2020高考数学预测试卷及答案

合集下载

2020年全国高考数学题型预测及答案详解 精品

2020年全国高考数学题型预测及答案详解 精品

2020年高考数学题型预测(一)数学试卷(理科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设A ,B 是两个非空集合,定义A ×B=}|{B A x B A x x ∉∈且,已知},0,2|{},4|{2>==-==x y y B x x y y A x 则A ×B=( )A .),2(]1,0[+∞B .),2()1,0[+∞C .[0,1]D .[0,2]2.23(1)i -的值为( )A .32iB .32i - C .i D .i - 3.若nxx )1(+的展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .1204.若221()12,[()](0)x g x x f g x x x -=-=≠,则1()2f = ( )A .1B .3C .7D .155.设随机变量ξ服从正态分布(0,1)N ,若(1)P p ξ>=,则(10)P ξ-<<= ( )A .12p + B .1p - C .12p -D .12p - 6.已知A (-1,2),B (2,1),则)1,1(-=a AB 按平移后得到的向量的坐标为 ( ) A .(3,-1) B .(-3,1) C .(4,-2) D .(-2,0)7.把函数sin(2)4y x π=+的图象向右平移8π个单位,再把所得图象上各点的横坐标缩短到 原来的12,则所得图象的解析式为( )A .3sin(4)8y x π=+B .sin(4)8y x π=+C .sin 4y x =D .sin y x =8.设e <x <10,记a =ln(ln x ),b =lg(lg x ),c =ln(lg x ),d =lg(ln x ),则a ,b ,c ,d 的大小关系( ) A .a <b <c <d B .c <d <a <b C .c <b <d <a D .b <d <c <a 9.已知函数)0( log )(2>=x x x f 的反函数为,,且有2)()()(111=⋅---b fa fx f若a ,b>0则ba 41+的最小值为 ( )A .2B .4C .6D .910.两个实数集合A={a 1, a 2, a 3,…, a 15}与B={b 1, b 2, b 3,…, b 10},若从A 到B 的是映射f 使B中的每一个元素都有原象,且f (a 1)≤f (a 2) ≤…≤f (a 10)<f (a 11)<…<f (a 15), 则这样的映射共 有 ( )A .510C 个B .49C 个C .1015个D .1015105A ⋅11.已知二面角βα--l 的大小为60°,m 、n 为异面直线,且βα⊥⊥n m ,,则m 、n 所成的角为( )(A )30°(B )60°(C )90°(D )120°12.如果以原点为圆心的圆经过双曲线)0,0(12222>>=-b a by a x 的焦点,而且被该双曲线的右准线分成弧长为2:1的两段圆弧,那么该双曲线的离心率e 等于 ( ) A .5B .25 C .3 D .2第Ⅱ卷(非选择题 共90分)二、填空:本大题共4小题,每小题5分,共20分。

河北省2020年高考理科数学预测试题及答案

河北省2020年高考理科数学预测试题及答案

30 0.05 40 0.05 50 0.2 60 0.3 70 0.2 80 0.15 90 0.05 62
方案( 1)平均日工资约为: 50 62 3 236
方案( 2 )平均日工资约为: 100 62 44 5 190
可知方案( 2 )平均日工资低于方案( 1)平均日工资
故骑手应选择方案( 1)
B. 若 m∥ n , m , n ,则
的 C. 若m n,m
,n
,则
D. 若 m n , m , n ,则
6. 已知平面区域
2x y 2 0,
1 : x y 0,
, 2 : x 2 y2 9 ,则点 P( x, y )
y 2 0,
1 是 P( x, y)
A. 充分不必要条件 C. 充分必要条件
B. 必要不充分条件 D. 既不充分也不必要条件
16. 数列 { an} 的首项为 1,其余各项为 1 或 2,且在第 k 个 1 和第 k 1个 1 之间有 2k 1个 2,即数
列 { an} 为: 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1,…,记数列 { an} 的前 n 项和为 Sn ,则
S2019 __________ .(用数字作答)
gt
令G x
ln x 1
fx gx
4 ,则 G ' x
1 f ' x g x f x g' x
x1
gx 2
f x g' x , gx 2
易知 f x 0 在 1, 上恒成立,所以 G ' x 0 , G x 在 1, 上单调递增,且 G 0 0 .
①当 0 a 4 时, g t 1 1 g 0 ,由 g x 在 1,

2020高考数学预测卷及答案

2020高考数学预测卷及答案

一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.) 1. 复数2+i i 在复平面上对应的点在第 象限. 2. 某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20 种,从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 . 3. 已知集合{|5}A x x =>,集合{|}B x x a =>,若命题“x A ∈”是命题“x B ∈”的充分不必要条件,则实数a 的取值范围是 . 4. 如图,直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3M 为线段BB 1上的一动点,则当AM+MC 1最小时,△AMC 1的面积为 .(第4题).5. 集合2{3,log},{,},A a B a b ==若{2},A B =I 则A B =U .6. 阅读如图所示的程序框,若输入的n 是100,则输出的变量S 的值是 .7. 向量(cos10,sin10),(cos70,sin 70)==o o o o a b ,2-a b = .8. 方程lg(2)1x x +=有 个不同的实数根. 9. 设等差数列{}n a 的前n 项和为n S ,若1≤5a ≤4,2≤6a ≤3,则6S 的取值范围是 .10.过双曲线22221(0,0)x y a b a b-=>>的左焦点(,0)(0)F c c ->,作圆:2224a x y +=的切线,切点为E ,直线FE 交双曲线右支于点P ,若1()2OE OF OP =+u u u r u u u r u u u r,则双曲线的离心率为 . 11.若函数()2ln 2f x mxx x =+-在定义域内是增函数,则实数m 的取值范围是 .12.如果圆22()()4x a y a -+-=上总存在两个点到原点的距离为1,则实数a 的取值范围是 . 13.已知实数,x y满足13x x y y-+=+-,则x y+的最大值为 .14.当n 为正整数时,函数()N n 表示n 的最大奇因数,如(3)3,(10)5,N N ==⋅⋅⋅,设(1)(2)(3)(4)...(21)(2)n n n S N N N N N N =+++++-+,则n S = .二、解答题:本大题共六小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .已知3cos 24C =-.(1)求sin C ;(2)当2c a =,且b =,求a .16.(本题满分14分)如图, ABCD 是边长为3的正方形,DE ⊥平面ABCD ,DE AF //,AF DE 3=,BE 与平面ABCD 所成角为060.(1)求证:AC ⊥平面BDE ;(2)设点M 是线段BD 上一个动点,试确定点M 的位置,使得//AM 平面BEF ,并证明你的结论.A BCDF EA CB17.(本题满分14分)已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为l :2x =.⑴ 求椭圆的标准方程;⑵ 设O 为坐标原点,F 是椭圆的右焦点,点M 是直线l 上的动点,过点F 作OM 的垂线与以OM 为直径的圆交于点N ,求证:线段ON 的长为定值.18.(本题满分16分)如图,直角三角形ABC中,∠B =90o,AB =1,BC .点M ,N 分别在边AB 和AC上(M 点和B 点不重合),将△AMN 沿MN 翻折,△AMN 变为△A 'MN ,使顶点A '落在边BC 上(A '点和B 点不重合).设∠AMN =θ.(1) 用θ表示线段AM 的长度,并写出θ的取值范围; (2) 求线段A N '长度的最小值19.(本题满分16分) 已知k R ∈,函数()(01,01)xx f x mk n m n =+⋅<≠<≠.(1) 如果实数,m n 满足1,1m mn >=,函数()f x 是否具有奇偶性?如果有,求出相应的k 值,如果没有,说明为什么?(2) 如果10,m n >>>判断函数()f x 的单调性;(3) 如果2m =,12n =,且0k ≠,求函数()y f x =的对称轴或对称中心.20.(本题满分16分)已知各项均不为零的数列{a n }的前n 项和为S n ,且满足a 1=c ,2S n =a n a n +1+r .(1)若r =-6,数列{a n }能否成为等差数列?若能,求c 满足的条件;若不能,请说明理由.(2)设32111234212n n n na a a P a a a a a a --=+++---L ,2242345221n n n n a a a Q a a a a a a +=+++---L ,若r >c >4,求证:对于一切n ∈N *,不等式2n n n P Q n n -<-<+恒成立.。

