高中数学:求函数值域的方法十三种
求函数值域的几种方法

解:由于 x 2 - 2x = (x -1) 2 –1 -1 . 1 1 2 y 2 x 2 x , 1 1 . y y x 2x
y 1 1 1 0 , 即 0. y y
解得 y -1 或 y > 0 .
函数的值域为 { y | y -1 或 y > 0 } .
1 1 应有 y 1 . 2 2 1 y x 1 2x 的值域应为 ( , ] , 这 说 明 2 “ 方 法1” 中 所 说 的 “ ( x) 0有 实 根 ” 是 必 要 的 . 1 1 (t 1)2 , 2 2
• •
3. 利用 (x) 的值域求 f [ (x) ] 的值域 如果函数 y = f (x) 是关于 (x) 的复合函数, 而 (x) 的值域是易求的,则可由原函数中先解 出 (x) ,而后由 (x) 的值域确定 f (x) 的值域 .
2 x 4 例3 求 函 数 y 的值域 . x 3
解:由原函数, 得
x y 3y 2 x 4,
3y 4 解得 x . y2 3y 4 4 由于 x 0, 0. y 2 . y2 3
4 函数的值域为[ , 2 ) . 3
1 例 4 求函数 y 2 的值域 . x 2x
又因 f (1) 2 , 函数定义域为 2 , .
•
6. 利用一元二次方程的根的判别式求一类函数 的值域
例8
x2 2 求函数 y 的 值 域 . 2x2 2 3 x 1
解:去分母得2 y x 2 2 3 y x y x 2 2 ,
(2 y 1) x 2 2 3 y x ( y 2) 0
例说求函数值域的十种基本方法

例说求函数值域的十种基本方法求函数值域是数学中的一个重要问题,涉及到了函数的性质和特点。
接下来,我将为您介绍求函数值域的十种基本方法。
1.函数特性法首先,我们可以通过函数的特性来判断其值域。
例如,如果函数是线性函数,那么它的值域是整个实数集;如果函数是二次函数,那么它的值域可以通过求解二次方程得到。
2.函数图像法通过绘制函数的图像,可以直观地看出函数的值域。
值域可以通过观察函数图像的最高点、最低点以及其他特殊点得出。
3.函数解析式法通过函数的解析式,可以对其进行分析,确定函数的值域。
例如,对于一个多项式函数,可以通过求导,找出函数的极值点,从而得到值域。
4.函数区间法将函数的定义域划分为若干个区间,在每个区间内分别求出函数的最大值和最小值,然后取这些最值的并集,即可得到函数的值域。
5.函数性质法根据函数的性质,判断其值域。
例如,若函数是奇函数,那么其值域与定义域对称;若函数是周期函数,那么值域只需要求出一个周期内的值。
6.函数导数法通过求函数的导数,可以找出函数的极值点,然后确定函数的值域。
导数为零的点是函数的极值点,其中最大值和最小值即为函数的值域的上界和下界。
7.函数符号法通过研究函数的符号变化,可以确定函数值域。
例如,对于一个有理函数,可以研究当自变量趋于正无穷和负无穷时,函数值的变化情况。
8.函数求导法对于一些复杂的函数,可以通过对函数进行求导,并求出导函数的零点,从而找到函数的极值点。
极值点即为函数的值域的边界点。
9.函数的逆函数法若函数的逆函数存在,可以通过研究逆函数的定义域来确定函数的值域。
逆函数与原函数的值域相同,因此可以求出函数的逆函数,然后通过研究逆函数的值域来确定函数的值域。
10.函数的一些特点法对于一些具有特殊特点的函数,可以通过对这些特点进行分析,来确定函数的值域。
例如,对于一个增函数,函数的值域是从函数图像的最低点到最高点。
高中数学:函数的值域

①若 b [a,b],则 f ( b ) 是函数的最小值(a>0)时或最大值(a<0)时,
2a
2a
再比较 f (a), f (b) 的大小决定函数的最大(小)值.
②若 b [a,b],则[a ,b]是在 f (x) 的单调区间内,只需比较 f (a), f (b) 的大小 2a
即可决定函数的最大(小)值.
5、分式函数(分离常数法)
例 5 求函数 y=xx++12的值域. 【解析】 y=xx+ +12=x+x+2-2 1=1-x+1 2. 因为x∈R且x≠-2,所以y≠1. 所以值域为(-∞,1)∪(1,+∞).
思考题 求函数 y=25x-+x5的值域.
