牛顿运动定律应用

合集下载

3-2 牛顿运动定律的应用

3-2 牛顿运动定律的应用

二、对超重和失重的理解
【自主探究2】 为了研究超重与失重现象,某同学把一体 重计放在电梯的水平地板上,并将一质量为45 kg的物体 放在体重计上随电梯在竖直方向运动,并观察体重计示 数的变化情况。下表记录了几个特定时刻体重计的示数 (表内时间不表示先后顺序):
时间
体重计示数/kg
t0 45.0
t1 50.0
t2 40.0
t3 45.0
若已知t0时刻电梯静止,则(
)。
三、求解两类动力学问题的基本思路
【自主探究3】 质量为12 kg的箱子放在水平地面 上,箱子和地面的滑动摩擦因数为0.3,现用倾角为 37°的60 N的力拉箱子,如图所示,3 s末撤去拉力, 则撤去拉力时箱子的速度为多少?箱子继续运动 多少时间?
摩擦因数μ;
(2)水平推力F的大小; (3)0~10 s内物体运动位移的大小。
命题研究二、超重、失重问题 【例2】 某举重运动员在地面上最多能举起160 k
g的杠铃。
(1)若该运动员在升降机中能举起200 kg的杠铃, 求升降机加速度的大小和方向。 (2)若升降机以(1)中等大的加速度减速下降,求该
应用牛顿第二定律的解题步骤 (1)明确研究对象,分析物体的受力情况和运动情况,
画好受力分析图,明确物体的运动性质和运动过程。
(2)选取正方向或建立坐标系,通常以加速度的方向
为正方向或以加速度方向为某一坐标轴的正方向,必要
时把加速度分解。
(3)根据牛顿第二定律F=max列出方程,再根据题意列
出辅助方程,联合求解,必要时还要对结果进行讨论。
(2)用大小为30 N,与水平方向成37°的力斜向上拉此物体,
使物体从A处由静止开始运动并能到达B处,求该力作用

牛顿运动定律的应用

牛顿运动定律的应用

牛顿运动定律的应用
牛顿运动定律是结合牛顿三大定律探讨物体运动的一种运动学定律,
它认为物体受到外力时,物体的加速度与施力大小以及方向成正比,并且
施力的方向是对物体运动的影响。

牛顿运动定律的应用非常广泛,在工程
的应用中几乎涵盖了所有的机制。

在宇宙和航天领域,如卫星和行星运动,重力加速器,太空飞行器,人造卫星,也都是依靠牛顿运动定律来分析运
动物体的情况。

机械制造和机械设计领域,所有的机械中直接或间接利用
到牛顿运动定律,比如工程机械,现代机械,计算机机械,汽车机械,工
业机械等等,都是依靠牛顿运动定律来分析速度、加速度、位移和位移变
化的。

