解圆锥曲线问题常用的八种方法及七种常规题型

合集下载

圆锥曲线解题技巧和方法综合全

圆锥曲线解题技巧和方法综合全

圆锥曲线的解题技巧一、常规七大题型:〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式〔当然在这里也要注意斜率不存在的请款讨论〕,消去四个参数。

如:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(*0,y 0),则有0220=+k b y a x 。

〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(*0,y 0)则有02020=-k by a x 〔3〕y 2=2p*〔p>0〕与直线l 相交于A 、B 设弦AB 中点为M(*0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。

过A 〔2,1〕的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

〔2〕焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(*,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

〔1〕求证离心率βαβαsin sin )sin(++=e ;〔2〕求|||PF PF 1323+的最值。

〔3〕直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的根本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()〔1〕求证:直线与抛物线总有两个不同交点〔2〕设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

圆锥曲线题型总结归纳

圆锥曲线题型总结归纳

直线和圆锥曲线常考题型运用的知识: 1、中点坐标公式:1212,y 22x x y yx ++==,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。

2、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一,=342,则x 题型五:共线向量问题 题型六:面积问题题型七:弦或弦长为定值问题 题型八:角度问题 问题九:四点共线问题问题十:范围问题(本质是函数问题)问题十一、存在性问题:(存在点,存在直线y=kx+m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆) 题型一:数形结合确定直线和圆锥曲线的位置关系例题1、已知直线:1l y kx =+与椭圆22:14x y C m +=始终有交点,求m 的取值范围解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆22:14x y C m +=过动点0±(,,则1例题2一点 设直线由2y y =⎧⎨=⎩即20k <由韦达定理,得:212221,k x x k -+=-121x x =。

则线段AB 的中点为22211(,22k k k--。

线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d AB 。

AB=221kk=+d=21k+=k=±满足②式此时053x=。

题型三:动弦过定点的问题例题3、已知椭圆C:22221(0)x ya ba b+=>>且在x(I(II)异于点解:(I224xy+(II2)x+,由2yx=⎧⎨⎩根,12x∴-=的坐标为2128(k-同理,设直线A2N的斜率为k2,则得点N的坐标为222222(,1414k k++12(2),(2)p py k t y k t=+=-12122k kk k t-∴=-+,直线MN的方程为:121121y y y yx x x x--=--,∴令y=0,得211212x y x yxy y-=-,将点M、N的坐标代入,化简后得:4xt=又2t>,∴402t<<椭圆的焦点为0)4t∴=3t=故当t =时,MN 过椭圆的焦点。

圆锥曲线解题技巧和方法综合(全)

圆锥曲线解题技巧和方法综合(全)

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为,,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1)与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有。

(2)与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线。

过A (2,1)的直线与双曲线交于两点 及,求线段的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点、构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆上任一点,,为焦点,,。

(1)求证离心率;(2)求的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

(,)x y 11(,)x y 22)0(12222>>=+b a b y a x 02020=+k b y a x )0,0(12222>>=-b a b y a x 02020=-k b y a x x y 2221-=P 1P 2P 1P 2F 1F 2x a y b 22221+=F c 10(,)-F c 20(,)∠=PF F 12α∠=PF F 21ββαβαsin sin )sin(++=e |||PF PF 1323+抛物线方程,直线与轴的交点在抛物线准线的右边。

(完整版)解圆锥曲线问题常用方法及性质总结

(完整版)解圆锥曲线问题常用方法及性质总结

解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。

(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.椭圆与双曲线的对偶性质总结椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

圆锥曲线解题技巧和方法综合全

圆锥曲线解题技巧和方法综合全

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k by a x 。

(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。

过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

高中数学:圆锥曲线七个经典题型整理,概念、公式、例题

高中数学:圆锥曲线七个经典题型整理,概念、公式、例题

高中数学:圆锥曲线七个经典题型整理,概念、公式、例题圆锥曲线中常见题型总结1、直线与圆锥曲线位置关系这类问题主要采用分析判别式,有△>0,直线与圆锥曲线相交;△=0,直线与圆锥曲线相切;△<0,直线与圆锥曲线相离.若且a=0,b≠0,则直线与圆锥曲线相交,且有一个交点.注意:设直线方程时一定要考虑斜率不存在的情况,可单独提前讨论。

2、圆锥曲线与向量结合问题这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。

3、圆锥曲线弦长问题弦长问题主要记住弦长公式:设直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则:4、定点、定值问题(1)定点问题可先运用特殊值或者对称探索出该定点,再证明结论,即可简化运算;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.5、最值、参数范围问题这类常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;(2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.在利用代数法解决最值与范围问题时常从以下五个方面考虑:(1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本不等式求出参数的取值范围;(5)利用函数的值域的求法,确定参数的取值范围.6、轨迹问题轨迹问题一般方法有三种:定义法,相关点法和参数法。