【解析】
y=-(2(x+x+52)52)+125=-12+4x+1510,
y x2 2x 3 x
例 7 求函数 y=|x+3|+|x-5|的值域. 【答案】 [8,+∞)
探究 7 数形结合法:利用函数所表示的几何意义,借助于 几何方法求出函数的值域.
思考题 7 求函数 y=|x-2|-|x+1|的值域. 【答案】 [-3,3]
4 x 的值域是 { y| y
2} 新疆 王新敞
奎屯
④ y x2 4x 1, x [0,5]
(分离常数法)
解:③ y x x 11 1 1
x 1 x 1
x 1
∵ 1 0 x 1
∴y 1
2、反比例函数值域问题(关注函数定义域和图像)
f (x) 1 1)x(1,2)
2) x (2, 1)
x 3)x(3,) 4)x(,0) (0,1)
3、二次函数值域问题(关注函数定义域和图像)
例 3. 求下列函数的最大值、最小值与值域:
求函数的值域的方法大全

求函数值域方法大全(一)、最值与值域的高考地位传统高考数学中的应用题中凡涉及到利润最大(或最小),最少的人力、物力等,均可归结于最值与值域的求解;当今高考数学中的求字母参数的取值范围问题很大一部分归结于最值与值域的求解通过求函数的最值与值域可大大的加深对一些数学思想的领会,提高运用数学思想解题的能力。
(二)、最值与值域的关系1、有的函数知道值域就可以求最值如:函数2x y =的值域是{}0|≥y y ,可知0min =y2、有的函数知道最值就可以求值域3、有的函数有值域但无最值 如:函数x y 1=的值域是{}0|≠y y ,但无=min y ,无=max y 4、有的函数有最大值但无最小值如:函数2x y -=,0m ax =y ,但无=min y5、有的函数有最小值但无最大值如:函数212xy +-=,2min -=y ,但无=max y 6、值域有可能是一个数,也可能是几个数构成的集合,但大多是一个不等式构成的集合如:常数函数2)(=x f 的值域是{}27、求最值与值域的方法大同小异8、在由值域确定函数的最值时,需注意等号成立的条件下才能取到。
如:已知值域{}13|<≤-y y ,只有3min -=y ,而无=max y9、最值存在定理:连续函数在闭区间上一定存在最大值和最小值(三)、基本初等函数的定义域与值域(四)、函数的最值与值域的求解技巧即是求函数值的集合或是找到的y 的不等式出来(以后者为重)如:已知函数12)(-=x x f ,{}5,3,2,1,0∈x 则此函数的值域是( )A 、{}5,3,2,1,9;B 、{}3,1,1-;C 、{}5,3,1,1,9-;D 、{}91|≤≤-x x法(一):观察法【及时反馈】1、函数12)(-=x x f 的值域是( )A 、)1,(--∞;B 、),1[+∞;C 、R ;D 、),1(+∞-法(二):反函数法ⅰ、理论依据:巧妙根据原函数与它的反函数的定义域、值域的互调性,如下表所示:由上表知,求原函数的值域就是相当于求它的反函数的定义域ⅱ、求反函数的步骤(“三步曲”)①求)(y x Φ=;②x 、y 互换;③通过求原函数的值域得出反函数的定义域【及时反馈】(1)、求函数142)(-+=x x x f 的值域 (2)、求函数453)(-=x x x f 的值域 法(三):分离变量法常用于求形如)0()(≠++=ac dcx b ax x f 的函数的值域 求解技巧:“分子对分母说,我要变成你”,即把)(x f 化成“常量+d cx +常量”的形式来。
函数定义域值域求法(全十一种)

文档大全
实用标准
因为CD=AB=2x,所以CDx,所以
2
L2xxx
y2x
故
22
LABCDL2xx
AD,
22
(2
)
2
2
x
Lx
根据实际问题的意义知
2x
L
0
2x
2
x
0
0x
L
2
2
故函数的解析式为y(2)xLx
2
五、参数型
,定义域(0,
即为所求的定义域。
2
例3已知f(x)的定义域为[-2,2],求f(x1)
的定义域。
2
解:令2x12
2
,得1x3
2
,即0x3
,因此0|x|3,从而
3x3,故函数的定义域是{x|3x3}。
(2)已知f[g(x)]的定义域,求f(x)的定义域。
其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由axb,求
恒成立,解得
3
0k;
4
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是
四、实际问题型
3
0k。
4
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要
加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函
数的定义域。
1
解:设矩形一边为x,则另一边长为(a2x)
含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之
一,在求函数的值域中同样发挥作用。
【高中数学讲义】函数求值域的十种方法

前言:总有人求助如何学好数学,这个问题很宽泛,并非寥寥数语能够厘清。
有一点很明确,学好数学的必要条件是了解数学。
