LS高一数学函数值域求法及例题

合集下载

函数值域的求法及例题

函数值域的求法及例题

函数值域的求法在函数概念的三要素中,定义域和对应法则是最基本的,值域是由定义域和对应法则所确定,因此,研究值域仍应注重函数对应法则的作用和定义域对值域的制约,以下试举例说明常用方法.[例1]:求下列函数的值域 (1)y =1-2x (x ∈R ) (2)y =|x |-1 x ∈{-2,-1,0,1,2} (3)y =x 2+4x +3 (-3≤x ≤1) (4)y =|x +1|-|x -2|(5)y =2x -3+134-x(6)y =2224)1(5+++x x x(7)y =521+-x x(8)y =1223222++--x x x x(9)y =3-2x -x 2x ∈[-3,1](10)y =21322+-x x分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域. 对于(1)(2)可用“直接法”根据它们的定义域及对应法则得到(1)(2)的值域. 对于(3)(4)可借助数形结合思想利用它们的图象得到值域,即“图象法”. 对于(5)(6)可借用整体思想利用“换元法”求得值域.对于(7)可将其分离出一个常数,即利用“分离常数法”求得它的值域. 对于(8)可通过对“Δ”的分析,即利用“判别式”法求得其值域.对于(9)(10)可“通过中间函数的值域去求所求函数的值域”这一方法即“中间媒介法”求得其值域.解:(1)y ∈R(2)y ∈{1,0,-1}(3)画出y =x 2+4x +3(-3≤x ≤1)的图象,如图所示,当x ∈[-3,1]时,得y ∈[-1,8](4)对于y =|x +1|-|x -2|的理解,从几何意义入手,即利用绝对值的几何意义可知,|x +1|表示在数轴上表示x 的点到点-1的距离,|x -2|表示在数轴上表示x 的点到点2的距离,在数轴上任取三个点x A ≤-1,-1<x B <2,x C ≥c ,如图所示,可以看出|x A +1|-|x A -2|=-3-3<|x B +1|-|x B -2|<3,|x C +1|-|x C -2|=3,由此可知,对于任意实数x ,都有-3≤|x +1|-|x -2|≤3所以函数y =|x +1|-|x -2|的值域为y ∈[-3,3](5)对于没有给定自变量的函数,应先考查函数的定义域,再求其值域.∵4x -13≥0 ∴x ∈[413,+∞)令t =134-x 则得:x =4132+t∴y =21t 2+t +27∴y =21(t +1)2+3∵x ≥413∴t ≥0根据二次函数图象可得y ∈[27,+∞)(6)∵函数定义域为x ∈R 由原函数可化得:y =22222224)1(5)1()1(5+++=+++x x x x x x=2222222222)1(11)1(5)1()1(5+-+++=+++x x x x x x =111)1(5222++-+x x 令t =112+x∵x ∈R ∴t ∈(0,1] ∴y =5t 2-t +1=5(t -101)2+2019根据二次函数的图象得当t =101时y min =2019当t =1时,y max =5 ∴函数的值域为y ∈[2019,5](7)∵y =-21+5227+x∵5227+x ≠0 ∴y ≠-21∴函数y 的值域为y ∈(-∞,-21)∪(-21,+∞) (8)由y =1223222++--x x x x 得x ∈R 且可化为:(2y -1)x 2+2(y +1)x +(y +3)=0 ∴当y ≠21时,Δ=[2(y +1)]2-4(2y -1)(y +3)≥0 ∴y 2+3y -4≤0 ∴-4≤y ≤1且y ≠21 又当y =21时,2(1+21)x +(21+3)=0 得:x =-67,满足条件∴函数的值域为y ∈[-4,1] (9)∵-3≤x ≤1 ∴-2≤x +1≤2∴|x +1|≤2即(x +1)2≤4∴y =3-2x -x 2=-(x +1)2+4∈[0,4] ∴函数值域为y ∈[0,4](10)由y =21322+-x x 可知,x ∈R 且yx 2+2y =3x 2-1即(3-y )x 2=2y +1若y =3时,则有0=7,这是不可能的. ∴y ≠3 得:x 2=y y -+312 ∵x 2≥0 ∴yy -+312≥0 解得:-21≤y <3 ∴函数值域为y ∈[-21,3) 评述:(1)求函数的值域是一个相当复杂的问题,它没有现成的方法可套用,要结合函数表达式的特征,以及与所学知识联系,灵活地选择恰当的方法.(2)对于以上例题也可以采取不同的方法求解每一个值域,请读者不妨试一试.(3)除以上介绍的方法求函数值域外,随着学生的继续学习,我们今后还会有“反函数”法、“单调性”法、“三角换元”法、“不等式”法及“导数法”等.二、二次函数(含参数)在区间上的值域问题 [例2]、求下列函数的值域 (1)]1,0(1222∈-++=x a ax x y(2)]1,[142+∈++=t t x x x y三、含参数的其他值域问题[例3]已知函数f (x )=xax x ++22,x ∈[1,+∞)(1)当a =21时,求函数f (x )的最小值.(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.知识依托:本题主要通过求f (x )的最值问题来求a 的取值范围,体现了转化的思想与分类讨论的思想.错解分析:考生不易考虑把求a 的取值范围的问题转化为函数的最值问题来解决.技巧与方法:解法一运用转化思想把f (x )>0转化为关于x 的二次不等式;解法二运用分类讨论思想解得.(1)解:当a =21时,f (x )=x +x21+2∵f (x )在区间[1,+∞)上为增函数,∴f (x )在区间[1,+∞)上的最小值为f (1)=27.(2)解法一:在区间[1,+∞)上,f (x )=xax x ++22 >0恒成立⇔x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈[1,+∞)∵y =x 2+2x +a =(x +1)2+a -1递增,∴当x =1时,y min =3+a ,当且仅当y min =3+a >0时,函数f (x )>0恒成立,故a >-3.解法二:f (x )=x +xa+2,x ∈[1,+∞)当a ≥0时,函数f (x )的值恒为正;当a <0时,函数f (x )递增,故当x =1时,f (x )min =3+a ,当且仅当f (x )min =3+a >0时,函数f (x )>0恒成立,故a >-3.练习一、选择题1.函数y =x 2+x1(x ≤-21)的值域是( )A.(-∞,-47]B.[-47,+∞)C.[2233,+∞)D.(-∞,-3223]2.函数y =x +x 21-的值域是( )A.(-∞,1] B.(-∞,-1]C.RD.[1,+∞)一、1.解析:∵m 1=x 2在(-∞,-21)上是减函数,m 2=x1在(-∞,-21)上是减函数, ∴y =x 2+x1在x ∈(-∞,-21)上为减函数,∴y =x 2+x1(x ≤-21)的值域为[-47,+∞).答案:B2.解析:令x 21-=t (t ≥0),则x =212t -.∵y =212t -+t =-21 (t -1)2+1≤1∴值域为(-∞,1].。