定义法:(1)判断动点的运动轨迹是否满足某种曲线的定义;(2)设标准方程,求方程中的基本量(3)求轨迹方程相关点法:(1)分析题目:与动点M(x,y)相关的点P(x0,y0)在已知曲线上;(2)寻求关系式,x0=f(x,y),y0=g(x,y);(3)将x0,y0代入已知曲线方程;(4)整理关于x,y的关系式得到M的轨迹方程。

数学圆锥曲线题解题技巧方法总结

数学圆锥曲线题解题技巧方法总结

数学圆锥曲线题解题技巧方法总结圆锥曲线最值问题从方程与曲线着手,反映了数学问题中的数与形的密切关系,这类问题涉及的数学知识较多,解题方法灵活。

下面是小编为大家整理的关于数学圆锥曲线解题技巧,希望对您有所帮助!圆锥曲线解题技巧题型一:求曲线方程<1>曲线形状已知,待定系数法解决<2>曲线形状未知,求轨迹方程题型二:直线和圆锥曲线关系把直线方程代入到曲线方程中,解方程,进而转化为一元二次方程后利用判别式、韦达定理,求根公式等来处理(应该特别注意数形结合的思想)题型三:两点关于直线对称问题求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。

题型四:两直线垂直斜率相乘等于-1题型五:中点弦问题点差法:设曲线上两点为(X1,Y1),(X2,Y2),代入方程,然后两方程相减,再应用中点关系及斜率公式(注意斜率不存在D的情况讨论),从而消去四个参数。

题型六:焦点三角形椭圆或双曲线上一点和其两个焦点构成三角形,多用正余弦定理解决问题。

题型七:最值问题(求范围)<1>若命题条件和结论有几何意义,可用图形性质来解答。

<2>若命题条件和结论有函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。

圆锥曲线大题解题技巧首先,我们要知道直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用。

其次当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”。

典型例题1:研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解。

圆锥曲线大题题型总结

圆锥曲线大题题型总结

圆锥曲线大题题型总结在数学学科中,圆锥曲线是一个重要的概念。

它们由平面上一定点到一定直线的距离比的几何特征来定义。

而掌握圆锥曲线的性质和应用是许多数学问题的关键。

在国内高中数学教育中,圆锥曲线也是一个考点重、难度大的知识点。

下面将对圆锥曲线的大题题型进行总结。

一. 求曲线方程求解曲线方程是圆锥曲线的基本题型之一。

这类题目通常给出曲线上的若干点或者一些特征条件,要求求出曲线的方程。

常见的曲线方程有抛物线、椭圆和双曲线。

对于抛物线,题目中通常会给出焦点、准线等信息,要求求出抛物线的方程。

解题的关键是利用焦距的定义关系,以及抛物线的几何特性,进行方程的推导。

椭圆需要通过给出的焦点和离心率来确定,其方程的求解要点是利用椭圆的几何性质和椭圆的焦点位置来进行推断。

双曲线的方程求解也是一个常见的问题。

对于已知双曲线的焦点和离心率的情况,需要利用双曲线的几何性质和特征进行方程的推导。

以上三种曲线方程的求解方法都是基于焦点、准线和离心率等几何性质进行的。

二. 判断曲线类型判断给定的曲线是何种类型也是圆锥曲线大题中常见的一类题型。

这类题目通常给出曲线方程,要求判断其类型。

对于抛物线,常用的判断方法是根据方程的系数来判断抛物线的开口方向以及是否与坐标轴相交。

例如,当二次项系数为正时,抛物线的开口方向向上;当常数项为负时,抛物线与x轴相交。

判断椭圆和双曲线的类型则要利用离心率等几何性质。

椭圆的离心率小于1,双曲线的离心率大于1。

三. 曲线性质应用题利用曲线的性质进行应用题的解答也是圆锥曲线大题中常见的一类题型。

这类题目通常会结合实际问题,利用曲线的性质进行问题的求解。

比如,题目给出一条抛物线和一个点,要求求解从该点到抛物线的切线方程。

解答的关键是利用切线的几何性质和抛物线的方程,推导出切线方程。

另外,题目还可能给出一个曲线和一个点,要求求解过该点并且与曲线相切的直线方程。

解答的关键是利用切线和直线的几何性质,结合曲线方程进行推导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法〔点参数、K 参数、角参数〕7、代入法8、充分利用曲线系方程法七种常规题型〔1〕中点弦问题 〔2〕焦点三角形问题〔3〕直线与圆锥曲线位置关系问题 〔4〕圆锥曲线的有关最值〔围〕问题 〔5〕求曲线的方程问题1.曲线的形状--------这类问题一般可用待定系数法解决。

