全国高考数学复习微专题:函数值域的求法

全国高考数学复习微专题:函数值域的求法
全国高考数学复习微专题:函数值域的求法

求函数的值域

作为函数三要素之一,函数的值域也是高考中的一个重要考点,并且值域问题通常会渗透在各类题目之中,成为解题过程的一部分。所以掌握一些求值域的基本方法,当需要求函数的取值范围时便可抓住解析式的特点,寻找对应的方法从容解决。 一、基础知识: 1、求值域的步骤: (1)确定函数的定义域

(2)分析解析式的特点,并寻找相对应的方法(此为关键步骤) (3)计算出函数的值域

2、求值域的常用工具:尽管在有些时候,求值域就像神仙施法念口诀一样,一种解析式特点对应一个求值域的方法,只要掌握每种方法并将所求函数归好类即可操作,但也要掌握一些常用的思路与工具。

(1)函数的单调性:决定函数图像的形状,同时对函数的值域起到决定性作用。若()f x 为单调函数,则在边界处取得最值(临界值)。

(2)函数的图像(数形结合):如果能作出函数的图像,那么值域便一目了然

(3)换元法:()f x 的解析式中可将关于x 的表达式视为一个整体,通过换元可将函数解析式化归为可求值域的形式。

(4)最值法:如果函数()f x 在[],a b 连续,且可求出()f x 的最大最小值,M m ,则()f x 的值域为[],m M

注:一定在()f x 连续的前提下,才可用最值来解得值域

3、常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归。

(1)一次函数(y kx b =+):一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域

(2)二次函数(2

y ax bx c =++):二次函数的图像为抛物线,通常可进行配方确定函数的对称轴,然后利用图像进行求解。(关键点:①抛物线开口方向,②顶点是否在区间内)

例:()[]223,1,4f x x x x =--∈- 解:()()2

14f x x =--

∴对称轴为:1x =

()[]4,5f x ∴∈-

(3)反比例函数:1y x

=

(1)图像关于原点中心对称 (2)当,0x y →+∞→ 当,0x y →-∞→ (4)对勾函数:()0a

y x a x

=+

> ① 解析式特点:x 的系数为1;0a >

注:因为此类函数的值域与a 相关,求a 的值时要先保证x 的系数为1,再去确定a 的值 例:4

2y x x

=+

,并不能直接确定4a =,而是先要变形为22y x x ?

?=+ ??

?,再求得2a =

② 极值点:,x a x a ==-

③ 极值点坐标:

(

)()

,2,,2a a a a --

④ 定义域:()(),00,-∞+∞U

⑤ 自然定义域下的值域:(

)

,22,a a ??-∞-+∞??

U

(5)函数:()0a

y x a x

=-

> 注意与对勾函数进行对比 ① 解析式特点:x 的系数为1;0a > ② 函数的零点:x a =± ③ 值域:R

(5)指数函数(x

y a =):其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞

(6)对数函数(log a y x =)其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞

(7)分式函数:分式函数的形式较多,所以在本节最后会对分式函数值域的求法进行详细说明(见附)

二、典型例题:将介绍求值域的几种方法,并通过例题进行体现

1、换元法:将函数解析式中关于x 的部分表达式视为一个整体,并用新元t 代替,将解析式化归为熟悉的函数,进而解出值域

(1)在换元的过程中,因为最后是要用新元解决值域,所以一旦换元,后面紧跟新元的取值范围

(2)换元的作用有两个:

① 通过换元可将函数解析式简化,例如当解析式中含有根式时,通过将根式视为一个整体,换元后即可“消灭”根式,达到简化解析式的目的

② 化归:可将不熟悉的函数转化为会求值域的函数进行处理

(3)换元的过程本质上是对研究对象进行重新选择的过程,在有些函数解析式中明显每一项都是与x 的某个表达式有关,那么自然将这个表达式视为研究对象。

(4)换元也是将函数拆为两个函数复合的过程。在高中阶段,与指对数,三角函数相关的常见的复合函数分为两种 ① ()

()(),log ,sin f x a y a

y f x y f x ===????????:

此类问题通常以指对,三角作为主要结构,

在求值域时可先确定()f x 的范围,再求出函数的范围

② ()

()(),log ,sin x a y f a y f x y f x ===:此类函数的解析式会充斥的大量括号里的项,所以可利用换元将解析式转为()y f t =的形式,然后求值域即可。当然要注意有些解析式中的项不是直接给出,而是可作转化:例如1

42

8x

x y +=--可转化为

()

2

2

228x x y =-?-,从而可确定研究对象为2x t =

例1:函数()2f x x =的值域是( )

A. [)0,+∞

B. 17,8??+∞??

?? C. 5,4??+∞???? D. 15,8??

+∞????

思路:解析式中只含一个根式,所以可将其视为一个整体换元,从而将解析式转为二次函数,求得值域即可。

解:()f x 的定义域为[)1,+∞

令t =

0t ∴≥ ,则21x t =+

()2

2115

21248y t t t ??∴=+-=-+ ???

[)0,t ∈+∞Q

()f x ∴的值域为15,8??

+∞????

例2(1)函数1

1

3

x y -=的值域为( )

A. ()0,+∞

B. ()()0,11,+∞U

C. {}|1x x ≠

D. ()1,+∞ (2)函数()[]1

42

8,2,2x

x f x x +=--∈-的值域为__________

(3)函数1

ln 1

x x e y e +=-的值域为__________

思路:(1)本题可视为()

3f x y =的形式,所以可将指数进行换元,从而转化为指数函数值

域问题:令11

t x =

-,则()(),00,t ∈-∞+∞U ,所以可得()()30,11,t

y =∈+∞U

(2)如前文所说,()()2

1

42

82228x

x x x f x +=--=-?-,

将2x 视为一个整体令2x

t =,则可将其转化为二次函数求得值域 解:()()2

1

42

82228x

x x x f x +=--=-?-

令2x

t = []2,2x ∈-Q

1,44t ??∴∈????

