值准备的意义 (5)二、固定资产减值准备应用中存在的问题分析 (5)(一)固定资产减值准备的计提模式不固定 (5)(二)公允价值的获取 (6)(三)固定资产未来现金流量现值的计量 (7)(四)利用固定资产减值准备进行利润操纵 (8)三、解决固定资产减值准备应用中存在的问题的对策 (10)(一)确定积累时间统一计提模式 (10)(二)统一的度量标准 (11)(三)提高固定资产可收回金额确定方式的操作性 (11)(四)加强对固定资产减值准备计提的认识 (12)(五)完善会计监督体系 (12)参考文献 (15)内容提要在六大会计要素中,资产是最重要的会计要素之一,与资产相关的会计信息是财务报表使用者关注的重要信息。
然而长期以来,我国的企业普遍存在资产不实、利润虚增的情况,从而使资产减值问题一度成为我国会计规范的热点问题。
人们也期望通过会计上的法律法规减少信息的不对称,让企业向广大投资者提供真实有效的信息。
在企业生产经营过程中,资产减值是一个不可避免的现象,本文通过对新旧会计准则的对比,针对会计实务中对资产减值准备会计处理,分析资产减值准备在会计实务操作中的存在的问题,并对新会计准则下的会计处理方法进行分析与评价,进而提出解决问题的方法,阐述了资产减值准备提取在实务操作中面临的境况。
从资产减值准备入手,对固定资产减值准备进行分析,提出了计提标准不恰当,计提时间未作统一规定等问题,并针对存在的问题提出了分析方法等对策。
写作提纲一、资产减值准备的理论概述(一)固定资产减值准备的概念(二)固定资产减值准备的方法(三)计提资产减值准备的意义二、固定资产减值准备应用中存在的问题分析(一)固定资产减值准备的计提模式不固定(二)公允价值的获取(三)固定资产未来现金流量现值的计量(四)利用固定资产减值准备进行利润操纵三、解决固定资产减值准备应用中存在的问题的对策(一)确定积累时间统一计提模式(二)统一的度量标准(三)提高固定资产可收回金额确定方式的操作性(四)加强对固定资产减值准备计提的认识(五)完善会计监督体系固定资产减值准备问题的探讨随着我国经济的发展,市场经济日益完善,大众对企业会计信息披露要求也逐步提高。
论述隧道贯通测量中导线设计与误差预计

Science &Technology Vision 科技视界1隧道贯通当前现状测绘技术的发展,使得越来越多的先进仪器和方法应用于隧道贯通测量。
国家1:10000基本地形图为隧道选址提供了基础图件;遥感技术提供了多光谱影像,可对隐患地质构造和水文地质条件进行推断;光电测距仪,电子全站仪以及全球定位系统技术的应用,使隧道施工平面控制图的建立得到革命性的改变;电子计算机的普遍应用,使隧道控制网的优化设计和贯通误差变的十分简单。
目前世界最长的隧道为日本本州和北海道全长53.9公里的青函隧道。
迄今为止,我国最长的隧道为太行山隧道,其全长27.839公里。
随着时间的推移,一定会出现更长的隧道,且其更新的速度也会越来越快。
误差在测量过程中是不可避免的,隧道贯通中的主要误差为隧道贯通测量重要方向上的误差。
在实际施工中,通常因为提高工程进度、缩短工程期限以及改善隧道中的工作环境等,我们一般采用隧道两端的开切口为施工点,从隧道的两端同时进行开工。
为了保证隧道在贯通的方向和贯通点的的误差满足《工程测量规范》中的精度要求,所以在工程施工前,隧道贯通过程中测量设计方案及预计误差都是相当重要的。
此次举例来说明一下隧道贯通测量的导线设计和误差预计本次的贯通测量地面控制网为四等GPS 控制网,采用边连式的方法进行,最长边长2360米,最短边长1300米,平均边长约1805.83m,隧道高6m,宽13m。