2020年高考数学预测卷及答案(理科)

2020年高考数学预测卷及答案(理科)

2020年高考数学预测卷及答案(理科)学校: 考点: 考号: 姓名:本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

第Ⅰ卷一、选择题:本题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}(,)|1,01A x y y x x ==+≤≤,集合{}(,)|2,010B x y y x x ==≤≤,则集合A B =( )A .{}1,2B .{}|01x x ≤≤C .(){}1,2D .∅2.已知复数z 满足11i 12z z -=+,则复数z 在复平面内对应点在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V ,求其直径d ,公式为3169d V =.如果球的半径为13,根据“开立圆术”的方法求球的体积为( ) A .481π B .6π C .481D .61 4.已知函数()()π17πsin cos 0326f x x x ωωω⎛⎫⎛⎫=+--> ⎪ ⎪⎝⎭⎝⎭,满足π364f ⎛⎫-= ⎪⎝⎭,则满足题意的ω的最小值为( )A .13B .12C .1D .25.某几何体的三视图如图所示,设正方形的边长为a ,则该三棱锥的表面积为( ) A .2aB .23aC .236a D .223a6.某工厂生产了一批颜色和外观都一样的跳舞机器人,从这批跳舞机器人中随机抽取了8个,其中有2个是次品,现从8个跳舞机器人中随机抽取2个分配给测验员,则测验员拿到次品的概率是( )A .328B .128C .37D .13287.如图所示,在梯形ABCD 中,∠B =π2,2AB =,BC =2,点E 为AB 的中点,若向量CD 在向量BC 上的投影为12-,则CE BD ⋅=( )A .-2B .12-C .0D 28.已知等差数列{}n a 的前n 项和为S n ,且S 2=4,S 4=16,数列{}n b 满足1n n n b a a +=+,则数列{}n b 的前9和9T 为( )A .80B .20C .180D .1669.2015年12月16日“第三届世界互联网大会”在中国乌镇举办.为了保护与会者的安全,将5个安保小组全部安排到指定三个区域内工作,且这三个区域每个区域至少有一个安保小组,则这样的安排的方法共有( )A .96种B .100种C .124种D .150种10.已知函数cos y x x =+,有以下命题: ①()f x 的定义域是()2π,2π2πk k +; ②()f x 的值域是R ; ③()f x 是奇函数;④()f x 的图象与直线y x =的交点中有一个点的横坐标为π2, 其中推断正确的个数是( ) A .0B .1C .2D . 311.已知椭圆的标准方程为22154x y +=,12,F F 为椭圆的左右焦点,O 为原点,P 是椭圆在第一象限的点,则12PF PF PO -的取值范围( )A .50,5⎛⎫ ⎪ ⎪⎝⎭B .250,5⎛⎫⎪ ⎪⎝⎭C .350,5⎛⎫⎪ ⎪⎝⎭D .650,5⎛⎫⎪ ⎪⎝⎭12.已知正方体1111ABCD A B C D -的棱长为1,E 为棱1CC 的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F 、B 、E 、G 、H 为面MBN 过三点B 、E 、F 的截面与正方体1111ABCD A B C D -在棱上的交点,则下列说法错误的是( ) A .HF //BE B .132BM =C .∠MBN 的余弦值为6565D .五边形FBEGH 的面积为2361144第Ⅱ卷本卷包括必考题和选考题两部分。

2020年高考数学押题预测卷03(山东卷)(参考答案)

2020年高考数学押题预测卷03(山东卷)(参考答案)

P( y ) P(43.91 y 73.09) 0.6826 , 所以 P( y„ 43.91) 1 0.6826 0.1587 ,
2
所以这 1000 名被调查者中午休睡眠时间低于 43.91 分钟(含 43.91)的人数估计有
0.1587 1000 159 (人).
(3) X 的可能值为 0,1,2,
~
2020 年高考押题预测卷 03(山东卷)
数学·参考答案
1
2
3
4
5
6
7
8
9 10 11 12
A
DD
D
C
B
D D ABD CD BCD AD
13. 3 5
14. 2 3
17.(本小题满分 10 分)
15. 2020 0
16. 2 6
8 6 729
【解析】(1)在VCAM 中,已知 CAM , sin CMA 3 , AC 2 ,由正弦定理,
所以 f (x) 有极小值 f (1) a ,无极大值; e
②当
a
0
时,令
f
(x)
0
x
1 或
x
ln
2 a

(ⅰ)
a
2e
时,x
,
ln
2 a
时,f
(x)
0
,f
(
x)
单调递减;x
ln
2 a
,
1
时,f
(
x)
0

f (x) 单调递增;
x (1, ) 时, f (x) 0 , f (x) 单调递减;
则 Sk2 k 22 k 2 k 2 5k 6 ,
若 a1 , ak , Sk2 成等比数列,则 ak 2 a1 Sk2 ,