高中数学可以归结为两个“三位一体”:教学体系的三位一体和知识结构的三位一体。
知识结构的三位一体:数学思想,数学方法,典型习题。
三要素之间的关系:典型习题归纳数学思想,数学思想指导数学方法,数学方法解决典型习题。
数学思想举例:数形结合的思想等。
数学方法举例:配方法、反证法、倍差法等。
典型习题举例:恒成立问题、是否存在问题等。
教学体系的三位一体:教、学、练。
老师教什么:数学思想和数学方法。
熟练掌握各种方法的是优秀学生,深入理解各种思想的是顶尖学生。
学生怎么学:课堂紧跟老师,课下善于提问。
如何做练习:01,选题:中学数学最大的误区就是题海战术,有的老师不学无术只会告诉你多做题。
多做题没用,多做类型才有用。
典型习题,做一顶百。
02,做题:一题多解。
对于选定的习题,运用尽量多的方法去解决,然后比较各个方法的优劣,归纳出某类型题对应的最佳方法。
03,总结:针对错题。
大量统计表明,我们在考试中所犯的错误大多是重复性的。
通过总结,避免两次踏入同一条水沟。
由上可知,我讲数学的特点是方法论、重总结。
工欲善其事,必先利其器:各种数学方法就是我们解决难题的利器。
总喊看题就没思路的童鞋,回忆一下高中阶段你能说出多少种方法。
说不出?有思路才怪!言归正传,今天我们就来总结一下“函数求值域的十种方法”(高中数学最重要就是函数,函数之于高中数学好比力学之于高中物理。
高中数学函数的要点无非:三要素,四变换,五常见,六性质。
三要素中的求值域就是本讲的主题)方法一:配方法用于解决二次函数值域问题,考试中几乎不会单独考察配方法(太简单),但常与其他方法综合使用。
y=ax2+bx+c(a≠0)经过配方得到 y=a(x-m)2 +n 的形式,可直接观察出值域。
方法二:函数性质法高中阶段函数六性:奇偶性,单调性,周期性,对称性,凸凹性,有界性(前三为重点)。
耗时5天,我总结了高中数学求函数值域的20种方法,建议收藏

耗时5天,我总结了高中数学求函数值域的20种方法,建议
收藏
高中数学中有很多的题型,其实本身的解题思路并不复杂,但是解题时,由于自己的不仔细审题,或者是对涉及到相关的知识点理解的不透彻,或这是因为在运算的过程中出现了计算错误。
等等原因,都会导致答题错误的出现。
所以想要提高成绩还多的时候都是在于能不能提高数学成绩。
在学习数学的过程中我们首先要知道懂得概念,公式和定理的由来,尤其也要懂得学习方法的重要性,学会思考,那么学习起来也就会轻松很多。
很多家长向我反映孩子的数学成绩比较差,提分困难,所以今天我特意将高中数学求函数值域的方法分享给大家,希望能够帮助各位同学尽快的去掌握。
完整文档,拉到文末。
求函数值域的方法

求函数值域的方法函数值域是什么,怎么求?不清楚的小伙伴看过来,下面由小编为你精心准备了“求函数值域的方法”仅供参考,持续关注本站将可以持续获取更多的资讯!求函数值域的方法值域域为数学名词,函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。
函数值域的求法1、配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;2、逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如: ;3、换元法:通过变量代换转化为能求值域的函数,化归思想;4、三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;5、基本不等式法:转化成型如:,利用平均值不等式公式来求值域;6、单调性法:函数为单调函数,可根据函数的单调性求值域。
7、数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
8、定义法:已知某个三角函数的定义值域,通过转化成三角函数来求解该函数的值域9、画图法:这种方法简单快捷,只要将函数图形画出来,一眼就能看到函数的值域。
拓展阅读:函数最小正周期怎么求所谓的函数的最小正周期,一般在高中时期的话遇到的都是那种特殊形式的函数,比如;f(a-x)=f(x+a),这个函数的最小周期就是T=(a-x+x+a)/2=a。
还有是三角函数y=A sin(wx+b)+t,最小正周期就是T=2帕/w。
最小正周期求法1、公式法这类题目是通过三角函数的恒等变形,转化为一个角的一种函数的形式,用公式去求,其中正余弦函数求最小正周期的公式为T=2π/|ω| ,正余切函数T=π/|ω|。
函数f(x)=Asin(ωx+φ)和f(x)=Acos(ωx+φ)(A≠0,ω>0)的最小正周期都是;函数f(x)=Atan(ωx+φ)和f(x)=Acot(ωx+φ)(A≠0,ω>0)的最小正周期都是,运用这一结论,可以直接求得形如y=Af(ωx+φ)(A≠0,ω>0)一类三角函数的最小正周期(这里“f”表示正弦、余弦、正切或余切函数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品资料 欢迎下载高中数学:求函数值域的十三种方法一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性八、函数单调性法(☆)九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、一一映射法 十三、 多种方法综合运用一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。