仪器的标称精度为±(1+lppm×D)mm。
(1)基线条件精度指标各等级GPS 相邻点间弦长精度用下式表示:σ=a 2+(bd )2√式中:σ———GPS 基线向量的弦长中误差(mm),亦即等效距离误差;a———GPS 接收机标称精度中的固定误差(mm);b———GPS 接收机标称精度中的比例误差系数(ppm);d———GPS 网中的相邻点间的距离(km)。
(2)最弱边相对中误差为:12+(1*1.8)2√1300000=1650000≤1450002隧道导线测量方案的设计2.1隧道内平面测量隧道平面测量包括井下施工导线测量、施工控制导线测量。
隧道工程开题报告

隧道工程开题报告第一篇:隧道工程开题报告一、课题的研究背景随着社会经济的不断发展,对交通运输的要求也越来越大,特别是对于关乎国民经济命脉的铁路更是有着特殊的依赖,总结其原因大致有三点:铁路运输不仅方便快捷,而且运量大,另一方面,以其安全,廉价的特点吸引了大多数的货物运输,最后,在国防建设中,铁路运输是必不可少和重要的环节,比如我们引以为傲的青藏铁路,除了在经济建设上有着不可估量的作用,而且有着极其重要的军事战略地位。
然而修铁路就难以避开山岭地带,在山岭地区可利用隧道工程克服地形或高程障碍,改善线形,提高车速,缩短里程,节约燃料,节省时间,减少对植被的破坏,保护生态环境;还可克服落石、坍方、雪崩、雪堆等危害,既能保证路线平顺、行车安全、提高舒适性和节约运费,又能增加隐蔽性、提高防护能力和不受气候影响。
我国内地有许多地势起伏、山峦纵横的山区。
铁路穿越这些地区时,往往遇到高程障碍。
而铁路限坡平缓,无法拔起需要的高度,同时,限于地势无法绕避,这时开挖隧道直接穿山最为合理,他既可以使线路顺直,避免许多无谓的展线缩短线路,又可以减小坡度,使运营条件得以改善,从而提高牵引定数,多拉快跑。
所以在铁路线上尤其是在山区铁路上,隧道的方案常为人们所选用,修建的数量也越来越多。
我国铁路采用隧道克服山区地形的范例很多的,例如,川黔线的凉风垭隧道,使跨越分水岭时,拔起高度小、展线短、线路顺直、造价低;越岭高度降低96M、线路缩短了14.7 km,占线路总延长的37.75%。
又比如宜万铁路的建设,隧道所占比率达60%。
由此可见,隧道在山区铁路线上的作用之巨大。
二、国内外发展状况人类很早就知道利用自然洞穴作为住处。
当社会发展到能制造挖掘的工具时,就出现了人工挖掘的隧道。
近代隧道兴起于运河时代,从17世纪起,欧洲陆续修建了许多隧道。
国内外隧道施工中形成了两大理论体系:一种20世纪20年代提出的传统“松弛荷载理论”,其核心内容是稳定的围岩有自稳能力,对隧道不产生荷载,而不稳定的围岩可能产生坍塌,需要用支护结构予以支承围岩体荷载。
隧道贯通误差预计分析

式中: m 。 为测角 中误 差 ; R 为导线点在 Y轴上的投影长; 为各边与 x 轴的夹角 ;
m 为光电测量仪误差 ;
经 以上计算施工测量方法经误差预计 , 满足贯通要求 。 洞 内高程基准是 由业主提供的二等水准点引测进洞的。因此从水 r o h i:  ̄1 6 mm J mh 2 _ +1 2 a m r J m确 _ . 1 5 r n r  ̄ 准点引测加密近井水准点的测量误差引起 了洞外高程控制测量误差 。 则m H :+ _ 2 5 a r m<2 5 m Ⅱ 则洞外高程控制测量对高程贯通误差 的影响值为 : r l l h x =± m 。 、 / I 式 中 3 隧道贯 通测 量实例 分析 m 二等水准第公里的高差 中 数偶然中误差 。 