()2

22819y t t t =--=--

()f x ∴的值域为[]9,0-

(3)所求函数为()ln f x ????的形式,所以求得11x x e e +-的范围,再取对数即可。对1

1x x e e +-进行变形可得:12111

x x x e e e +=+--,从而将1x

e -视为一个整体,即可转为反比例函数,从而求得范围

解:定义域:()100,x

e x ->?∈+∞

12111

x x x e e e +=+--Q 令1x

t e =- ()0,t ∴∈+∞ ()2

11,t

∴+∈+∞

()1

ln 0,1

x x e y e +∴=∈+∞-

答案:(1)B (2)[]9,0- (3)()0,+∞ 例3:已知函数()[]23log ,1,4f x x x =+∈,则()()()2

2

g x f x

f x =-????的值域为( )

A. []18,2--

B. []11,6--

C. []18,6-

D. []11,2-- 思路:依题意可知()()()2

2

2

22223log 3log log 4log 6g x x x x x =+-+=---,所以可

将2log x 视为一个整体换元,从而将问题转化为求二次函数值域,但本题要注意的是()g x 的定义域,由已知()f x 的定义域为[]1,4,则()()()2

2

g x f x

f x =-????

的定义域为:

214

14

x x ?≤≤?

≤≤?,解得:[]1,2x ∈,而不是[]1,4 解:()()2

2223log 3log g x x x =+-+

()2

22232log log 6log 9x x x ??=+-++??

()2

22log 4log 6x x =---

()f x Q 的定义域为[]1,4,且()()()2

2

g x f x f x =-????

214

14

x x ?≤≤∴?

≤≤?,解得:[]1,2x ∈ 令2log t x =,则[]0,1t ∈

()2

24622y t t t ∴=---=-+-

[]11,6y ∴∈--,即()g x 的值域为[]11,6--

答案:B

2、数形结合:即作出函数的图像,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合

(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域。

(2)()f x 的函数值为多个函数中函数值的最大值或最小值,此时需将多个函数作于同一坐标系中,然后确定靠下(或靠上)的部分为该()f x 函数的图像,从而利用图像求得函数的值域

(3)函数的解析式具备一定的几何含义,需作图并与解析几何中的相关知识进行联系,数形结合求得值域,如:分式→直线的斜率;被开方数为平方和的根式→两点间距离公式 例4:(1)设函数()y f x =定义域为R ,对给定正数M ,定义函数

()()()(),,M f x f x M

f x M f x M ≤??=?>??

则称函数()M f x 为()f x 的“孪生函数”,若给定函数

()22,20

,121,0

x x x f x M x ?--≤≤?==?->??,则()M y f x =的值域为( )

A. []2,1-

B. []1,2-

C. (],2-∞

D. (],1-∞- (2)定义{}min ,,a b c 为,,a b c 中的最小值,设(){}

2min 23,1,53f x x x x =++-,则

()f x 的最大值是__________

思路:(1)根据“孪生函数”定义不难发现其图像特点,即以

y M =为分界线,()f x 图像在y M =下方的图像不变,在

M 上方的图像则变为y M =,通过作图即可得到()M f x 的

值域为[]2,1-

(2)本题若利用{}min ,,a b c 的定义将()f x 转为分段函数,则需要对三个式子两两比较,比较繁琐,故考虑进行数形结合,将三个解析式的图像作在同一坐标系下,则()f x 为三段函数图像中靠下的部分,从而通过数形结合可得()f x 的最大值点为

21y x =+与53y x =-在第一象限的交点,即

21

1253x y x y y x =?=+???

?==-?

?,所以()max 2f x = 答案:(1)A (2) 2

例5:已知函数()()()()2

2

2

2

22,228f x x a x a g x x a x a =-++=-+--+,设

()()(){}()()(){}12max ,,min ,H x f x g x H x f x g x ==,

(其中{}max ,p q 表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值)记()1H x 的值域为A ,()2H x 的值域为B ,则

A B =I ______________

思路:由()()12,H x H x 的定义可想到其图像特点,即若将()(),f x g x 的图像作在同一坐标系中,那么()1H x 为

()(),f x g x 图像中位于上方的部分,而()2H x 为()(),f x g x 图像中位于下方的部分。对()(),f x g x 配

f(x)

y=1

y

x

1

-2

f(x)

y=2x+3

y=5-3x

y=x 2+1

y

x

方可得:()()()()22

2442412f x x a a g x x a a ?=-+--?????

?=----+?

?????,其中44412a a --<-+,故()g x 的顶点在()f x 顶点的上方。由图像可得:褐色部分为()1H x 的图像,红色部分为()2H x 的图像,其值域与()(),f x g x 的交点有关,即各自的顶点()()2,412,2,44a a a a --++--,所以

()1H x 的值域[)44,A a =--+∞,()2H x 的值域(],412B a =-∞-+。从而

[]44,412A B a a =---+I

答案:[]44,412a a ---+ 例6:(1)函数[]ln 3

,2,41

x x y x x +=∈-的值域为__________

(2

)函数y =

的值域为_________

思路:(1)函数为分式,但无法用“变形+换元”的方式进行处理,虽然可以用导数,但求导后需对分子的符号进行进一步研究。那么换一个视角,从分式的特点可联想到直线的斜

率,即y 是(),ln x x x 与定点()1,3-连线的斜率,那么只需在坐标系中作出()ln f x x x =在[]2,4的图像与定点

()1,3-,观察曲线上的点与定点连线斜率的取值范围即可

解:所求函数y 是(),ln x x x 与定点()1,3-连线的斜率 设()ln f x x x =

()'1ln f x x ∴=+,当[]2,4x ∈时,()'0f x >恒成立 ()f x ∴为增函数 ()()22ln2,44ln48ln2f f ===

∴ 设曲线上两点()()2,2ln2,4,8ln2A B 定点()1,3C -

8ln23

2ln23,3

AC BC k k +∴=+=

[]8ln 2,2ln 23,13BC AC y k k ?

?∴∈=++????

(2

)思路:

y =

+=,所以y 可视为点

(),0x 到点()()0,2,1,3距离和的取值范围。

称性求出其最小值,且当动点向x 向无穷大,进而得到值域。 解:

y =+=

y ∴为动点(),0P x 到点()()0,2,1,3A B 距离和,即y PA PB =+

作A 点关于x 轴的对称点()'

0,2A -

''PA PB PA PB A B ∴+=+≥=(等号成立条件:',,P A B 共线)

当x →+∞或x →-∞时,PA PB +→+∞

∴函数的值域为)

+∞

小炼有话说:本题在选择点时要尽量让更少的点参与进来简化问题,所以要抓住两个距离共同的特点(例如本题中都抓住含根式中的,0x ,所以找到了一个共同的动点(),0x ) 答案:(1)8ln 22ln 23,

13?