2.曲线的形状未知-----求轨迹方程〔6〕存在两点关于直线对称问题 〔7〕两线段垂直问题常用的八种方法1、定义法〔1〕椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

〔2〕双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离〞互相转化。

〔3〕抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要无视判别式的作用。

3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法〞。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法〞,即设弦的两个端点A(*1,y 1),B(*2,y 2),弦AB 中点为M(*0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求〞法,具体有:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(*0,y 0),则有02020=+k by a x 。

(其中K 是直线AB 的斜率) 〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(*0,y 0)则有02020=-k by a x (其中K 是直线AB 的斜率) 〔3〕y 2=2p*〔p>0〕与直线l 相交于A 、B 设弦AB 中点为M(*0,y 0),则有2y 0k=2p,即y 0k=p. (其中K 是直线AB 的斜率)4、弦长公式法弦长公式:一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 20++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·||12a k △·+,假设直接用结论,能减少配方、开方等运算过程。

5、数形结合法解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将*些代数式子利用其构造特征,想象为*些图形的几何意义而构图,用图形的性质来说明代数性质。

如“2*+y 〞,令2*+y=b ,则b 表示斜率为-2的直线在y 轴上的截距;如“*2+y 2〞,令d y x =+22,则d 表示点P 〔*,y 〕到原点的距离;又如“23+-x y 〞,令23+-x y =k ,则k 表示点P 〔*、y 〕与点A 〔-2,3〕这两点连线的斜率……6、参数法〔1〕点参数利用点在*曲线上设点〔常设“主动点〞〕,以此点为参数,依次求出其他相关量,再列式求解。

如*轴上一动点P ,常设P 〔t ,0〕;直线*-2y+1=0上一动点P 。

除设P 〔*1,y 1〕外,也可直接设P 〔2y 1-1,y 1〕 〔2〕斜率为参数当直线过*一定点P(*0,y 0)时,常设此直线为y-y 0=k(*-*0),即以k 为参数,再按命题要求依次列式求解等。

〔3〕角参数当研究有关转动的问题时,常设*一个角为参数,尤其是圆与椭圆上的动点问题。

7、代入法这里所讲的“代入法〞,主要是指条件的不同顺序的代入方法,如对于命题:“条件P 1,P 2求〔或求证〕目标Q 〞,方法1是将条件P 1代入条件P 2,方法2可将条件P 2代入条件P 1,方法3可将目标Q 以待定的形式进展假设,代入P 1,P 2,这就是待定法。

不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法。

八、充分利用曲线系方程法 一、定义法【典型例题】例1、(1)抛物线C:y 2=4*上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________(2)抛物线C: y 2=4*上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:〔1〕A 在抛物线外,如图,连PF ,则PF PH =当A 、P 、F 三点共线时,距离和最小。

〔2〕B 在抛物线,如图,作QR ⊥l 交于R ,则当B 、Q 、R 距离和最小。

解:〔1〕〔2,2〕连PF ,当A 、P 、F 三点共线时,PF AP PH AP +=+)1(13024---=x y 即 y=22(*-1),代入y 2=4*得P(2,22),〔注:另一交点为(2,21-),它为直线AF 与抛物线的另一交点,舍去〕 〔2〕〔1,41〕过Q 作QR ⊥l 交于R ,当B 、Q 、R 三点共线时,QR BQ QF BQ +=+最小,此时Q点的纵坐标为1,代入y 2=4*得*=41,∴Q(1,41) 点评:这是利用定义将“点点距离〞与“点线距离〞互相转化的一个典型例题,请仔细体会。

例2、F 是椭圆13422=+y x 的右焦点,A(1,1)为椭圆一定点,P 上一动点。

〔1〕PF PA +的最小值为 〔2〕PF PA 2+的最小值为分析:PF 为椭圆的一个焦半径,常需将另一焦半径F P '解:〔1〕4-5设另一焦点为F ',则F '(-1,0)连A F ',P F '当P 是F 'A 的延长线与椭圆的交点时,PF PA +取得最小值为4-5。

〔2〕作出右准线l ,作PH ⊥l 交于H ,因a 2=4,b 2=3,c 2=1, a=2,c=1,e=21, ∴PH PF PH PF ==2,21即 ∴PH PA PF PA +=+2当A 、P 、H 三点共线时,其和最小,最小值为3142=-=-A x ca 例3、动圆M 与圆C 1:(*+1)2+y 2=36切,与圆C 2:(*-1)2+y 2=4外切,的轨迹方程。