在日常生活中,牛顿运动定律也十分重要,比如:抛射、跳跃、下
坡跑步等,这些都会对我们的运动具有一定的影响,也就是牛顿运动定律
在我们日常生活中的应用。

牛顿运动定律:牛顿运动定律及其在力学中的应用

牛顿运动定律:牛顿运动定律及其在力学中的应用

牛顿运动定律:牛顿运动定律及其在力学中的应用牛顿运动定律是描述物体运动规律的重要定律之一,由英国科学家艾萨克·牛顿在17世纪提出。

牛顿运动定律是力学的基础,对于解释物体的运动行为起着至关重要的作用。

本文将详细介绍牛顿运动定律的三个基本定律及其在力学中的应用。

牛顿第一运动定律,也被称为“惯性定律”,其表述为:物体在没有外力作用下,保持匀速直线运动或保持静止的状态。

换句话说,物体会继续保持其原来的状态,除非有外力或力的合力作用在其上。

这意味着若物体处于静止状态,则会保持静止;若物体处于匀速直线运动状态,则会保持匀速直线运动。

这个定律对解释许多日常生活中的现象非常重要。

例如,当我们在汽车突然停下时,身体会有向前的惯性,导致人感到不舒服。

这是因为汽车突然减速,但身体所受的惯性仍然保持在之前的匀速状态。

又如,当我们在火车上行驶时,如果火车突然停下,物体会继续保持它的原有状态,从而发生向前倾的现象。

这些现象都可以通过牛顿第一运动定律来解释。

牛顿第二运动定律是牛顿运动定律中最为重要的定律之一。

它表述为:物体受到的力等于质量与加速度的乘积。

换句话说,当一个物体受到作用力时,它会发生加速度。

而其加速度的大小与所受力的大小成正比,与物体的质量成反比。

这个定律可以以数学公式的形式表示为F=ma,其中F为物体所受到的力,m为物体的质量,a为物体的加速度。

牛顿第二运动定律的应用非常广泛,涵盖了力学中的许多问题。

例如,当我们举起一个重物时,我们需要施加更大的力来克服物体的重力,并使其发生上升的加速度。

根据牛顿第二运动定律,物体的重力与上升的加速度成正比,我们需要施加的力越大。

此外,在运动过程中,物体受到的阻力也是一个重要的因素。

阻力会减缓物体的运动速度,根据牛顿第二运动定律,阻力与物体的质量和减速度成正比。

因此,在设计飞机、汽车等工程项目时,我们需要考虑阻力对物体运动的影响。

牛顿第三运动定律是牛顿运动定律中最简洁却又非常有意义的定律。

牛顿运动定律及其应用

牛顿运动定律及其应用

牛顿运动定律及其应用牛顿运动定律是经典物理学的重要组成部分。

该定律是形成整个物理学的基础,它解释了物体运动的力学规律。

牛顿运动定律不仅有纯理论方面的应用,还有实际物理问题的具体解决方案。

一、牛顿运动定律的概念牛顿运动定律简称牛顿定律,是经典力学中的三个基本定律之一,主要阐述了物体在受力作用下的运动规律。

一般认为牛顿运动定律包含以下三个方面的内容:1. 物体运动状态的惯性,即没有外部力作用时,物体将保持静止或匀速直线运动的状态;2. 物体的加速度大小与作用力成正比,方向与作用力方向相同;3. 物体作用力与反作用力大小相等,方向相反。

二、牛顿运动定律的应用1. 牛顿第一定律的应用牛顿第一定律是运动学与动力学的基础,具有重要的应用价值。

在许多科学技术领域,长时间的恒定作用力是很难实现的。

而且,为了保证精度及可靠性,必须满足设备的高精度、长时间性能稳定等需求。

常常采用惯性运动的概念,即由物体的惯性保持其原来的状态,以达到稳定的效果。

比如说,汽车减速时要离开刹车,将离合器松开,让发动机阻力和车轮的弹性力平衡,这就是利用牛顿第一定律所实现的。

2. 牛顿第二定律的应用牛顿第二定律说明了力与加速度的关系。

任何物体都可以视为质点,即对质量集中在一个点而导致的物体。

它通常被描述为一个物体所受力的大小与速度的变化率成正比。

因此,牛顿第二定律可以被看作是加速度计算的基本公式。

举个例子,当我们想要去提高跳绳的速度时,必须增加绳索的旋转速度,以增加绳上的拉力,使脚踩弹跳更顺畅。

根据牛顿第二定律,物体受力与加速度成正比。

因此,在提高跳绳速度的过程中,我们可以通过应用拉力来增加加速度,从而提高跳绳的速度。

3. 牛顿第三定律的应用牛顿第三定律描述了两个物体之间相互作用的情况。

它表示每个物体受到的作用力与另一个物体施加在其上的相同大小的反作用力相等,方向相反。

举个例子,当人们在游泳时,水对游泳池边的力与离水面很近的空气对人体的相等的反向力是一对牛顿第三定律的作用力和反作用力。

牛顿运动定律的应用

牛顿运动定律的应用

牛顿运动定律的应用牛顿运动定律的应用(精选6篇)牛顿运动定律的应用篇1教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇2教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇3教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇4教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇5教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇6教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.。

2.2 牛顿运动定律的适用范围和应用举例

2.2 牛顿运动定律的适用范围和应用举例

三、牛顿定律的应用举例 与质点运动学相似,质点动力学问题大体可 分为两类问题。
(一). 微分问题 已知运动状态,求质点受到的合力 F
例题:已知一物体的质量为 m , 运动方程为