?

++???

?

(2))

+∞

3、函数单调性:如果一个函数为单调函数,则由定义域结合单调性(增、减)即可快速求出函数的值域

(1)判断函数单调性的方法与结论: ① 增+增→增 减+减→减

()1-?增→减 若函数的符号恒正或恒负,则

1

→增

减 ② 复合函数单调性:复合函数()y f g x =????可拆成()(),y f t t g x ==,则若

()(),y f t t g x ==的单调性相同,则()y f g x =????单调递增;若()(),y f t t g x ==的单

调性相反,则()y f g x =????单调递减

③ 利用导数:设图像不含水平线的函数()f x 的导数()'f x ,则()()'0f x f x ≥?单增;

()()'0f x f x ≤?单减

(2)在利用单调性求值域时,若定义域有一侧趋近于+∞或-∞,则要估计当+x →∞或

x →-∞时,函数值是向一个常数无限接近还是也趋近于+∞或-∞(即函数图象是否有水

平渐近线),;同样若()f x 的定义域抠去了某点或有一侧取不到边界,如(],x a b ∈,则要确定当x a →时,()f x 的值是接近与一个常数(即临界值)还是趋向+∞或-∞(即函数图象是否有竖直渐近线),这样可以使得值域更加准确

例7:(1)函数()1f x =+

-的值域为( )

A. []3,1-

B. [)1,-+∞

C. ??

D. 1??-?

?

(2)函数()1x f x x x

-=

+-的值域为( )

A. (),1-∞

B. (],1-∞

C. (]0,1

D. []0,1

(3)函数()

f x =

的值域为________

思路:(1)函数的定义域为[]3,1-,含有双根式,所以很难依靠传统的换元解决问题,但()f x

的导数()'

f x =

()f x 的单调

区间,从而求得最值

()'

f x ==

令()'

0f

x >>

311x x x ∴+>-?>-

()f x ∴在()3,1--单调减,在()1,1-单调递增 ()()()

11,31,11f f f -=-==Q

()

f x ∴的值域为1??-??

小炼有话说:本题还可以利用换元解决,但利用的是三角换元:观察到被开方数的和为常数,

所以想到

2

2

4+=

,从而可设2sin 2cos αα==

,由0

≥≥可知

0,2πα??

∈????

,所以原函数的值域转化为求2sin 2cos 1y αα=+-的值域,从而

14y πα??=+- ???,由0,2πα??

∈????

可求得1y ??∈??。由此题可知:含双根式

的函数若通过变形可得到被开方数的和为常数,则可通过三角换元转为三角函数值域问题 (2)思路:函数的定义域为1x ≤,从而发现11x x -=-,所以函数的解析式为

(

)f x x =-()f x 为增函数,且x →-∞时,()f x →-∞,所以当

(],1x ∈-∞时,()f x 的值域为(],1-∞

小炼有话说:①本题中函数的定义域对解析式的化简有极大的促进作用。所以在求函数的值域时,若发现函数解析式较为特殊,则先确定其定义域

本题也可用换元法,设t =性求解简便。

(3)思路:先确定函数的定义域:32031,220

2x x x -≥???

?∈?

??-≥???,()f x 为分式且含有根式,

求导则导函数较为复杂。观察分子分母可知

50+>且关于x 单减

10+>且关于x 单增,

所以(

)f x =为减函数,

由31,2x ??∈????可知()f x 的值域为5,62

?????

?

小炼有话说:在函数单调性的判断中有“增+增→增”,那么如果一个函数可表示为两个函数的乘法,例如()()()h x f x g x =?,则当()(),f x g x 均为增(减)函数,且()(),f x g x 恒大于0,才能得到()h x 为增(减)函数 答案:(1)D (2)B (3)5,62

??????

4、方程思想:本方法是从等式的角度观察函数,将其视为一个含参数y 的关于x 的方程

(),0F x y =。由函数的对应关系可知,对于值域中的任一值y ,必能在定义域中找到与之

对应的x 。这个特点反应在方程中,即为若0y 在值域中,则关于x 的方程(),0F x y =在

0y y =时至少有一个根。从而将求值域问题转化为“y 取何值时,方程(),0F x y =有解”

的问题。利用方程的特点即可列出关于y 的条件,进而解出y 的范围即值域

例8:(1)函数22247

23

x x y x x +-=++的值域为( )

A. 9

,22??

-???? B. 7

,03??

- ??? C. 7

,03??

-???? D. 9

,22??

-????

(2)函数sin 1

cos 2

x y x -=

+的值域为_________

思路:(1)观察分式特点可发现若将去掉分母后可构造为一个关于x 的二次方程(其中y 为参数): ()()2

224370y x y x y -+-++=,因为函数的定义域为R ,所以y 的取值要

求只是让方程有解即可,首先对最高次数系数是否为0进行分类讨论:当2y =,方程为

130=,无解;当2y ≠时,二次方程有解的条件为0?≥,即得到关于y 的不等式,求解

即可

解:由2224723x x y x x +-=++可得:

2223247x y xy y x x ++=+-

()()2224370y x y x y ∴-+-++=

()2

223120x x x ++=++>Q ∴函数的定义域为R

y ∴的取值只需让方程有解即可

当2y =时,130=不成立,故舍去

当2y ≠时,()()()2

2442370y y y ?=---+≥ 即:()()2920y y +-≤

9

22

y ∴-

≤≤

综上所述:函数的值域为9

,22

??-????