【例1】求函数1y =的值域。
,∴11≥,∴函数1y =的值域为[1,)+∞。
【例2】求函数x 1y =的值域。
【解析】∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。
【解析】因为{}2,1,0,1-∈x ,而()()331==-f f ,()()020==f f ,()11-=f 所以:{}3,0,1-∈y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x ∈,则函数的值域为{}1|-≥y y 。
二. 配方法:配方法式求“二次函数类”值域的基本方法。
形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。
【例1】 求函数225,[1,2]y x x x =-+∈-的值域。
【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时, 故函数的值域是:[4,8]【变式】已知,求函数的最值。
【解析】由已知,可得,即函数是定义在区间上的二次函数。
将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。
显然其顶点横坐标不在区间内,如图2所示。
函数的最小值为,最大值为。
图2【例2】 若函数2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,(1)求函数()g t(2)当∈t [-3,-2]时,求g(t)的最值。
(说明:二次函数在闭区间上的值域二点二分法,三点三分法) 【解析】(1)函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。
图1图2图3①如图1所示,若顶点横坐标在区间左侧时,有,此时,当时,函数取得最小值。
②如图2所示,若顶点横坐标在区间上时,有,即。
当时,函数取得最小值。
③如图3所示,若顶点横坐标在区间右侧时,有,即。
当时,函数取得最小值综上讨论,g(t)=⎪⎩⎪⎨⎧<+≤≤>+-=0110,11,1)1()(22mint t t t t x f (2)221(0)()1(01)22(1)t t g t t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩(,0]t ∈-∞时,2()1g t t =+为减函数∴在[3,2]--上,2()1g t t =+也为减函数∴min ()(2)5g t g =-=, max ()(3)10g t g =-=【例3】 已知2()22f x x x =-+,当[1]()x t t t ∈+∈R ,时,求()f x 的最大值.【解析】由已知可求对称轴为1x =.(1)当1t >时,2min max ()()23()(1)2f x f t t t f x f t t ∴==-+=+=+,.(2)当11t t +≤≤,即01t ≤≤时,.根据对称性,若2121≤++t t 即102t ≤≤时,2max ()()23f x f t t t ==-+.若2121>++t t 即112t <≤时,2max ()(1)2f x f t t =+=+. (3)当11t +<即0t <时,2max ()()23f x f t t t ==-+.综上,⎪⎪⎩⎪⎪⎨⎧≤+->+=21,3221,2)(22maxt t t t t x f【例4】 (1) 求2f (x )x 2ax 1=++在区间[-1,2]上的最大值。
(2) 求函数)(a x x y --=在]1,1[-∈x 上的最大值。
【解析】(1)二次函数的对称轴方程为x a =-, 当1a 2-<即1a 2>-时,max f (x )f (2)4a 5==+; 当1a 2-≥即1a 2≤-时,max f (x )f (1)2a 2=-=+。
综上所述:max 12a 2,a 2f (x )14a 5,a 2⎧-+≤-⎪⎪=⎨⎪+>-⎪⎩。
(2)函数4)2(22a a x y +--=图象的对称轴方程为2a x =,应分121≤≤-a ,12-<a ,12>a即22≤≤-a ,2-<a 和2>a 这三种情形讨论,下列三图分别为 (1)2-<a ;由图可知max ()(1)f x f =- (2)a ≤-22≤;由图可知max ()()2af x f = (3) 2>a 时;由图可知max ()(1)f x f =∴⎪⎪⎩⎪⎪⎨⎧>≤≤--<-=2,)1(22,)2(2,)1(a f a af a f y 最大;即⎪⎪⎩⎪⎪⎨⎧>-≤≤--<+-=2,122,42,)1(2a a a aa a y 最大 【例5】 已知二次函数2f (x )ax (2a 1)x 1=+-+在区间3,22⎡⎤-⎢⎥⎣⎦上的最大值为3,求实数a 的值。