L 为水准路线总长。 本任务主要通过某北方城市地铁一号线的某个贯通测量实例分 另高程传递包括水准测量和钢尺联系测量,则两井高程传递测量 析, 城市地铁一号线保 ~铁区间 1 #竖井 、 2 # 竖井与铁西广场站左 、 右线 对高程贯通误差的影响为 : 厂 一 进行贯通预测及测量。 m h 。 - i - y  ̄X : i 2 i ; : : 3 . 1 采用规范及使用仪器 地下高程控制测量对高程贯通误差的影响: ( 下转 2 4 3页 ) 作者简介 : 鲁纯( 1 9 6 8 , 6 . ) , 女, 辽宁沈阳人, 副教授 , 主要研究方向为工程测量与大地测量。
一
m6 柏 噶l + m专 2 十 m 在有效期 内的 L e i c a N A 2 + G P M3( 0 . 4 mm / k m)及其配套的铟瓦钢尺进 式中: m 。 为平面贯通总横向中误差 r a m) ; 行。地面控制点由 G P S 控制点做为已知点 , 其误差可忽略不计 , 一井定 m 『 f _ 为地面平面控制测量引起 的横 向中误差 r am) ; 向时独立进行三次测量 , 则是测角中误差为 1 . m 为联系测量引起的横向中i  ̄ ( m m) ; 土 : 地下控制测量引起 的横 向中误差( mm) 。 由于地面测量的条件较地下好 ,在分配测量误差时可在等影响原 地下导线随着 向洞 内掘进 , 不断的进行导线点的建立, 在不断建立 则 的基础上作适当的调整 , 即对地面测量的精度适 当提高一些 , 而地下 起的施工导线上 , 预计隧道的横 向贯通误差 , 也就是导线终点在贯通面 控制测暑的焙府略僻一此 榨l 厣刚 西 古室加下 . 一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力等各种开支; (2) 可以保证工程质量,减少安全事故; (3) 所选择的各种方案可以为以后类似工程提供参考数据。 二、文献综述内容(在充分收集研究主题相关资料的基础上,分析国内外研究现状, 提出问题,找到研究主题的切入点,附主要参考文献) 研究现状: 隧道作为一些大型工程中必要的组成部分,其测量工作尤为重要。 近年来,由于 GPS 在定位测量中的快速发展,其作为地面控制测量的工具 得到广泛应用,可以在洞外布设 GPS 网,进行控制测量。 例如,在刊物《铁道勘察》2007 年第 6 期中,张宇关于 GPS 测量在隧道贯 通误差预计的应用中提到,GPS 洞外控制测量方案及精度估算方法合理,其贯 通估算精度满足误差要求。 隧道贯通误差包括横向、纵向以及竖向三个方面的贯通误差,从现有的测 量技术水平说,纵向、竖向误差较容易满足,关键是要满足其横向贯通误差。 在 2011 年 6 月份出售的刊物《山西建筑》中,张锋和袁宏福就这一问题做了 介绍,指出横向贯通误差的预计有利于后续工作确定合适的方案,可以以较小 的工作量完成施工测量任务。 根据贯通误差产生的来源,分为洞外控制网传递的误差和洞内控制网累积 误差,所以我的研究主题就是设计多个不同的控制网,推算各种情况下的贯通 误差,从而选择较合适的施工测量方案。 主要参考文献: [1] [2]李青岳,陈永奇.工程测量学.测绘出版社,2008 [3]孔祥元,郭际明.控制测量学.武汉大学出版社,2010
隧道工程投资大,质量要求高,所以其高精度贯通成为一个工程的重点。 如何做到既不因精度低造成贯通误差超限,影响工程进度,也不盲目追求高精 度而增大工作量,成为我们测量工作者的工作重点。
如果一个隧道施工之前设计多个方案,通过误差预计,提前选择合理的方 案,优化后再施工,就可以按照事先预计的精度贯通隧道,做到心中有数。