小炼有话说:① 对于二次分式,若函数的定义域为R ,则可像例8这样通过方程思想,将值域问题转化为“y 取何值时方程有解”,然后利用二次方程根的判定0?≥得到关于y 的不等式从而求解,这种方法也称为“判别式法”

② 若函数的定义域不是R ,而是一个限定区间(例如[],a b ),那么如果也想按方程的思想处理,那么要解决的问题转化为:“y 取何值时,方程在[],a b 有根”,对于二次方程就变为了根分布问题,但因为只要方程有根就行,会按根的个数进行比较复杂的分类讨论,所以此类问题通常利用分式的变形与换元进行解决(详见附)

(2)本题不易将函数变为仅含sin x 或cos x 的形式,考虑去分母得:sin cos 21x y x y -=+则y 的取值只要让方程有解即可。观察左侧式子特点可想到俯角公式,从而得到

()()()

21sin x y x ??+=+?+=

,可知方程有解的条件为:

1≤,解出y 的范围即为值域

解:sin 1

cos 2x y x -=

+的定义域为R

且sin 1cos 2sin 1cos 2

x y y x y x x -=?+=-+

sin cos 21x y x y ∴-=+

()()21x y ?+=+,即()

sin x ?+=

,其中tan y ?=-

因为该方程有解

()2

21211y y ≤?+≤+

24340,03y y y ??

∴+≤?∈-????

小炼有话说:本题除了用方程思想,也可用数形结合进行解决,把分式视为

()()cos ,sin ,2,1x x -连线斜率的问题,从而将问题转化为定点()2,1-与单位圆上点连线斜

率的取值范围。作图求解即可。本类型运用方程思想处理的局限性在于辅角公式与y 的取值相关,不过因为x R ∈,所以均能保证只要()sin x ?+在[]1,1-中,则必有解。但如果本题对x 的范围有所限制,则用方程的思想不易列出y 的不等式,所以还是用数形结合比较方便 答案:(1)D (2)4

,03

??-???

?

以上为求值域的四种常见方法,与求函数的理念息息相关,有些函数也许有多种解法,或是在求值域的过程中需要多种手段综合在一起解决。希望你再遇到函数值域问题时,能迅速抓住解析式的特点,找到突破口,灵活运用各种方法处理问题。

例9:已知函数()

2lg 2y x x m =++的值域为R ,则m 的取值范围是( ) A. 1m > B. 1m ≥ C. 1m ≤ D. m R ∈ 思路:本题可视为2

lg ,2y t t x x m ==++的复合函数,函数的值域为R ,结合对数函数的性质可知t 应取遍所有的正数(定义域可不为R ),即若函数2

2t x x m =++的值域为A ,则()0,A +∞?,由二次函数的图像可知,当0?≥时,可满足以上要求。所以440m ?=-≥解得1m ≤ 答案:C

例10:在计算机的算法语言中有一种函数[]x 叫做取整函数(也称高斯函数),[]x 表示不

超过x 的最大整数,例如:[][][]22,3.13, 2.63==-=-,设函数()21

122

x x f x =-+,则函数()()y f x f x =+-????????的值域为( )

A. {}0

B. {}1,0-

C. {}-1,0,1

D. {}2,0- 思路:按[]x 的定义可知,若要求出[]x ,则要将确定里面x 的范围,所以若求

()()y f x f x =+-????????的值域,则要知道()(),f x f x -的范围。观察到()()y f x f x =+-????????为偶函数,所以只需找到0x >的值域即可,

()()2112122212x x x x f x ----=-=++,()()

2121122212x x x x f x -=-=++,即()()

f x f x =--成立,所以()f x 为奇函数,只需确定()f x 的范围即可。对()f x 中的分式进行分离常数

可得:()11221

x

f x =

-+,当0x >时,()212,x +∈+∞,从而110,212x ??

∈ ?+??,所以()10,2f x ??∈ ???

,由()()1,02f x f x ??

-=-∈- ???。即()()0,1f x f x =-=-????????,可得1y =-,再利用偶函数性质可得0x <时,1y =-。当0x =时,()()0f x f x =-=,所

以0y =,综上所述:()()y f x f x =+-????????的值域为{}1,0- 答案:B

小炼有话说:(1)本题在处理值域时,函数奇偶性的运用大量简化了运算。首先判断出所求函数为偶函数,所以关于y 轴对称的两部分值域相同,进而只需考虑0x >的情况。另外从解析式的特点判断出()f x 为奇函数,从而只需计算()f x 的范围,再利用奇函数的性质推出()f x -的范围。所以在求函数值域时,若能通过观察或简单的变形判断出函数具备奇偶的性质,则解题过程能够达到事半功倍的效果。

(2)本题在判断()f x 的奇偶性时,由()()21

12221122

x x x

x f x f x --?-=-??+??=-??+很难直接看出

()(),f x f x -之间的联系,但通过“通分”即可得到()()()()2121212

212x x

x

x f x f x ?-=?+?

?-?-=?+?

,奇偶性立即可见;在求()f x 的范围时,利用()()

21

212x x

f x -=+的形式,分式较为复杂,分子分母均含变量,不易确定其范围。但通过“分离常数”得到()11221

x f x =

-+则非常便于求其范围。由以上的对比可知,在判断奇偶性或者分式的符号时,通常一个大分式较为方便;在求得分式函数值域时,往往通过“分离常数”的手段简化分式中的分子,从而便于求得范围

附:分式函数值域的求法:

分式函数也是高中所学函数的一个重要分支,求解分式函数的值域也考查了学生分式变形的能力以及能否将分式化归为可求值域的形式,学会求分式函数值域也是处理解析几何中范围问题的重要工具。求分式函数值域的方法很多,甚至也可以考虑对函数进行求导,但相对计算量较大,本节主要介绍的方式为如何通过对分式函数进行变形,并用换元的方式将其转化为熟悉的函数进行求解。

一、所用到的三个函数(其性质已在前文介绍)

1、反比例函数:1

y x = 2、对勾函数:()0a

y x a x =+>

3、函数:()0a

y x a x

=-> 注意与对勾函数进行对比

二、分式函数值域的求法 请看下面这个例子:

求[]1

3,1,2y x x

=+∈的值域 思路:此函数可看为1x 的结果再加上3所得,故可利用反比例函数求出1

x

的范围,再得到

值域

解:[]1,2x ∈Q 11,12x ??

∈????

173,42y x ??∴=+∈????