浙江省2020年高考文科数学预测题及答案

浙江省2020年高考文科数学预测题及答案

浙江省2020年高考文科数学预测题及答案(满分150分,考试时间120分钟)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知集合{}{}(4)0,3,0,1,3A x x x B =-<=-,则A B=( )A. {}3,1--B. {}1,3C. {}3,1,0--D. {}0,1,32. 已知函数1()()xxf x e e=-,则下列判断正确的是( ) A. 函数()f x 是奇函数,且在R 上是增函数 B. 函数()f x 是偶函数,且在R 上是增函数 C. 函数()f x 是奇函数,且在R 上是减函数 D. 函数()f x 是偶函数,且在R 上是减函数3. 已知数列{}n a ,则123a a a <<是数列{}n a 是递增数列的( )条件 A. 充分不必要 B. 必要不充分C. 充要D. 既不充分也不必要4. 下表是降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.7035ˆ.x y=+,则表中m 的值为( )A. 3B. 3.5C. 4D. 4.55. 将函数sin 6y x π⎛⎫=- ⎪⎝⎭的图象上所有的点向右平移4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图象的解析式为( ) A. 5sin 212y x π⎛⎫=-⎪⎝⎭ B. sin 212x y π⎛⎫=+ ⎪⎝⎭C. 5sin 212x y π⎛⎫=- ⎪⎝⎭D. 5sin 224x y π⎛⎫=- ⎪⎝⎭6. 若x 、y 满足约束条件30200x y x y y +-<⎧⎪-≥⎨⎪≥⎩,则43z x y =-的最小值为( )A. 0B. -1C. -2D. -37. 函数22()log (34)f x x x =--的单调减区间为( )A. (,1)-∞-B. 3(,)2-∞-C. 3(,)2+∞D. (4,)+∞8. 函数x x x f ln )1()(-=的图象可能为 ( )9. 若函数()sin cos (f x a x x a =+为常数,a R ∈)的图象关于直线6x π=对称,则函数()sin cos g x x a x =+的图象( )A. 关于直线3x π=-对称B. 关于直线6x π=对称C. 关于点,03π⎛⎫⎪⎝⎭对称D. 关于点5,06π⎛⎫⎪⎝⎭对称 10. 三棱锥S ABC -中,SA ⊥底面ABC ,若3SA AB BC AC ====,则该三棱锥外接球的表面积为( ) A. 18π B.221πC. 21πD. 42π11.已知点分别是双曲线的左、右焦点,过且垂直于轴的直线与双曲线交于两点,若,则该双曲线的离心率的取值范围是( ) A.B.C. D.12.已知函数,若存在,使得,则实数的取值范围是( )A. B. C. D.二、填空题(本题共4小题,每小题5分,共20分。