第八
周:分析隧道贯通测量中影响精度的主要因素。
第九
周:查阅关于隧道贯通误差预计原理与方法的资料。
第 十-十一 周:建立多方个案,通过计算得出预计误差。
第 十二 周:讨论方案的可行性,进行优化。
第 十三 周:参照规范,确立合适的方案,交老师审阅,提出修改意
见。
第 十四-十五 周:根据修改意见,认真修改、完善并按照规范进行誊写。
不是预计实际贯通差值大小。这种方法计算出的贯通数据可以用作以后工程施
工测量中的参考数据,也可以为以后类似工程提供参考。
研究方法:
根据实习期间收集到的资料,确定研究方法为在图纸上设立控制点,布设
成网,计算不同网形下隧道贯通在横方向、竖方向、以及纵方向理论上可以达
到的精度,尤其是在横方向上的贯通误差,然后选择出合适的方案。
三、研究方案(主要研究内容、目标,研究方法、进度)
研究内容:
本论文所要研究的内容就是在隧道施工之前,设计多个不同方案,通过误
差预计,计算出隧道贯通理论上可以达到的精度。通过与要求规范的比较,进
而选择合适的方案,做到即节约成本,又满足精度。
研究目标:
误差预计是对隧道贯通精度的一种估算,是预计实际偏差可能的限度,并
研究进度:
第五
周:搜集资料,确定设计题目。
第六
周:完成开题报告相关内容。
第七
周:进行开题。
第 八-十三 周:编写毕业设计草稿,交给指导教师审阅,提出修改意见。
第 十四-十五 周:根据修改意见,认真修改、完善并按照规范进行誊写。
第 十六 周:进行毕业答辩。
计算四、进程计划(各研究环节的时间安排、实施进度、完成程度)
[4]张国良,朱家钰,顾和和.矿山测量学.中国矿业大学出版社.2008 [5]薛国光.施工测量.中国铁道出版社.1984 [6]杨惠连,张涛.误差理论与数据基础.天津大学出版社.1992 [7]朱颖.客运专线无砟轨道铁路工程测量技术.中国铁道出版社.2008 [8] 王 暖 堂 . 高 速 铁 路 隧 道 贯 通 测 量 方 案 优 化 与 误 差 预 计 探 讨 . 北 京 测 绘.2009-03 [9].陈辉.施测精度对隧道贯通误差预计的探讨.天津建设科技.2011-04 [10]张剑平.隧道贯通误差预计的一种新方法.公路.1997-11 [11] 银光胜.贯通测量.误差预计应用实例。中国锰业 2011-0. [12]张锋,袁宏福.隧道贯通误差预计方法的研究与应用.山西建筑 2011-06 [13] 刘金安.普通隧洞横向贯通误差预计方法初探.农田水利.2008-12 [14]张宇.铁路客运专线隧道 GPS 测量贯通误差分析与应用.铁道勘察.2007-06 [15]陈瑾.长隧道贯通测量方案.科技创新导报.2008 [16]张立志.贯通测量方案的选择与误差预计.煤炭技术.2008-06 [17]
第 十六 周:进行毕业答辩。
五、指导教师对文献综述的月 日
教研室主任签字:
七、资土系意见 资土系(章):
200 年 月 日
教学主任签字:
200 年 月 日
山东科技大学(泰山科技学院)资土系
本科生毕业论文(设计) 开题报告
题目:隧道贯通测量方案优化与误差预计
姓名:
学号:
年级: 08 级 专业: 测绘工程
指导教师:姓名: 职称: 讲师
学科: 测绘工程
山东科技大学资土系 二○一二 年 四 月 三 日
一、选题依据(拟开展研究项目的研究目的、意义)
近年来,随着我国经济的发展,各类工程也纷纷涌现,铁路事业也进入了 一个快速发展的时期,由以前在平原、低丘陵区建造发展到现在的高原、山区 建造,隧道也渐渐多了起来。