问题不难,但观察可发现:1313x y x x +=+

=,所以当遇到的函数为31

x y x

+=,总可以将分子的每一项均除以分母,从而转化为1

3y x

=+进行求解。由此得到第一个结论:

对于形如()ax b f x x +=的函数,总可以变换成()b

f x a x

=+转化为反比例函数进行求解。

注:如果在分式中,分子的表达式可将一部分构造为分母的形式,则可用这部分除以分母与

分式分离得到常数,从而使得分式中的分子变得简单,这种方法称为“分离常数法”,是分式变形常用的一种手段 例:()()23

,1,31

x f x x x -=

∈+ 思路:本题分母为表达式,比较复杂,但如果视分母为一个整体(进行换元),则可将分式转化成为()ax b

f x x

+=

的形式,从而求解 解:令()1,2,4t x t =+∈ 1x t ∴=-

()2552t f t t t -∴=

=-,进而可求出值域:13,24y ??

∈- ???

注:换元法是求函数值域时,通过将含有变量的一部分式子视为一个整体,用一个变量表示,进而将陌生的函数化归成熟悉的模型求解,这也是求函数值域时变换解析式的重要方法。 由上例,我们可以总结出第二个结论:

对于形如()ax b

f x cx d +=+(分子分母均为一次的分式)的函数,通过换元t cx d =+ ,可

转化为()pt q

f t t

+=的形式,进而用反比例函数进行求解。

再看下一个例子: 例:()11,,32f x x x x ??=+

∈????

解:函数为对勾函数()1a =,作图观察可发现极值点1x =在定义域中,故最小值为

()12f =,而最大值在()1,32f f ??

???

中产生,

()1510,3223f f ??== ??? 故值域为102,3??

????

思考1:那么()11,,32f x x x x ??

=-

∈????

你是否会求呢?记住,图像是你最好的帮手! 思考2:()211

x f x x x x

+=+=,那么是否可以仿照上面,得到第三个结论?

形如2ax bx c y x ++=的函数可通过分离常数转化为c

y ax b x

=++的形式,进而可依靠

a

y x x

的图像求出值域 继续,还能扩展么?举个例子?

例:()()234

,3,51

x x f x x x ++=

∈- 解:设1t x =-,()2,4t ∈

()

()()2

21314588

5t t t t f t t t t t

++++++∴=

==++

=)

(

min 5y f t ∴=== ()()211,411f t f t ====

)

5,11y ?∴∈+?

第四个结论:

形如2ax bx c

y dx e

++=+的函数可通过换元t dx e =+将问题转化为第三个结论,然后进行求

那么,例:()()21

,3,534

x f x x x x -=

∈++呢

不就是取了倒数么,所以只需分子分母同除以分子(1x -)即可化归为上面的情形

那么,例:()()22

21

,3,51

x x f x x x x ++=∈++呢 分子分母最高次均为2次,可考虑进行下分离常数:

()22222

2111111x x x x x x

f x x x x x x x +++++===+++++++,从而转化为上面例子的问题,至此,分式函数的终极形式22

ax bx c

y dx ex f

++=++总可通过一系列变换,转化为前面所介绍的三个函数模型进行求解。

小结:总结一下我们所遇到的分式类型及处理方法吧: ① ax b

y cx d

+=

+:换元→分离常数→反比例函数模型

② 2ax bx c y dx e ++=+:换元→分离常数→a

y x x

=±模型

③ 2dx e

y ax bx c

+=

++:同时除以分子:21y ax bx c dx e

=+++→②的模型

2

2

ax bx c

y

dx ex f

++

=

++

:分离常数→③的模型

共同点:让分式的分子变为常数

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高考文科数学核心考点总结

高考文科数学核心考点总结 导读:本文高考文科数学核心考点总结,仅供参考,如果觉得很不错,欢迎点评和分享。 高考文科数学核心考点 考点一:集合与简易逻辑 集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。 考点二:函数与导数 函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联

系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。 考点三:三角函数与平面向量 一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型. 考点四:数列与不等式 不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目. 考点五:立体几何与空间向量 一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不

高考文科数学函数专题讲解及高考真题精选含答案

函 数 【1.2.1】函数的概念 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数 x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是

2014-2019历年高考文科数学函数真题全国卷

(2019-1-3)3. 已知3.02.022.022.0log ===c b a ,,,则 A. c b a << B. b c a << C. b a c << D. a c b << (2019-1-5)5. 函数],[cos sin )(2 ππ-++=在x x x x x f 的图像大致为 A. B. C. D. (2019-2-6)6.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A . B .e 1x -+ C . D .e 1x --+ (2019-2-11)11.已知a ∈(0, π 2 ),2sin2α=cos2α+1,则sinα= A .15 B .5 C . D . 25 (2019-3-12)12.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则 A .f (log 314)>f (3 2 2-)>f (2 32-) B .f (log 31 4 )>f (2 32-)>f (3 22-) C .f (32 2 - )>f (232 - )>f (log 3 14 ) e 1x --e 1x ---3

D .f (23 2 - )>f (32 2 - )>f (log 3 14 ) (2018-1-12)12.设函数()20 1 0x x f x x -?=?>?,≤,,则满足()()12f x f x +<的x 的取值范围是 A .(]1-∞-, B .()0+∞, C .()10-, D .()0-∞, (2018-1-13)13.已知函数()() 2 2log f x x a =+,若()31f =,则a =________. (2018-2-3)3.函数()2 e e x x f x x --=的图像大致为 (2018-2-12)12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =, 则(1)(2)(3)f f f ++(50)f ++=L A .50- B .0 C .2 D .50 (2018-3-7)7.下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是 A .()ln 1y x =- B .()ln 2y x =- C .()ln 1y x =+ D .()ln 2y x =+ (2018-3-9)9.422y x x =-++的图像大致为( ) x x x x D. C. B. A.