2020年山东省新高考预测卷数学参考答案及解析

2020年山东省新高考预测卷数学参考答案及解析

2020年山东省新高考预测卷数学 参考答案及解析参考答案:1-4:DCBA 5-8:DBCB 9:AC 10:ABD 11:ACD 12:ACD 13:14 14:22+2 15:2 23 16:[25-4,25+4]解析:1、z =(2+i)(3-2i)=8-i ,所以复数z 在复平面内对应的点的坐标为(8,-1),故选D.2、由题意得,A ={x |y =ln(x -1)}={x |x >1},B ={x |x 2-4≤0}={x |-2≤x ≤2},所以A ∩B ={x |1<x ≤2},故选C.3、根据线面垂直的判定和性质,可知由后者可推前者,但由前者不能推后者,故“直线l 与平面α内的无数条直线垂直”是“直线l 与平面α垂直”的必要不充分条件,选B.4、∵f (-x )=f (x ),∴f (x )是偶函数,故排除B ,D.∵f ⎝ ⎛⎭⎪⎫π2=2>1,∴排除C.故选A.5、法一 设AB →=a ,AD →=b ,则a·b =0,a 2=16,AC →=AD →+DC →=b +12a ,AE →=12(AC →+AB →)=12⎝ ⎛⎭⎪⎫b +12a +a =34a +12b ,所以AB →·(AC →+AE →)=a ·⎝ ⎛⎭⎪⎫b +12a +34a +12b =a ·⎝ ⎛⎭⎪⎫54a +32b =54a 2+32a ·b =54a 2=20,故选D.法二 以A 为坐标原点建立平面直角坐标系(如图所示),设AD =t (t >0),则B (4,0),C (2,t ),E ⎝ ⎛⎭⎪⎫3,12t ,所以AB →·(AC →+AE →)=(4,0)·⎣⎢⎡⎦⎥⎤(2,t )+⎝ ⎛⎭⎪⎫3,12t =(4,0)·⎝ ⎛⎭⎪⎫5,32t =20,故选D.6、由题意知,八卦中含1根与2根阴线的卦各有3种,含0根与3根阴线的卦各有1种,故从8种卦中取2卦的取法总数为C 28种,2卦中恰含4根阴线的取法为C 23+C 13·1=6种,所以所求概率P =6C 28=314,故选B.7、由抛物线的定义知|AF |=p 4+p2=3,解得p =4,所以抛物线C 的方程为y 2=8x ,A (1,a ),则a 2=8,解得a =22或a =-22(舍去),所以A (1,22).又焦点F (2,0),所以直线AF 的斜率为-22,直线AF 的方程为y =-22(x -2),代入抛物线C 的方程y 2=8x ,得x 2-5x +4=0,所以x A +x B =5,|AB |=x A +x B +p =5+4=9,故选C.8、根据AB ⊥BC 可知AC 为三角形ABC 所在截面圆O 1的直径,又平面PAC ⊥平面ABC ,△APC 为等边三角形,所以P 在OO 1上,如图所示,设PA =x ,则AO 1=12x ,PO 1=32x ,所以PO 1=32x =OO 1+2=4-⎝ ⎛⎭⎪⎫12x 2+2⇒⎝ ⎛⎭⎪⎫32x -22=4-⎝ ⎛⎭⎪⎫12x 2⇒x 2-23x =0⇒x =23,所以AO 1=12×23=3,PO 1=32×23=3,当底面三角形ABC 的面积最大时,即底面为等腰直角三角形时三棱锥P -ABC 的体积最大,此时V =13S △ABC ×PO 1=13×⎝ ⎛⎭⎪⎫12×23×3×3=3.9、因为a 2,a 3+1,a 4成等差数列,所以a 2+a 4=2(a 3+1),因此,a 1+a 2+a 3+a 4=a 1+3a 3+2=a 1+14,故a 3=4.又{a n }是公比为q 的等比数列,所以由a 2+a 4=2(a 3+1),得a 3⎝⎛⎭⎪⎫q +1q =2(a 3+1),解得q =2或12.10、由条形统计图知,B —自行乘车上学的有42人,C —家人接送上学的有30人,D —其他方式上学的有18人,采用B ,C ,D 三种方式上学的共90人,设A —结伴步行上学的有x 人,由扇形统计图知,A —结伴步行上学与B —自行乘车上学的学生占60%,所以x +42x +90=60100,解得x =30,故条形图中A ,C 一样高,扇形图中A 类占比与C 一样都为25%,A 和C 共占约50%,故D 也正确.D 的占比最小,A 正确.11、g (x )=cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π8+π12=cos ⎝ ⎛⎭⎪⎫2x +π3.g (x )的最小正周期为π,选项A 正确;当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π3∈⎣⎢⎡⎦⎥⎤π3,4π3,故g (x )在⎣⎢⎡⎦⎥⎤0,π2上有增有减,选项B 错误;g ⎝ ⎛⎭⎪⎫π12=0,故x =π12不是g (x )图象的一条对称轴,选项C 正确.当x ∈⎣⎢⎡⎦⎥⎤-π6,π6时,2x +π3∈⎣⎢⎡⎦⎥⎤0,2π3,且当2x +π3=2π3,即x =π6时,g (x )取最小值-12,D 正确.12、∵φ(x )=e x·f (x )-g (x )ex只有一个零点,∴2m (x 2+1)-e x-(m +2)(x 2+1)2e x=0只有一个实数根,即(m +2)⎝ ⎛⎭⎪⎫x 2+1e x 2-2m ·x 2+1e x +1=0只有一个实数根.令t =x 2+1e x ,则t ′=(x 2+1)′e x -(x 2+1)e x (e x )2=-(x -1)2e x≤0,∴函数t =x 2+1ex在R 上单调递减,且x →+∞时,t →0,∴函数t =x 2+1ex的大致图象如图所示,所以只需关于t 的方程(m +2)t 2-2mt +1=0(*)有且只有一个正实根. ①当m =2时,方程(*)为4t 2-4t +1=0,解得t =12,符合题意;②当m =3时,方程(*)为5t 2-6t +1=0,解得t =15或t =1,不符合题意;③当m =-3时,方程(*)为t 2-6t -1=0,得t =3±10,只有3+10>0,符合题意. ④当m =-4时,方程(*)为2t 2-8t -1=0,得t =4±322,只有4+322>0,符合题意.故选A ,C ,D.13、根据题意得:f (-2)=(-2)2=4, 则f (f (-2))=f (4)=24-2=16-2=14. 14、由题意得2b a +1b =2b a +a +2b b =2b a +ab+2≥22b a ·ab+2=22+2,当且仅当a =2b =2-1时,等号成立,所以2b a +1b的最小值为22+2.15、由已知可得(2-12)(1+a )3=27,则a =2,∴(2-x 2)(1+ax )3=(2-x 2)(1+2x )3=(2-x 2)(1+6x +12x 2+8x 3),∴展开式中含x 2的项的系数是2×12-1=23.16、由题意可知,直线OP 的方程为y =k 1x ,OQ 的方程为y =k 2x ,因为OP ,OQ 与圆M 相切,所以|k 1x 0-y 0|1+k 21=22,|k 2x 0-y 0|1+k 22=22, 分别对两个式子进行两边平方,整理可得k 21(8-x 20)+2k 1x 0y 0+8-y 20=0,k 22(8-x 20)+2k 2x 0y 0+8-y 20=0,所以k 1,k 2是方程k 2(8-x 20)+2kx 0y 0+8-y 2=0的两个不相等的实数根,所以k 1k 2=8-y 208-x 20.又k 1·k 2=-1,所以8-y 208-x 20=-1,即x 20+y 20=16.又|TO |=4+16=25,所以|TO |-4≤|TM |≤|TO |+4,所以25-4≤|TM |≤25+4. 答案 [25-4,25+4]17. (1)由题意,⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36,解得d =2,a 1=2. ∴a n =2+(n -1)×2=2n .(2)选条件①:b n =42n ·2(n +1)=1n (n +1),S n =11×2+12×3+…+1n (n +1)=⎝ ⎛⎭⎪⎫11-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=nn +1. 