2

r A cos t i B sin t j 求物体受到的力
2 F ma ω mr
2m1m2 FT ( g a) m1 m2
0 FT
a2
y FT
a2 a r a
a1
P1 y
P2 0
例2:质量为m的小球,在水中受的浮力为常力F, 当它从静止开始沉降时,受到水的粘滞阻力为 f=kv(k为常数),证明小球在水中竖直沉降的速 度v与时间t的关系为
mg F v (1 e k
d d dr d R2 g 2 dt dr dt dr r
dr 0 d gR 2 R r 2
2 R

gR
作业P45:
2.6、2.7、 2.8
二、 牛顿运动定律的适用范围
牛顿运动定律适用于宏观物体的低速运动。 惯性系:牛顿运动定律适用的参照系
惯性力:
m1
m2
m1 g FT m1a
0 FT
a
y FT
FT m2 g m2 a
m1 m2 a g m1 m2
2m1m2 FT g m1 m2
a
P1 y
P2 0
(2)若将此装置置于电梯顶部,当 电梯以加速度 相对地面向上运动时, 求两物体相对电梯的加速度和绳的张力.
x
阻力沿x轴负方向,表示为: F= – KV , K为常数。
dv kv m dt

牛顿运动定律的应用

牛顿运动定律的应用

牛顿运动定律的应用牛顿运动定律是经典力学的基石,被广泛应用于各个领域。

它们为我们解释了物体运动的规律,并且在实际生活和科学研究中有着重要的应用。

在本文中,我们将探讨几个关于牛顿运动定律应用的例子,展示这些定律的实际应用和意义。

一、运动中的惯性第一个应用例子是关于运动中的惯性。

牛顿第一定律告诉我们,一个物体如果没有外力作用,将保持其原有的状态,即静止物体保持静止,运动物体保持匀速直线运动。

这就是物体的惯性。

拿我们日常生活中最常见的例子来说,当我们在汽车上突然刹车时,身体会继续保持前进的动力,直到与座椅或安全带接触,才会停下来。

这说明了牛顿第一定律的应用。

如果没有外力的作用,我们会按照惯性继续移动。

二、加速度与力的关系牛顿第二定律是描述物体加速度与施加在物体上的力之间关系的定律。

它告诉我们,物体的加速度与作用力成正比,与物体的质量成反比。

运用这一定律,我们可以解释为什么需要施加更大的力来加速一个较重的物体,而用相同大小的力加速一个较轻的物体时,后者的加速度更大。

在我们日常生活中,这个定律的应用非常广泛。

比如,开车时,我们需要踩下油门,施加一定的力来加速汽车。

同时,如果我们要减速或停车,需要踩下刹车踏板,通过施加反向的力来减少汽车的速度。

三、作用力与反作用力牛顿第三定律指出,对于每一个作用力都会有一个同大小、反方向的作用力作用在不同的物体上。

这就是我们常说的“作用力与反作用力”。

这个定律可以解释许多我们生活中的现象。

例如,当我们走路时,脚对地面施加力,地面也会对脚产生同样大小、反方向的力。

这种反作用力推动我们向前移动。

在工程领域中,牛顿第三定律的应用也非常重要。

例如,当一架飞机在空气中飞行时,空气对飞机产生的阻力同时也是飞机推进的力。

这个定律有助于我们设计高效的飞机引擎和减少能源消耗。

四、万有引力定律最后一个应用例子是万有引力定律。

这个定律描述了两个物体之间相互作用的引力大小与它们质量的乘积成正比,与它们之间距离的平方成反比。

牛顿运动定律的综合应用

牛顿运动定律的综合应用

3.解题方法 整体法、隔离法. 4.解题思路 (1)分析滑块和滑板的受力情况,根据牛顿第二定律分别求出 滑块和滑板的加速度. (2)对滑块和滑板进行运动情况分析,找出滑块和滑板之间的 位移关系或速度关系,建立方程.特别注意滑块和滑板的位移都 是相对地的位移.
[典例 1] 长为 L=1.5 m 的长木板 B 静止放在水平冰面上,
3.图象的应用 (1)已知物体在一过程中所受的某个力随时间变化的图线,要 求分析物体的运动情况. (2)已知物体在一运动过程中速度、加速度随时间变化的图线, 要求分析物体的受力情况. (3)通过图象对物体的受力与运动情况进行分析.