【分析】这是一个逆向最值问题,若从求最值入手,需分a 0>与a 0<两大类五种情形讨论,过程繁琐不堪。
若注意到最大值总是在闭区间的端点或抛物线的顶点处取到,因此先计算这些点的函数值,再检验其真假,过程就简明多了。
具体解法为: (1)令2a 1f ()32a --=,得1a 2=- 此时抛物线开口向下,对称轴方程为x 2=-,且32,22⎡⎤-∉-⎢⎥⎣⎦,故12-不合题意;(2)令f (2)3=,得1a 2=此时抛物线开口向上,闭区间的右端点距离对称轴较远,故1a 2=符合题意; (3)若3f ()32-=,得2a 3=- 此时抛物线开口向下,闭区间的右端点距离对称轴较远,故2a 3=-符合题意。
综上,1a=或2a =- 【变式】 已知函数()21f x ax ax =++在区间[3,2]-上的最大值为4,求实数a 的值。
【解析】2()(1)1,[3,2]f x a x a x =++-∈- (1)若0,()1,a f x ==,不符合题意。
(2)若0,a >则max ()(2)81f x f a ==+由814a +=,得38a =(3)若0a <时,则max ()(1)1f x f a =-=- 由14a -=,得3a =-综上知38a =或3a =-【例6】 已知函数2()2x f x x =-+在区间[,]m n 上的最小值是3m 最大值是3n ,求m ,n 的值。
【解法1】讨论对称轴中1与,,2m nm n +的位置关系。
①若,则max min ()()3()()3f x f n nf x f m m==⎧⎨==⎩解得②若12m nn +≤<,则max min()(1)3()()3f x f n f x f m m ==⎧⎨==⎩,无解 ③若12m nm +≤<,则max min()(1)3()()3f x f n f x f n m ==⎧⎨==⎩,无解④若,则max min ()()3()()3f x f m nf x f n m==⎧⎨==⎩,无解综上,4,0m n =-=【解法2】由211()(1)22f x x =--+,知113,,26n n ≤≤,则[,](,1]m n ⊆-∞,又∵在[,]m n 上当x 增大时)(x f 也增大所以max()()3()()3f x f nnf x f m m ==⎧⎨== 解得4,0m n =-=【例7】 求函数y =的值域.【解法1】22)4(122)5)(3(253--+=--+-+-=x x x x x y显然]4,2[)4(12222∈--+=x y故函数的值域是:]2,2[∈y【解法2】显然3≤x≤5,2232sin ([0,])52cos 2x x πθθθ-=∈⇒-=,cos )2sin()4y πθθθ==+=+∈三、分离常数法:分子、分母是一次函数得有理函数,可用分离常数法(分母少,分子多),通过该方法可将原函数转化为为)(x f k y ±=(为k 常数)的形式此类问题一般也可以利用反函数法。
【例1】 求函数12++=x x y 的值域 【解析】利用恒等变形,得到:111++=x y ,容易观察知x ≠-1,y ≠1,得函数的值域为y ∈(-∞,1)∪(1, +∞)。
注意到分数的分子、分母的结构特点,分离出一个常数后,再通过观察或配方等其他方法易得函数值域。
【例2】 求函数122+--=x x xx y 的值域。
【解析】观察分子、分母中均含有x x -2项,可利用部分分式法;则有43)21(11111122222+--=+--+-=+--=x x x x x x x x x y 不妨令:)0)(()(1)(,43)21()(2≠=+-=x f x f x g x x f 从而)∞+⎢⎣⎡∈,43)(x f 注意:在本题中应排除0)(=x f ,因为)(x f 作为分母。
所以 ⎝⎛⎥⎦⎤∈43,0)(x g 故)1,31⎢⎣⎡-∈y【变式】求下列函数的值域:(1) 231--=x x y (2) 1122+-=x x y .答案:(1)值域),(),(3131+∞⋃-∞∈y (2)值域y ∈[-1,1]四、反函数法:利用函数和它的反函数的定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。
【例1】求函数1212xxy -=+的值域。
【解析】由1212x xy -=+解得121x y y -=+, ∵20x>,∴101y y ->+, ∴11y -<< ∴函数1212xxy -=+的值域为(1,1)y ∈-。
【例2】求函数3456x y x +=+值域。
【解析】由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为:33(,)(,)55-∞∞ 【例3】 求函数11+-=x x e e y 的值域。
解答:先证明11+-=x x e e y 有反函数,为此,设21x x <且R x x ∈21,,0)1)(1(211112121221121<++-=+--+-=-x x x x x x x x e e e e e e e e y y 。
所以y 为减函数,存在反函数。
可以求得其反函数为:x xy -+-=111ln 。
此函数的定义域为)1,1(-∈x ,故原函数的值域为)1,1(-∈y 。