选条件②:∵a n =2n ,b n =(-1)na n , ∴S n =-2+4-6+8-…+(-1)n·2n , 当n 为偶数时,S n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=n2×2=n ;当n 为奇数时,n -1为偶数, S n =(n -1)-2n =-n -1.∴S n =⎩⎪⎨⎪⎧n ,n 为偶数,-n -1,n 为奇数.选条件③:∵a n =2n ,b n =2a n ·a n ,∴b n =22n ·2n =2n ·4n, ∴S n =2×41+4×42+6×43+…+2n ×4n,① 4S n =2×42+4×43+6×44+…+2(n -1)×4n +2n ×4n +1,②由①-②得,-3S n =2×41+2×42+2×43+…+2×4n -2n ×4n +1=8(1-4n )1-4-2n ×4n +1=8(1-4n )-3-2n ×4n +1,∴S n =89(1-4n )+2n 3·4n +1.18. (1)法一 因为m ∥n ,所以3a cos C =(2b -3c )cos A , 由正弦定理得3sin A cos C =2sin B cos A -3cos A sin C , 得3sin(A +C )=2sin B cos A ,所以3sin B =2sin B cos A ,因为sin B >0,所以cos A =32,又A ∈(0,π),所以A =π6. 法二 因为m ∥n ,所以3a cos C =(2b -3c )cos A ,易知cos C =a 2+b 2-c 22ab ,cos A =b 2+c 2-a 22bc ,代入上式得,3a ×a 2+b 2-c 22ab =(2b -3c )×b 2+c 2-a 22bc,整理得,3bc =b 2+c 2-a 2,所以cos A =b 2+c 2-a 22bc =32,又A ∈(0,π),所以A =π6.(2)由(1)得3bc =b 2+c 2-a 2,又b 2-a 2=12c 2,所以c =23b ,又S △ABC =12bc sin A =12b ×23b ×12=332,得b 2=9,所以b =3. 19. (1)E ,F 分别为BP ,CD 的中点,证明如下: 连接ME ,MF ,EF ,∵M ,F 分别为AD ,CD 的中点,∴MF ∥AC .又E 为BP 的中点,且四边形PBCD 为梯形,∴BC ∥EF .∵MF ⊄平面ABC ,AC ⊂平面ABC , ∴MF ∥平面ABC ,同理EF ∥平面ABC , 又∵MF ∩EF =F ,MF ,EF ⊂平面MEF , ∴平面MEF ∥平面ABC .(2)由题意知AP ,BP ,DP 两两垂直,以P 为坐标原点,PB ,PD ,PA 所在的直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,∵在等腰梯形ABCD 中,AB =2,BC =1,AD =3,BP ⊥AD ,∴AP =1,BP =1,PD =2, ∴M ⎝ ⎛⎭⎪⎫0,1,12,P (0,0,0),C (1,1,0),A (0,0,1),PC →=(1,1,0),PM →=⎝⎛⎭⎪⎫0,1,12.设平面MPC 的法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·PC →=0,n 1·PM →=0,即⎩⎪⎨⎪⎧x +y =0,y +12z =0,令z =-2,则y =1,x =-1,∴n 1=(-1,1,-2)为平面MPC 的一个法向量. 同理可得平面PAC 的一个法向量为n 2=(-1,1,0). 设二面角M -PC -A 的平面角为θ,由图可知θ∈⎝⎛⎭⎪⎫0,π2,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=26×2=33.∴二面角M -PC -A 的余弦值为33. 20. (1)根据表中数据,描点如图:(2)由已知数据得t -= 1+2+3+4+5+66=3.5,y -=3+5+8+11+13+146=9,∑6i =1t i y i =3+10+24+44+65+84=230,∑6i =1t 2i =1+4+9+16+25+36=91, b ^=∑6i =1t i y i -6t - y-∑6i =1t 2i -6t-2=230-6×3.5×991-6×3.52≈2.34,a ^=y --b ^ t -=9-2.34×3.5=0.81, 所以y 关于t 的线性回归方程为y ^=2.34t +0.81.(3)由(2)可知,当t =1时,y ^1=3.15;当t =2时,y ^2=5.49;当t =3时,y ^3=7.83;当t=4时,y ^4=10.17;当t =5时,y ^5=12.51;当t =6时,y ^6=14.85.与年利润数据y i 对比可知,满足y ^i -y i <0的数据有3个,所以X 的所有可能取值为0,1,2,则P (X =0)=C 23C 26=15,P (X =1)=C 13C 13C 26=35,P (X =2)=C 23C 26=15,X 的分布列为数学期望E (X )=0×15+1×35+2×5=1.21. (1)由椭圆x 2a 2+y 2b 2=1的右焦点为(3,0),知a 2-b 2=3,即b 2=a 2-3,则x 2a 2+y 2a 2-3=1,a 2>3.又椭圆过点M (-2,1),∴4a 2+1a 2-3=1,又a 2>3,∴a 2=6.∴椭圆Γ的标准方程为x 26+y 23=1.(2)设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 26+y 23=1,y =k (x -1)得x 2+2k 2(x -1)2=6,即(1+2k 2)x 2-4k 2x +2k 2-6=0,∵点N (1,0)在椭圆内部,∴Δ>0, ∴⎩⎪⎨⎪⎧x 1+x 2=4k21+2k2, ①x 1x 2=2k 2-62k 2+1, ②则t =MA →·MB →=(x 1+2)(x 2+2)+(y 1-1)(y 2-1) =x 1x 2+2(x 1+x 2)+4+(kx 1-k -1)·(kx 2-k -1) =(1+k 2)x 1x 2+(2-k 2-k )(x 1+x 2)+k 2+2k +5 ③, 将①②代入③得,t =(1+k 2)·2k 2-62k 2+1+(2-k 2-k )·4k22k 2+1+k 2+2k +5,∴t =15k 2+2k -12k 2+1,∴(15-2t )k 2+2k -1-t =0,k ∈R , 则Δ1=22+4(15-2t )(1+t )≥0,∴(2t -15)(t +1)-1≤0,即2t 2-13t -16≤0, 由题意知t 1,t 2是2t 2-13t -16=0的两根, ∴t 1+t 2=132.22.(1) ∵a =0时,∴f (x )=e x -ln x ,f ′(x )=e x-1x(x >0),∴f (1)=e ,f ′(1)=e -1,∴函数f (x )的图象在(1,f (1))处的切线方程为:y -e =(e -1)(x -1),即(e -1)x -y +1=0.(2)证明 ∵f ′(x )=ex +a-1x(x >0),设g (x )=f ′(x ),则g ′(x )=e x +a+1x2>0,∴g (x )是增函数,∵ex +a>e a ,∴由e a >1x⇒x >e -a,∴当x >e -a时,f ′(x )>0; 若0<x <1⇒ex +a<ea +1,由ea +1<1x⇒x <e -a -1,∴当0<x <min{1,e -a -1}时,f ′(x )<0,故f ′(x )=0仅有一解,记为x 0,则当0<x <x 0时,f ′(x )<0,f (x )递减;当x >x 0时,f ′(x )>0,f (x )递增;∴f (x )min =f (x 0)=e x 0+a -ln x 0,而f ′(x 0)=e x 0+a -1x 0=0⇒e x 0+a =1x 0⇒a =-ln x 0-x 0,记h (x )=ln x +x , 则f (x 0)=1x 0-ln x 0=h ⎝ ⎛⎭⎪⎫1x 0,a >1-1e ⇔-a <1e-1⇔h (x 0)<h ⎝ ⎛⎭⎪⎫1e,而h (x )显然是增函数, ∴0<x 0<1e ⇔1x 0>e ,∴h ⎝ ⎛⎭⎪⎫1x 0>h (e)=e +1. 综上,当a >1-1e时,f (x )>e +1.。