4.解答图象问题的策略 (1)弄清图象坐标轴、斜率、截距、交点、拐点、面积的物理 意义. (2)应用物理规律列出与图象对应的函数方程式,进而明确 “图象与公式”、“图象与物体”间的关系,以便对有关物理问 题作出准确判断.
可行的办法是( BD )
A.增大 A 物的质量 B.增大 B 物的质量 C.增大倾角θ D.增大拉力 F
2. 如图所示,质量为 M、中空为半球形的光滑凹槽放置于光 滑水平地面上,光滑槽内有一质量为 m 的小铁球,现用一水平向 右的推力 F 推动凹槽,小铁球与光滑凹槽相对静止时,凹槽圆心
和小铁球的连线与竖直方向成 α 角,则下列说法正确的是( C )
A.小铁球受到的合外力方向水平向左 B.凹槽对小铁球的支持力为smingα C.系统的加速度为 a=gtan α D.推力 F=Mgtan α
二、动力学中的图象问题 1.常见的图象有
v-t 图象,a-t 图象,F-t 图象,F-a 图象等.
2.图象间的联系
加速度是联系 v-t 图象与 F-t 图象的桥梁.
练习: 1.(多选)如图(a),一物块在 t=0 时刻滑上一固定斜面,其运
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节牛顿运动定律应用(一)【基础知识再现】一、应用牛顿定律求解的两类基本问题1、已知物体受力情况,确定物体的运动情况。

F=,求出加速度,然后根据分析物体受力,先求合力(或合力的分量),再应用牛顿第二定律ma运动规律(运动学公式)求解物体在某时刻的瞬时速度,时间t内位移(或位移s所经历的时间t)。

2、已知物体运动情况,确定物体的受力情况。

F=求出合外力,然后根据物体的运动情况,先用运动学公式求出加速度,再应用牛顿第二定律ma结合已知力推断未知力,以确定物体的受力情况。

两类基本问题的解题思想是互逆的,关键是求出加速度(或由牛顿第二定律,或由运动学公式)。

所以加速度是联系力和运动的纽带。

二、对单位个物体应用牛顿定律的解题步骤1、认真分析题意,明确已知条件和所求量。

2、选取研究对象,作隔离体,所选取的对象可以是一个物体,也可以是几个物体组成的系统,同一题目,根据题意和解题需要也可以选取不同的研究对象。

3、受力分析:按顺序分析并注意应用牛顿第三定律以保证受力分析的正确性,同时作出物体的受力图。

当研究对象所受的外力不在一条直线上时:如果物体只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上去分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动方向上。

4、分析物体的运动情况:按位置(或时刻)、位移、瞬时速度、加速度,并作出运动示意图。

5、根据牛顿第二定律和运动学公式列方程。

物体所受外力、加速度、速度等都可根据规定的正方向按正、负值代入公式,按代数和进行运算。

6、解方程、验结果,必要时对结果进行讨论。

由于实际问题有简有繁,所以对上述步骤不能机械地套用,要注意掌握概念和规律的实质,灵活地运用。

三、关于瞬时加速度的求解问题1、物体运动的加速度a与其所受的合外力F有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之前或这一瞬时之后的力无关,不等于零的合外力作用在物体上,物体立即产生加速度;若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;或合外力变为零,加速度也立即变为零(物体运动的加速度可以突变)。

这就是牛顿第二定律的瞬时性。

2、中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性:(1)轻:即绳(或线)的质量和重力均可视为等于零,由此特点可知,同一根绳(或线)的两端及中间各点的张力大小相等。