分析:作图时,要注意相切时的“图形特征〞:图中的A 、M 、C 共线,B 、D 、M 共线〕径〞〔如图中的MD MC =〕。

解:如图,MD MC =,∴26-=--=-MB MA DB MB MA AC 即 ∴8=+MB MA 〔*〕∴点M 的轨迹为椭圆,2a=8,a=4,c=1,b 2=15轨迹方程为1151622=+y x 点评:得到方程〔*〕后,应直接利用椭圆的定义写出方程,而无需再用距离公式列式求解,即列出4)1()1(2222=+-+++y x y x ,再移项,平方,…相当于将椭圆标准方程推导了一遍,较繁琐!例4、△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程。

分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R 〔R 为外接圆半径〕,可转化为边长的关系。

解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=-即6=-AC AB 〔*〕∴点A 的轨迹为双曲线的右支〔去掉顶点〕 ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x 〔*>3〕 点评:要注意利用定义直接解题,这里由〔*〕式直接用定义说明了轨迹〔双曲线右支〕 例5、定长为3的线段AB 的两个端点在y=*2上移动,AB 中点为M ,求点M 到*轴的最短距离。

分析:〔1〕可直接利用抛物线设点,如设A(*1,*12),B(*2,*22),又设AB 中点为M(*0y 0)用弦长公式及中点公式得出y 0关于*0的函数表达式,再用函数思想求出最短距离。

〔2〕M 到*轴的距离是一种“点线距离〞,可先考虑M 到准线的距离,想到用定义法。

解法一:设A(*1,*12),B(*2,*22),AB 中点M(*0,y 0)则⎪⎩⎪⎨⎧=+=+=-+-0222102122221221229)()(y x x x x x x x x x 由①得(*1-*2)2[1+(*1+*2)2]=9即[(*1+*2)2-4*1*2]·[1+(*1+*2)2]=9 ④ 由②、③得2*1*2=(2*0)2-2y 0=4*02-2y 0 代入④得 [(2*0)2-(8*02-4y 0)]·[1+(2*0)2]=9∴220041944x x y +=-, ≥,5192=-450≥y 当4*02+1=3 即 220±=x 时,45)(min 0=y 此时)45,22(±M 法二:如图,222+=AA MM ∴232≥MM , 即411≥+MM ∴451≥MM , 当AB ∴M 到*轴的最短距离为45 点评:① ② ③定义与三角形中两边之和大于第三边〔当三角形“压扁〞时,两边之和等于第三边〕的属性,简捷地求解出结果的,但此解法中有缺点,即没有验证AB 是否能经过焦点F ,而且点M 的坐标也不能直接得出。

二、韦达定理法【典型例题】例6、椭圆)52(1122≤≤=-+m m y m x 过其左焦点且斜率为1的直线与椭圆及准线从左到右依次交于A 、B 、C 、D 、设f(m)=CD AB -,〔1〕求f(m),〔2〕求f(m)的最值。

分析:此题初看很复杂,对f(m)的构造不知如何运算,因A 、B 来源于“不同系统〞,A 在准线上,B 在椭圆上,同样C 在椭圆上,D 在准线上,可见直接求解较繁,将这些线段“投影〞到*轴上,立即可得防此时问题已明朗化,只需用韦达定理即可。

解:〔1〕椭圆1122=-+m y m x 中,a 2=m ,b 2=m-1,c 2=1,左焦点F 1(-1,0) 则BC:y=*+1,代入椭圆方程即(m-1)*2+my 2-m(m-1)=0 得(m-1)*2+m(*+1)2-m 2+m=0 ∴(2m-1)*2+2m*+2m-m 2=0 设B(*1,y 1),C(*2,y 2),则*1+*2=-)52(122≤≤-m m m〔2〕)1211(2121122)(-+=-+-=m m m m f∴当m=5时,9210)(min =m f 当m=2时,324)(max =m f点评:此题因最终需求C B x x +,而BC 斜率为1,故可也用“点差法〞设BC 中点为M(*0,y 0),通过将B 、C 坐标代入作差,得0100=⋅-+k m ym x ,将y 0=*0+1,k=1代入得01100=-++m x m x ,∴120--=m m x ,可见122--=+m mx x C B 当然,解此题的关键在于对CD AB m f -=)(的认识,通过线段在*轴的“投影〞发现C B x x m f +=)(是解此题的要点。

相关文档
最新文档