2020高考数学预测模拟试卷含答案

2020高考数学预测模拟试卷含答案

4)的一条对称轴是(4 ,Bx =3Cx = - 3D x = -第Ⅰ卷(选择题共 60 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、在等比数列{a n }中, 若 a 1a a a a = 1 , 则 ( )2 3 4 5Aa 1=1B a 3=1C a 4=1D a 5=12、对于任意实数 a 、b 、c 、d ,命题:① 若a > b , c < 0, 则ac > bc ;② 若a > b , 则ac 2 > bc 2 ;③ 若ac 2 < bc 2 , 则a < b ; ④ 若a > b , 则 1 < 1 ;⑤ 若a > b > 0, c > d > 0, 则ac > bd . a b其中真命题的个数是) (A 、1B 、2C 、3D 、43、若 tan α =2 , 则 sin α cos α 的 值为D1A1 2B 23C 254、函数y=sin(2x- π)A x =π π π π 8⋅ = ( )2,-⎨ 的解集为( )⎧⎪log ( x 2 - 1) > 15、 2sin 2αcos 2α 1 + cos 2α cos2α Atan αBtan 2α C 1D1 26、.已知等差数列{a n }的前 20 项的和为 100,公差是-2,则数列前( )项的和最大。

A.12D.107、已知函数 y =小值分别是()B.13C.12 或 132 cosx, x ∈[- π ,3π ] ,则函数 y 的最大值、最3 4A. 2 2,-1 B. 1, -1 C. 2 2 D. 2 ,-18、不等式组2⎪⎩ x - 2 < 2A (0,3)B ( 3, 2)C ( 3, 4)D (2, 4)9 、已知函数 y = f ( x ) 图象如图n →∞< 3 , 1 + 1 + 1 < 5 , 1 + 1 + 1 + 1 <10、给出① lim x 3 + 3x 2 + 2 x ;②曲线 y = x 4+5 在 x=0 处的切x →-2 x 2 - x - 6线的斜率值;③数列{a n }中, a n = (-1) n n ,则 lim a 的值;④函数 ny=x 4-2x 2+5 在[-2,2]上的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答卷纸的相应位置上.......... 1.若复数z 满足(3)4i z i -=(i是虚数单位),则z = ▲ .2.已知集合A ={x |6x +a >0},若1∉A ,则实数a 的取值范围是 ▲ .3.命题p :函数y =tanx 在R 上单调递增,命题q :△ABC 中,∠A >∠B 是sinA >sinB 的充要条件,则p ∨q 是 ▲ 命题.(填“真”“假”)4.某地区为了解中学生的日平均睡眠时间(单位:h ), 随机选择了n 位中学生进行调查,根据所得数据 画出样本的频率分布直方图如图所示,且从左到 右的第1个、第4个、第2个、第3个小长方形 的面积依次构成公差为0.1的等差数列, 又第一小组的频数是10,则=n ▲ .注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.5.把一颗骰子投掷2次,观察出现的点数,记第一次出现的点数为a ,第二次出现的点数为b ,则方程组3,2 2.ax by x y +=⎧⎨+=⎩只有一个解的概率为 ▲ .6.如果2(tan )sin 5sin cos f x x x x =-g , 那么(5)f = ▲ .7.已知双曲线1922=-my x 的一个焦点在圆05422=--+x y x 上,则双曲线的渐近线方程 为 ▲ .8.程序框图如下,若恰好经过....6.次.循环输出结果,则a = ▲ .9.将函数y =sin (2x +56π)的图象向左平移至少 ▲ 个单位,可得一个偶函数的图象.10. 已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题: ① 若//αβ,则l m ⊥; ②若αβ⊥,则//l m ; ③ 若//l m ,则αβ⊥; ④若l m ⊥,则//αβ. 其中正确命题的序号是 ▲ .1 1 1 1 1 1 …Y结束开始0,1T i ←←(1)i T T a a a Z ←+>∈且输出T 200T >N1i i ←+11.某资料室在计算机使用中,产生如右表所示的编码,该编码以一定的规则排列,且从左至右以及从上到下都是无限的.此表中,主对角线上数列1,2,5,10,17,…的一个通项公式na =▲ .12. 在ABC ∆中,A (1,1),B (4,5),C (—1,1), 则与角A 的平分线共线且方向相同的单位向量 为 ▲ .13. 已知函数f (x )满足f (1)=41,f (x )+ f (y )=4f (2y x +)g f (2y x -)(x ,y ∈R ),则f (—2011)=▲ . 14. 已知二次函数2(),f x x x k k Z=-+∈,若函数2)()(-=x f x g 在31,2⎛⎫- ⎪⎝⎭上有两个不同的零点,则)(2)]([2x f x f +的最小值为▲ .1 2 3 4 5 6 … 1 3 5 7 9 11 … 1 4 7 10 13 16 … 1 5 9 13 17 21 … 1 6 11 16 21 26 …… … … … … … …二、解答题:本大题共6小题,共计90分.请把答案写在答题卡相应的位置上.解答时应写出文字说明,证明过程或演算步骤.15.(本题满分14分)已知∆ABC 的面积S 满足443S ≤≤,且AB AC ⋅u u r u u u r=—8.(Ⅰ)求角A 的取值范围; (Ⅱ)若函数22cos 2sin 33sin cos 4444()x xx xf x -+⋅=,求()f A 的最大值.16.(本题满分14分)如图,把长、宽分别为4、3的长方形ABCD 沿对角线AC 折成直二面角.(Ⅰ)求顶点B 和D 之间的距离;(Ⅱ)现发现BC 边上距点C 的31处有一缺口E ,请过点E作一截面,将原三棱锥分割成一个三棱锥和一个棱台两部分,为使截去部分体积最小,如何作法?请证明你的结论.ABCDE .AC BE . D17.(本题满分15分)如图,已知:椭圆M 的中心为O ,长轴的两个端点为A 、B ,右焦点为F ,AF=5BF .若椭圆M 经过点C ,C 在AB 上的射影为F ,且△ABC 的面积为5. (Ⅰ)求椭圆M 的方程;(Ⅱ)已知圆O :22+x y =1,直线:l mx ny +=1,试证明:当点P (m ,n )在椭圆M 上运动时,直线l 与圆O 恒相交;并求直线l 被圆O 截得的弦长的取值范围.18.(本题满分15分)各项均为正数的等比数列}{n a ,a 1=1,2a 4a =16,单调增数列}{n b 的前n 项和为n S ,43a b =,且2632n n n S b b =++(*N n ∈). (Ⅰ)求数列}{n a 、}{n b 的通项公式;xO F A F B Cy(Ⅱ)令nn nb c a =(*N n ∈),求使得1n c >的所有n 的值,并说明理由.(Ⅲ) 证明}{n a 中任意三项不可能构成等差数列.19.(本题满分16分)由一个小区历年市场行情调查得知,某一种蔬菜在一年12个月内每月销售量()P t (单位:吨)与上市时间t (单位:月)的关系大致如图(1)所示的折线ABCDE 表示,销售价格()Q t (单位:元/千克)与上市时间t (单位:月)的大致关系如图(2)所示的抛物线段GHR 表示(H 为顶点). (Ⅰ)请分别写出()P t ,()Q t 关于t 的函数关系式,并求出在这一年内3到6月份的销售额最大的月份? (Ⅱ)图(1)中由四条线段所在直线....