(2)软:即绳(或线)只能受拉力,不能承受压力(因绳能变曲),由此特点可知,绳与其物体相互间作用力的方向总是沿着绳子且背离受力物体的方向。

(3)不可伸长:即无论绳所受拉力多大,绳子的长度不变,由此特点可知,绳子中的张力可以突变。

3、中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性:(1)轻:即弹簧(或橡皮绳)的质量和重力均可视为等于零,由此特点可知,同一弹簧的两端及其中间各点的弹力大小相等。

(2)弹簧既能承受拉力,也能承受压力(沿着弹簧的轴线),橡皮绳只能承受拉力,不能承受压力。

(3)由于弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变,但是,当弹簧或橡皮绳被剪断时,它们所受的弹力立即消失。

(4)做变加速运动的物体,加速度时刻在变化(大小变化或方向变化或大小、方向都变化),某时刻的加速度叫瞬时加速度,由牛顿第二定律知,加速度是由合外力决定的,即有什么样的合外力就有什么样的加速度相对应。

当合外力恒定时,加速度也恒定,合外力随时间变化时,加速度也随时间改变,且瞬时力决定瞬时加速度,可见,确定瞬时加速度的关键是正确确定瞬时作用力。

四、超重与失量1、超重,当物体具有竖直向上的加速度时(或有竖直向上的加速度的分量)时,物体对支持物的压力(或对悬挂物的拉力)大于物体所受的重力时所呈现的现象称为超重。

ma mg N =-,ma mg N +=2、失重:当物体具有竖直向下的加速度时(或有竖直向下的加速度的分量)时,物体对支持物的压力(或对悬挂物的拉力)小于物体所受的重力时所呈现的现象称为失重。

ma N mg =-,ma mg N -=当竖直向下的加速度g a =,0=N ,称为完全失重。

3、注意点:(1)物体处于超重和失重状态时,物体的重力并没有改变,因为地球上物体的重力是地球对物体的万有引力或万有引力的一个分力,重力与物体的运动和受力情况无关,改变的只是支持力,在用测力计(弹簧秤)测物体的重力时,物体若有竖直方向的加速度时,则示数(即支持力的大小)会大于或小于物体的重力,这个示数我们称为视重。

只有在竖直方向的加速为零时,测力计才能准确测量物体的重力。

(2)在竖直方向上加速度不为零时,求解不知质量的弹簧秤或支持物所受的弹力时,要应用牛顿第三定律转换研究对象,即以发生相互作用的两物体中已知质量的一个物体为研究对象。

(3)在完全失重状态下,平常由重力产生的一切物理现象都会完全消失。

如浸在水中的物体不受浮力。

【范例剖析】例1:一列质量为t 310的列车,机车牵引力为N 5105.3⨯,运动中所受阻力为车重的0.01倍。

列车由静止开始作匀加速直线运动,速度变为180km/h 需多少时间?此过程中前进了多少km ?(g 取10m/s 2)分析与解答:列车总质量kg t m 631010==,总重力N N mg G 76101010=⨯==,运动中所受阻力N N G F 571011001.001.0⨯=⨯==。

设列车匀加速运动的加速度为a ,由牛顿第二定律得ma F F F =-=牵合,则列车的加速度为 22655/25.0/10101105.3s m s m mF F a =⨯-⨯=-=牵列车由静止加速到s m h km v t /50/108==所用时间为s s a v v t t 20025.00500=-=-=此过程中列车的位移为km m m a v v s t 510525.02050232202=⨯=⨯-=-=解后语:通过本例初步认识单位制在物理计算中的作用。

例2:如图3-2-1(a )所示,AC 、BC 为位于竖直平面内的两根光滑细杆,A 、B 、C 三点恰位于同一圆周上,C 为该圆周的最低点,a 、b 为套在细杆上的两个小环,当两环同时从A 、B 点自静止开始下滑,则( )A 、环a 将先到达点CB 、环b 将先到达点C C 、环a 、b 同时到达点CD 、由于两杆的倾角不知道,无法判断分析与解答:根据环的受力情况由牛顿第二定律判断运动情况。

图3-2-1图3-2-3图3-2-2环受力如图3-2-1(b )所示,正交分解后可得环所受合外力为θsin mg F =合,由牛顿第二定律mg F =合得θsin g a =。