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

高中数学求函数值域的7类题型和16种方法

求函数值域的7类题型和16种方法 一、函数值域基本知识 1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: 1.一次函数()0y kx b k =+≠的值域为R. 2.二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞???? ,当0a <时的值域为 24,4ac b a ?? --∞ ??? ., 3.反比例函数()0k y k x =≠的值域为{}0y R y ∈≠. 4.指数函数()01x y a a a =>≠且的值域为{}0y y >. 5.对数函数()log 01a y x a a =>≠且的值域为R. 6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型 题型一:一次函数()0y ax b a =+≠的值域(最值) 1、一次函数:()0y ax b a =+≠ 当其定义域为R ,其值域为R ; 2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。 题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值)

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高考文科数学函数精选习题复习

函数精选习题复习 一、选择题: 1.已知函数y f x =+()1的图象过点(3,2),则函数f x ()的图象关于x 轴的对称图形一定过点 A. (2,-2) B. (2,2) C. (-4,2) D. (4,-2) 2.如果奇函数()f x 在区间[](),0a b b a >>上是增函数,且最小值为m ,那么()f x 在区间[],b a --上是 A.增函数且最小值为m B.增函数且最大值为m - C.减函数且最小值为m D.减函数且最大值为m - 3. 与函数()lg 210.1x y -=的图象相同的函数解析式是 A.121()2y x x =-> B.121y x =- C.11()212y x x =>- D.121 y x =- 4.对一切实数x ,不等式1||2++x a x ≥0恒成立,则实数a 的取值范围是 A .-∞(,-2] B .[-2,2] C .[-2,)+∞ D .[0,)+∞ 5.已知函数)12(+=x f y 是定义在R 上的奇函数,函数)(x g y =的图象与函数)(x f y =的图象关于直线x y =对称,则)()(x g x g -+的值为 A .2 B .0 C .1 D .不能确定 6.把函数)(x f y =的图像沿x 轴向右平移2个单位,所得的图像为C ,C 关于x 轴对称的图像为x y 2=的图像,则)(x f y =的函数表达式为 A. 22+=x y B. 22+-=x y C. 22--=x y D. )2(log 2+-=x y 7. 当01a b <<<时,下列不等式中正确的是 A.b b a a )1()1(1->- B.(1)(1)a b a b +>+ C.2)1()1(b b a a ->- D.(1)(1)a b a b ->- 8.当[]2,0∈x 时,函数3)1(4)(2--+=x a ax x f 在2=x 时取得最大值,则a 的取值范围是 A.1[,)2-+∞ B. [)+∞,0 C. [)+∞,1 D.2 [,)3+∞ 9.已知(31)4,1()log , 1a a x a x f x x x -+?是(,)-∞+∞上的减函数,那么a 的取值范围是 A.(0,1) B.1(0,)3 C.1[,1)7 D.11[,)73 10.如果函数()f x 的图象与函数1()()2x g x =的图象关于直线y x =对称,则2(3)f x x -的单调递减区间是 A.3 [,)2 +∞ B.3(,]2-∞ C.3[,3)2 D.3(0,]2 二、填空题: 11.已知偶函数()f x 在[]0,2内单调递减,若()()0.5 11,(log ),lg 0.54 a f b f c f =-==,则,,a b c 之间的大小关系为 。 12. 函数log a y x =在[2,)+∞上恒有1y >,则a 的取值范围是 。 13. 若函数14455ax y a x +??= ≠ ?+?? 的图象关于直线y x =对称,则a = 。 14.设()f x 是定义在R 上的以3为周期的奇函数,若23(1)1,(2)1a f f a ->=+,则a 的取值范围是 。 15.给出下列四个命题: ①函数x y a =(0a >且1a ≠)与函数log x a y a =(0a >且1a ≠)的定义域相同;

高一数学《函数的定义域值域》练习题

函数值域、定义域、解析式专题 一、函数值域的求法 1、直接法: 例1:求函数y = 例2:求函数1y 的值域。 2、配方法: 例1:求函数242y x x =-++([1,1]x ∈-)的值域。 例2:求 函 数]2,1[x ,5x 2x y 2 -∈+-= 的 值域。 例3:求函数2256y x x =-++的值域。 3、分离常数法: 例1:求函数125 x y x -=+的值域。 例2:求函数1 22+--=x x x x y 的值域. 例3:求函数1 32 x y x -=-得值域. 4、换元法: 例1:求函数2y x = 例2: 求 函 数1x x y -+=的 值 域。 5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。 例1:求函数y x = 例2:求函数()x x x f -++=11的值域。

例3:求 函 数1x 1x y --+=的 值 域。 6、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。 例1:求函数|3||5|y x x =++-的值域。 7、非负数法 根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。 例1、(1)求函数216x y -=的值域。 (2)求函数1 3 22+-=x x y 的值域。 二、函数定义域 例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ?=-++的定义域. 例3:求下列函数的定义域: ① 2 1 )(-= x x f ; ② 23)(+=x x f ; ③ x x x f -+ += 21 1)( 例4:求下列函数的定义域: ④ 14)(2--=x x f ⑤ ②2 14 3)(2-+--= x x x x f ⑥ 3 7 3132+++-= x x y ④x x x x f -+= 0)1()( 三、解析式的求法 1、配凑法 例1:已知 :23)1(2 +-=+x x x f ,求f(x);

高考文科数学双向细目表

模块 知识点考查内容了解理解集合的含义、元素与集合的属于关系√列举法、描述法√包含于相等的含义√识别给定集合子集√全集于空集√并集于交集的含义与运算√补集的含义与运算√韦恩图表达集合的关系与运算√简单函数定义域和值域,了解映射√图像法、列表法、解析法表示函数√分段函数√函数单调性、最值及几何意义√函数奇偶性√函数图像研究函数性质指数函数模型背景√有理、实数指数幂、幂的运算指数函数概念、单调性√指数函数图像√对数的概念与运算√换底公式、自然对数、常用对数√对数函数的概念、单调性√对数函数的图像指数函数与对数函数互为反函数√幂函数的概念√幂函数的图像√二次函数、零点与方程的根√一元二次方程根的存在性及跟的个数√集合图像,用二分法求近似解指、对、幂函数的增长特征√函数模型的应用√柱、锥、台的结构特征√三视图√斜二测画法和直观图√平行、中心投影√三视图和直观图√球、柱、锥、台的表面积和体积公式√线面的位置关系定义√线面平行的判定 √面面平行的判定 √线面垂直的判定 √面面垂直的判定 √线面平行的性质 √面面平行的性质 √线面垂直的性质 √面面垂直的性质 √ 用已获结论证明空间几何体中的位置关系点、线、面位置关系集合的含义与表示集合间的基本关系集合的基本运算函数指数函数对数函数知识要求集合 函数概念 与基本初 等函数1 立体几何初步幂函数函数与方程函数模型及应用空间几何体