围成的平面区域为M ,动点(,)P x y 在M 内(包括边界),求5z x y =-的最大值; (Ⅲ) 由(Ⅱ),将动点(,)P x y 所满足的条件及所求的最大值由加法运算类比到乘法运算(如1233x y ≤-≤类比为2313x y≤≤),试列出(,)P x y 所满足的条件,并求出相应的最大值.(图1)(图2)20.(本题满分16分)如果实数x ,y ,t 满足|x —t |≤|y —t |,则称x 比y 接近t .(Ⅰ)设a 为实数,若a |a | 比a 更接近1,求a 的取值范围;(Ⅱ)f (x )=ln 11+-x x ,证明:2()nk f k =∑比222(1)n n n n --+更接近0(k∈Z ).数学附加题(满分40分,考试时间30分钟)21.【选做题】在A ,B ,C ,D 四小题中只能选做2题,每小题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.A .选修4—1 几何证明选讲 已知ABC ∆中,AC AB =,D 是ABC ∆外接圆劣弧AC 上的点(不与点C A ,重合),延长BD 至E . 求证:AD 的延长线平分CDE ∠.B .选修4—2 矩阵与变换 已知矩阵⎥⎦⎤⎢⎣⎡=41b a A ,若矩阵A 属于特征值1的一个特征向量为α1=⎥⎦⎤⎢⎣⎡-13,属于特征值5的一个特征向量为α2=⎥⎦⎤⎢⎣⎡11.求矩阵A ,并写出A 的逆矩阵.C .选修4—4 参数方程与极坐标 已知圆C的参数方程为()为参数θθθ⎩⎨⎧+=+=sin 23,cos 21y x ,若P 是圆C 与x 轴正半轴的交点,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,设过点P 的圆C 的切线为l ,求直线l 的极坐标方程.D .选修4—5 不等式证明选讲设c b a ,,均为正数,证明:c b a ac c b b a ++≥++222.【必做题】第22题、第23题,每题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.22.已知一口袋中共有4只白球和2只红球(1)从口袋中一次任取4只球,取到一只白球得1分,取到一只红球得2分,设得分为随机变量X,求X的分布列与数学期望;(2)从口袋中每次取一球,取后放回,直到连续出现两次白球就停止取球,求6次取球后恰好被停止的概率.23.在平面直角坐标系xoy中,已知焦点为F的抛物线y2=上x4有两个动点A、B,且满足FB=, 过A、B两点分别作AFλ抛物线的切线,设两切线的交点为M.(1)求:→--OA→--⋅OB的值;(2)证明:ABFM⋅为定值.参考答案一、填空题 1. —1+3i 2. (,6]-∞- 3. 真 4. 100 5.11126. 07.x y 322±= 8. 2 9.3π 10.①③ 11. (n —1)2+1 12. )552,55(-13. 1414.2881 二、解答题15. (Ⅰ)∵AB AC ⋅u u u r u u u r =—8,∴||||cos AB AC AB AC A ⋅⋅⋅=u u r u u u r u u r u u u r=—8,∴ ||||AB AC ⋅u u r u u u r=8cos A- ① ∵|1|||sin 2BA AC S A ⋅=⋅uu r u u r ②将①代入②得4tan S A =-,由443S ≤≤,得3tan 1A -≤≤-,又(0,)A π∈,∴23,34A ππ⎡⎤∈⎢⎥⎣⎦.(Ⅱ)22()cos 2sin 33sincos 4444A A A Af A =-+⋅ =133(1cos )(1cos )sin22222A A A +--+ =3331sincos 22222A A +-=3113(sin cos )22222A A +- =13(sin cos cos sin )26262A A ππ+-=13sin()262A π+-,当262A ππ+=,即A =32π时,sin()26A π+ 取得最大值, 同时,()f A 取得最大值52.16. (Ⅰ)ACD OD ACD BO AC ACD ABC ABC BO 面面面面面面面⊂⊥⇒⎪⎪⎭⎪⎪⎬⎫=⋂⊂⊥∆ACD ABC O 垂足为AC,⊥BO 中作ABC 在BO OD ⎫⇒⊥⎬⎭ 由已知BO=512,OD=5193在Rt △BOD 中, BD=5337.(Ⅱ)方案(一)过E 作EF//AC 交AB 于F,EG//CD,交BD于G,EEG EF ACD 面EG//同理 ////=⋂⇒⎪⎭⎪⎬⎫⊂⊄ACD EF ACD AC ACD EF ACEF 面面面,⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫平面EFG//平面ABCDE.ACD原三棱锥被分成三棱锥B-EFG 和三棱台EFG-CAD 两部分,此时278)32(3==--ACD B EFG B V V . 方案(二)过E 作EP//BD 交CD 于P,EQ//AB,交AC于Q,同(一)可证平面EPQ//平面ABD,原三棱锥被分割成三棱锥C-EPQ 和三棱台EPQ-BDA 两部分,此时271)31(3==--BDAC EPQ C V V , 为使截去部分体积最小,故选用方案(二).17. (Ⅰ)由题意设椭圆方程为22221x y a b+=,半焦距为c ,由AF=5BF ,且AF=a+c,BF=a —c ,∴a+c=5(a-c ),得2a=3c .(1)由题意CF ⊥AB ,设 点C 坐标(c ,y ),C 在M上,代入得22222222()(1)c a c y b a a -=-=∴22a c y a-=. 由△ABC的面积为5,得221252a c a a-⋅⋅=,22a c -=5.(2) 解(1)(2)得a =3, c =2. ∴222b a c =-=9—4=5.∴所求椭圆M的方程为:22195x y +=.(Ⅱ) 圆O 到直线:l mx ny +=1距离d =221m n+,由点P (m,n )在椭圆M上,则22195m n +=,显然22m n +>2295m n +,∴22m n +>1,22m n +>1, ∴d =221m n+<1,而圆O 的半径为1,直线l 与圆O 恒相交. 弦长t =221d-=22211m n -+,由22195m n +=得225(1)9m n =-,∴22219445m n m =++, t =2291445m -+,||m a≤Q ,∴209m ≤≤,24544581m ≤+≤,∴2498154459m ≤-≤+ ,弦长t 的取值范围是[4542,53].18.(Ⅰ)∵2a 4a =244116a q q ==,2q =4,∵0n a >,∴q =2, ∴12-=n n a∴b 3=4a =8. ∵263n n n S b b =++2 ① 当n ≥2时,211163n n n S b b ---=++2 ②①-②得2211633n n n n n b b b b b --=-+-即111()()3()n n n n n n b b b b b b ---+-=+ ∵0>nb ∴1n n b b --=3,∴}{n b 是公差为3的等差数列.当n =1时,211163b b b =++2,解得1b =1或1b =2,当1b =1时,32n b n =-,此时3b =7,与83=b 矛盾;当31=b 时31n b n =-,此时此时3b =8=4a ,∴31n b n =-.