设圆半径为R ,由图中几何关系可得细杆长度为θsin 2R L -=,则小环沿杆由静止匀加速下滑,根据动力学公式221at L =得2sin 21sin 2t g R ⋅=θθ 所以g R t /4=可见小环沿细杆下滑所需时间与杆的倾斜程度无关。

答案:C拓展训练:如图3-2-2所示,几个倾角不同的光滑斜面具有共同的底边AB ,当物体沿不A 、倾角的30°所需时间最短B 、倾角为45°所需时间最短C 、倾角为75所需时间最短D 、所需时间匀相等例3:如图3-2-3所示,质量为m 的人站在自动扶梯上,扶梯正以加速度a 向上减速运动,a 与水平方向的夹角为θ,求人受的支持力和摩擦力。

分析与解答:解法一,以人为研究对象,受力分析如图3-2-3(a )所示,因摩擦力f F 为待求,且必沿水平方向,设水平向右,为了不分解加速度a ,建立图示坐标,并规定正方向。

根据牛顿第二定律得:x 方向:ma F F mg N N =--θθθcos sin sin ①γ方向:0cos sin cos =-+θθθN f F F mg ②由①、②两式可解得)sin (θa g m F N -= θc o s ma F f -= f F 为负值,说明摩擦力的实际方向与假设相反,为水平向右。

解法二:将加速度a 沿水平、竖直方向分解,如右图所示,θcos a a x =,θsin a a y =。

根据牛顿第二定律有:水平方向 θcos ma ma F x f == 竖直方向 θsin ma ma F mg y N ==-x图3-2-5由此得人受的摩擦力θcos ma F f =,方向水平向左:受的支持力)sin (θa g m F N -=,方向竖直向上。

解后语:正交分解法是我们处理较复杂力学问题最常用的一种方法,必须熟练掌握。

正确的受力分析和建立合适的直角坐标系是解题的关键。

拓展训练:如图3-2-4所示,一质量为m 的人站在商场内的电动扶梯上,随扶梯一起运动,若扶梯长为L ,倾角为θ①当扶梯向上匀速运动时,人受到两个力作用,处于平衡状态 ②当扶梯加速向上运动时,人受到两个力作用,处于超重状态 ③当扶梯加速向下运动时,人受到两个力作用,处于失重状态 ④当扶梯减速向上运动时,人受到三个力作用,处于失重状态 A 、①② B 、①③ C 、①④ D 、②③ 例4:如图3-2-5所示,一轻质弹簧和一根细线共同提住一个质量为m 的小球,平衡时细线是水平的,弹簧与竖直方向的夹角是θ,若突然剪断细线,则在剪断的瞬时,弹簧拉力的大小是 ,小球加速度大小等于 。

分析与解答:如图3-2-5(b )所示细线断前小球所受重力mg ,弹簧弹力1F ,细线的拉力2F 三力平衡,1F 、mg 的合力水平向右与2F 平衡。

大小等于θtan 2mg F =。

当剪断细线的瞬时,02=F ,而弹簧形变不能马上改变,弹力1F 保持原值。

在如图3-2-3(c )所示中,θcos /1mg F =。

此刻1F 与mg 的合力仍为原2F 的大小,方向水平向右,其加速度方向沿水平向右,其大小为θtan g a =。

例5:某人在以2/5.2s m 的加速度下降的电梯里最多能举起80kg 的物体,那么在地面上最多能举起 kg 的物体。

若此人在一匀加速上升的电梯中最多能举起40kg 的物体,则电梯上升的加速度为 kg 。

分析与解答:这里相同的是此人对物体的最大支持力,设为F ,则a m F g m 11=-N N a g m F 600)]5.210(80[)(1=-⨯=-=∴ 在地面上能举起的物体质量为 kg kg g F m N 60106002===当最多能举起40kg 物体时,有133a m g m F N =-22331/5/401040600s m s m m g m F a N =⨯-=-=答案:60 5例6:蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目,一个质量为60kg 的运动员,从离水平网面3.2m 高处自由下落,着网后沿竖直方向蹦回到离水平网面5.0m 高处,已知运动员与网接触的时间为1.2s ,若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小(g 取10m/s 2)。

相关文档
最新文档