结合图形,确定直线位置关系的几何要素√直线倾斜角和斜率的概念√过两点的直线斜率计算公式√判定直线平行或垂直√点斜式、两点式、一般式√斜截式与一次函数的关系√两条相交直线的交点坐标√两点间的距离公式√ 点到直线的距离公式两条平行线间的距离公式√圆的几何要素,标准方程和一般方程判断直线与圆的位置关系应用直线与圆的方程√代数方法处理几何问题的思想√空间直角坐标表示点的位置√空间两点间的距离公式√算法的含义与思想√顺序、条件分支、循环逻辑结构√基本算法语句输入、输出、赋值、条件、循环语句√简单随机抽样√分层抽样和系统抽样√样本频率分布表、频率分布直方图、折线图√茎叶图√标准差的意义和作用√平均数和标准差√用样本估计总体的思想√会画散点图,认识变量间的相关关系√最小二乘法,线性回归方程√频率和概率的意义√互斥事件的概率加法公式√古典概型古典概型及其计算公式√随机事件所含的基本事件数及发生的概率√随机数的意义,运用模拟方法估计概率√几何概型的意义√任意角的概念√弧度制的概念、弧度与角度的互化√正弦、余弦、正切的定义√单位圆的三角函数线√诱导公式√三角函数的图像√ 三角函数的周期性√ 正余弦函数的单调性、最值、对称 中心 √正切函数性质 √同角三角函数的基本关系式 √正弦型函数的参数对图像变化的影响√向量的实际背景√ 平面向量的概念√ 向量的实际背景用样本估计总体变量的相关性事件与概率几何概型任意角的概念、弧度制三角函数直线与方程 圆的方程空间直角坐标系算法的含义、程序框图随机抽样统计 基本初等函数2平面解析几何初步算法初步

高一数学求函数的定义域与值域的常用方法教案

一. 教学内容: 求函数的定义域与值域的常用方法 求函数的解析式,求函数的定义域,求函数的值域,求函数的最值 二. 学习目标 1、进一步理解函数的定义域与值域的概念; 2、会应用代换、方程思想求简单的函数解析式; 3、会求基本初等函数、简单的复合函数及含参变量函数的定义域、值域和最值; 4、会将求函数值域问题化归为求函数的最值问题,重视函数单调性在确定函数最值中的作用; 5、会求实际问题中的函数解析式、定义域、值域和最值问题; 6、会用集合、区间或不等式表示函数的定义域和值域。 三. 知识要点 (一)求函数的解析式 1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0; 2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形; 3、求函数解析式的一般方法有: (1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。 (2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值; (3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g (x),以换元法解之; (4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式; (5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。 (二)求函数定义域 1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示; 2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题; 3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;

高中函数值域的12种解法(含练习题)

高中函数值域的12种求法 一、观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为[3,+∞]。 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二、反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y >1}) 三、配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4], ∴0≤√(-x2+x+2)≤3/2,函数的值域是[0,3/2]。 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√(15-4x)的值域。(答案:值域为{y∣y≤3}) 四、判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0(*) 当y≠2时,由Δ=(y-2)2-4(y-2)(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可

高考文科数学专题复习导数训练题(文)

高考文科数学专题复习导数训练题(文) 一、考点回顾 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义。 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用。 3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是 。 解析: ()2'2+=x x f ,所以()3211'=+=-f 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 例2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22y x = +,则 (1)(1)f f '+= 。 解析:因为 21= k ,所以()211'= f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25 ,所 以 ()25 1= f ,所以()()31'1=+f f 答案:3

例3.曲线 32 242y x x x =--+在点(13)-,处的切线方程是 。 解析: 443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-, 带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00 ≠x ,求直线l 的方程及切点坐标。 解析: 直线过原点,则 ()000 ≠= x x y k 。由点 () 00,y x 在曲线C 上,则 02 30023x x x y +-=,∴?2302 00 0+-=x x x y 。又263'2 +-=x x y ,∴ 在 ()00,y x 处 曲线C 的切线斜率为 ()263'02 00+-==x x x f k ,∴?2632302 002 0+-=+-x x x x ,整理 得:0 3200=-x x ,解得: 230= x 或00=x (舍),此时,830-=y ,41 - =k 。所以,直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23。 答案:直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为 ()163'2 -+=x ax x f 。对于R x ∈都有()0'

全国数学高考真题文科函数

2012年高考文科数学汇编:函数 一、选择题 1 .(2012年高考(重庆文))设函数2 ()43,()32,x f x x x g x =-+=-集合 {|(())0},M x R f g x =∈> {|()2},N x R g x =∈<则M N I 为 ( ) A .(1,)+∞ B .(0,1) C .(-1,1) D .(,1)-∞ 2 .(2012年高考(天津文))下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( ) A .cos 2y x = B .2log ||y x = C .2 x x e e y --= D .3 1y x =+ 3 .(2012年高考(四川文))函数(0,1)x y a a a a =->≠的图象可能是 4 .(2012年高考(陕西文))下列函数中,既是奇函数又是增函数的为 ( ) A .1y x =+ B .2 y x =- C .1 y x = D .||y x x = 5 .(2012年高考(山东文))函数21 ()4ln(1) f x x x = +-+ ( ) A .[2,0)(0,2]-U B .(1,0)(0,2]-U C .[2,2]- D .(1,2]- 6 .(2012年高考(江西文))已知 2()sin ()4 f x x π=+若a =f (lg5),1 (lg )5b f =则 ( ) A .a+b=0 B .a-b=0 C .a+b=1 D .a-b=1 7 .(2012年高考(江西文))设函数211 ()21x x f x x x ?+≤? =?>? ?,则((3))f f = ( ) A . 15 B .3 C . 23 D . 139 8.(2012年高考(湖南文))设定义在R 上的函数()f x 是最小正周期为2π的偶函数,() f x '是()f x 的导函数,当[]0,x π∈时,0()1f x <<;当(0,)x π∈且2 x π≠时 ,()()02 x f x π '- >,则函数()sin y f x x =-在[2,2]ππ-上的零点个数为 ( )