(Ⅱ)∵31n b n =-,∴n n nb c a ==1312n n --,∴1c =2>1,2c =52>1,3c =2>1,4118c =>1,578c =<1,下面证明当n ≥5时,1n c < 事实上,当n ≥5时,11323122n n n n n n c c +-+--=-=432nn -<0 即1n n c c +<,∵578c =<1 ∴当n ≥5时,1<n C ,故满足条件1>n C 的所有n 的值为1,2,3,4.(Ⅲ)假设}{n a 中存在三项p ,q ,r (p <q <r ,p ,q ,R ∈N *)使a p ,a q , a r 构成等差数列,∴ 2a q =a p +a r ,即2g 2q —1=2p —1+2r —1.∴2q —p +1=1+2r —p . 因左边为偶数,右边为奇数,矛盾.∴假设不成立,故不存在任意三项能构成等差数列.19.解(Ⅰ)503,136,()1169,7912t t t t P t t t t t -+≤≤⎧⎪-<≤⎪=⎨-+<≤⎪⎪-<≤⎩ 21()(4)6(012)16Q t t t =--+≤≤.21()()(1)[(4)6]16P t Q t t t ⋅=---+ (36)t <≤'23(()())[(3)33]16P t Q t t ⋅=---0>在(3,6]t ∈恒成立,所以函数在]6,3(上递增当t =6时,max [()()]P t Q t g =34.5. ∴6月份销售额最大为34500元 . (Ⅱ) ⎩⎨⎧≤-≤≤+≤71115y x y x ,z =x —5y .令x —5y=A (x +y )+B(x —y ),则⎩⎨⎧=-=⇒⎩⎨⎧-=-=+3251B A B A B A , ∴z =x —5y=—2(x +y )+3(x —y ).由10)(222-≤+-≤-y x ,21)(33≤-≤y x ,∴1911z -≤≤,则(z )max =11 .(Ⅲ)类比到乘法有已知⎪⎩⎪⎨⎧≤≤≤≤71115y x xy ,求5y xz =的最大值.由5y x =(xy )A ·(yx )B⎩⎨⎧=-=⇒⎩⎨⎧-=-=+3251B A B A B A .∴251)(12112≤≤-xy ,343)(13≤≤xy ∴253431211≤≤z ,则(z )max = 25343 . 20. (Ⅰ)|a |a |—1|≤|a —1| (1)当0<a <1时, |a 2—1|≤|a —1|1-a 2≤1—a ,得a ≥1或a ≤0(舍去)(2)当a ≥1时,a 2—1≤a —1, 得a = 1;(3)当 a ≤0时, a 2+1≤1—a ,—1≤a ≤0 .综上, a 的取值范围是{a |—1≤a ≤0或a =1} (Ⅱ) ∵+=∑=31ln )(2nk k f 42ln +53ln +…+11ln +-n n =)1(2ln+n n , ∴2|()0|nk f k =--∑22|0|2(1)n n n n ---+=)1(22)1(2ln2+-+-+-n n n n n n .令n (n +1)=t ,2≥n Θ∴t ∈),6[+∞,且t ∈Z ,则F (t )=tt t222ln --- =tt t 22ln 2ln --+-.=-⋅--=x x xx xx F 2)2(12221)('x x x x 42224--=04)2(22<--xx x∴F (x )在),2[+∞单调递减 ∴F (t )≤f (6)<F(2)=—ln 1—0=0 .∴0222ln ≤---t t t ,即)1(22)1(2ln 2+-+-+-n n n n n n ≤0.∴2()nk f k =∑比222(1)n n n n --+更接近0.附加题参考答案及评分标准A .选修4—1 几何证明选讲 解(Ⅰ)设F 为AD 延长线上一点 ∵D CB A ,,,四点共圆, ∴CDF ABC ∠=∠3分 又ACAB = ∴ACBABC ∠=∠,5分 且ACB ADB ∠=∠, ∴CDFADB ∠=∠,7分对顶角ADB EDF ∠=∠, 故CDF EDF ∠=∠, 即AD的延长线平分CDE∠.10分B .选修4—2 矩阵与变换 解:由矩阵A 属于特征值1的一个特征向量为α1=⎥⎦⎤⎢⎣⎡-13可得,⎥⎦⎤⎢⎣⎡41b a⎥⎦⎤⎢⎣⎡-13=⎥⎦⎤⎢⎣⎡-13, 即33=-b a ;3分由矩阵A 属于特征值5的一个特征向量为α2=⎣⎢⎢⎡⎦⎥⎥⎤11,可得⎥⎦⎤⎢⎣⎡41b a ⎥⎦⎤⎢⎣⎡11=5⎥⎦⎤⎢⎣⎡11,即5=+b a ,6分 解得⎩⎨⎧==32b a 即A =⎥⎦⎤⎢⎣⎡4312,7分 A 的逆矩阵是⎥⎥⎥⎦⎤-⎢⎢⎢⎣⎡-52535154 10分C .选修4—4 参数方程与极坐标 解由题设知,圆心()()0.2, 3,1P C2分∠CPO=60°,故过P 点的切线的倾斜角为30° 4分设()θρ,M 是过P 点的圆C 的切线上的任一点, 则在△PMO 中,∠MOP=θ 00150, 30=∠-=∠OPM OMP θ由正弦定理得()θρ-=∴∠=∠0030sin 2sin150, sin sin OMP OP OPM OM8分()()()130sin 160cos 00=-=+∴θρθρ或,即为所求切线的极坐标方程. 10分D .选修4—5 不等式证明选讲 证明:)()()(222222a ac c c b b b a c b a a c c b b a +++++=+++++3分c b a 222++≥ 9分即得c b a ac c b b a ++≥++222.10分另证利用柯西不等式.232221232221332211b b b a a a b a b a b a ++++≤++取a b c b b b ac a cb a ba a ======321321,,,,,代入即证.22.解:(1)X 的可能取值为4、5、6.P(X=4)= 1514644=C C P(X=5)= 158461234=C C C P(X=6)=156462224=C C C ∴X的分布列为P 456X 151158 156 ∴316156615851514)(=⨯+⨯+⨯=X E5分(2)设 “6次取球后恰好被停止”为事件A则72944323231]32)31(323132)31[()(2233=⨯⨯⨯⨯+⨯⨯+=C A P∴6次取球后恰好被停止的概率为7294410分23.解:设)4,(),4,(222211x x B x x AΘ焦点F (0,1)∴)14,(),41,(222211-=--=x x FB x x AFΘ FB AF λ=∴⎪⎩⎪⎨⎧-=-=-)14(41222121x x x x λλ 消λ得0)41()14(212221=-+-x x x x 化简整理得0)14)((2121=+-x x x x21x x ≠Θ421-=∴x x144222121=⋅=∴x x y y∴32121-=+=⋅y y x x OB OA (定值)(2)抛物线方程为241x y =x y 21='∴∴过抛物线A 、B 两点的切线方程分别为4)(212111x x x x y +-=和4)(212222x x x x y +-=即421211x x x y -=和421222x x x y -=联立解出两切线交点M 的坐标为⎪⎭⎫⎝⎛-+1,221x x ⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+=⋅∴4,2.221221221x x x x x x AB FM =02221222122=---x x x x (定值)。

相关文档
最新文档