LS 高一数学函数值域求法及例题

君子有三乐,而王天下不与存焉。父母俱存,兄弟无故,一乐也;仰不愧于天,俯不怍于人,二乐也;得天下英才而教育之,三乐也。 函数值域(最值)的常用方法 姓名: 一、基本函数的值域: 一次函数()0y kx b k =+≠的值域为R . 二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ??-+∞????, 当0a <时的值域为24,4ac b a ??--∞ ?? ?. 反比例函数()0k y k x =≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >. 对数函数()log 01a y x a a =>≠且的值域为R . 正,余弦函数的值域为[]1,1-,正,余切函数的值域为R . 二、其它函数值域 一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数) 1、求242-+-=x y 的值域. 2 、求函数y = 的值域. 二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域) 1、求函数][)4,0(422∈+--=x x x y 的值域. 说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制. 2、若,42=+y x 0,0>>y x ,试求xy 的最大值。

三、反表示法(分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型) 对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和值域分别为其反函数的值域和定义域”这一性质,先求出其反函数,进而通过求其反函数的定义域的方法求原函数的值域。 1、求函数1 2+= x x y 的值域. 2、求函数2241x y x +=-的值域. 四、判别式法(分子、分母中含有二次项的函数类型,此函数经过变形后可以化为 0)()()(2=++y C x y B x y A 的形式,再利用判别式加以判断) 1、求函数3 274222++-+=x x x x y 的值域. 2、求函数2122 x y x x += ++的值域. 3、 五、换元法(通过简单的换元把一个函数变为简单函数,其题型特征是无理函数、三角函数(用 三角代换)等) 1、求函数x x y 41332-+-=的值域. 六、数形结合法(对于一些能够准确画出函数图像的函数来说,可以先画出其函数图像,然后利用函数图像求其值域) 1、求函数13y x x =-+-的值域。 七、不等式法(能利用几个重要不等式及推论来求得最值.(如:ab b a ab b a 2,222≥+≥+), 利用此法求函数的值域,要合理地添项和拆项,添项和拆项的原则是要使最终的乘积结果中不含自变量,同时,利用此法时应注意取""=成立的条件.) 1、求函数1(0)y x x x =+>的值域.

(完整word版)【高中数学讲义】函数求值域的十种方法.docx

前言: 总有人求助如何学好数学,这个问题很宽泛,并非寥寥数语能够厘清。有一点很明确,学好数学的必要条件是了解数学。 高中数学可以归结为两个“三位一体” :教学体系的三位一体和知识结构的三位一体。 知识结构的三位一体:数学思想,数学方法,典型习题。 三要素之间的关系:典型习题归纳数学思想,数学思想指导数学方法,数学方法解决典型习题。 数学思想举例:数形结合的思想等。 数学方法举例:配方法、反证法、倍差法等。 典型习题举例:恒成立问题、是否存在问题等。 教学体系的三位一体:教、学、练。 老师教什么:数学思想和数学方法。熟练掌握各种方法的是优秀学生,深入理解各种思想的是顶尖学生。 学生怎么学:课堂紧跟老师,课下善于提问。 如何做练习: 01,选题:中学数学最大的误区就是题海战术,有的老师不学无术只 会告诉你多做题。多做题没用,多做类型才有用。典型习题,做一顶

百。 02,做题:一题多解。对于选定的习题,运用尽量多的方法去解决,然后比较各个方法的优劣,归纳出某类型题对应的最佳方法。 03,总结:针对错题。大量统计表明,我们在考试中所犯的错误大多是重复性的。通过总结,避免两次踏入同一条水沟。 由上可知,我讲数学的特点是方法论、重总结。 工欲善其事,必先利其器:各种数学方法就是我们解决难题的利器。总喊看题就没思路的童鞋,回忆一下高中阶段你能说出多少种方法。说不出?有思路才怪! 言归正传,今天我们就来总结一下“函数求值域的十种方法” (高中数学最重要就是函数,函数之于高中数学好比力学之于高中物理。 高中数学函数的要点无非:三要素,四变换,五常见,六性质。 三要素中的求值域就是本讲的主题) 方法一:配方法 用于解决二次函数值域问题,考试中几乎不会单独考察配方法(太简单),但常与其他方法综合使用。

高考复习文科函数知识点总结

函数知识点 一.考纲要求 注:ABC分别代表了解理解掌握 二.知识点 一、映射与函数 1、映射f:A→B 概念 (1)A中元素必须都有象且唯一; (2)B 中元素不一定都有原象,但原象不一定唯一。 2、函数f:A→B 是特殊的映射 (1)、特殊在定义域A 和值域B都是非空数集。函数y=f(x)是“y是x 的函数” 这句话的数学表示,其中x是自变量,y是自变量x的函数,f 是表示对应法则, 它可以是一个解析式,也可以是表格或图象,

也有只能用文字语言叙述.由此可知函数图像与 x 轴至多有一个公共 点,但与 y 轴的公共点可能没有,也可能是任意个。(即一个x 只能对应一个y ,但一个y 可以对应多个x 。) (2)、函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决 定作用的 要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 二、函数的单调性 它是一个区间概念,即函数的单调性是针对定义域内的区间而言的。判断方法如下: 1、作差(商)法(定义法) 2、导数法 3、复合函数单调性判别方法(同增异减) 三.函数的奇偶性 ⑴偶函数:)()(x f x f =- 设(b a ,)为偶函数上一点,则(b a ,-)也是图象上一点. 偶函数的判定:两个条件同时满足 ①定义域一定要关于y 轴对称,例如:12+=x y 在)1,1[-上不是偶函数. ②满足)()(x f x f =-,或0)()(=--x f x f ,若0)(≠x f 时,1) () (=-x f x f . ⑵奇函数:)()(x f x f -=- 设(b a ,)为奇函数上一点,则(b a --,)也是图象上一点. 奇函数的判定:两个条件同时满足 ①定义域一定要关于原点对称,例如:3x y =在)1,1[-上不是奇函数. ②满足)()(x f x f -=-,或0)()(=+-x f x f ,若0)(≠x f 时, 1)() (-=-x f x f ※四.函数的变换 ①()()y f x y f x =?=-:将函数()y f x =的图象关于y 轴对称得到的新的图像 就是()y f x =-的图像; -a -c -b d c b a y=f(x) o y x ? -a -c -b d c b a y=f(-x) o y x ②()()y f x y f x =?=-:将函数()y f x =的图象关于x 轴对称得到的新的图像就是()y f x =-的图像;

相关文档
最新文档