函数值域的求法及例题

函数值域的求法及例题

函数值域的求法在函数概念的三要素中,定义域和对应法则是最基本的,值域是由定义域和对应法则所确定,因此,研究值域仍应注重函数对应法则的作用和定义域对值域的制约,以下试举例说明常用方法.[例1]:求下列函数的值域 (1)y =1-2x (x ∈R ) (2)y =|x |-1 x ∈{-2,-1,0,1,2} (3)y =x 2+4x +3 (-3≤x ≤1) (4)y =|x +1|-|x -2|(5)y =2x -3+134-x(6)y =2224)1(5+++x x x(7)y =521+-x x(8)y =1223222++--x x x x(9)y =3-2x -x 2x ∈[-3,1](10)y =21322+-x x分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域. 对于(1)(2)可用“直接法”根据它们的定义域及对应法则得到(1)(2)的值域. 对于(3)(4)可借助数形结合思想利用它们的图象得到值域,即“图象法”. 对于(5)(6)可借用整体思想利用“换元法”求得值域.对于(7)可将其分离出一个常数,即利用“分离常数法”求得它的值域. 对于(8)可通过对“Δ”的分析,即利用“判别式”法求得其值域.对于(9)(10)可“通过中间函数的值域去求所求函数的值域”这一方法即“中间媒介法”求得其值域.解:(1)y ∈R(2)y ∈{1,0,-1}(3)画出y =x 2+4x +3(-3≤x ≤1)的图象,如图所示,当x ∈[-3,1]时,得y ∈[-1,8](4)对于y =|x +1|-|x -2|的理解,从几何意义入手,即利用绝对值的几何意义可知,|x +1|表示在数轴上表示x 的点到点-1的距离,|x -2|表示在数轴上表示x 的点到点2的距离,在数轴上任取三个点x A ≤-1,-1<x B <2,x C ≥c ,如图所示,可以看出|x A +1|-|x A -2|=-3-3<|x B +1|-|x B -2|<3,|x C +1|-|x C -2|=3,由此可知,对于任意实数x ,都有-3≤|x +1|-|x -2|≤3所以函数y =|x +1|-|x -2|的值域为y ∈[-3,3](5)对于没有给定自变量的函数,应先考查函数的定义域,再求其值域.∵4x -13≥0 ∴x ∈[413,+∞)令t =134-x 则得:x =4132+t∴y =21t 2+t +27∴y =21(t +1)2+3∵x ≥413∴t ≥0根据二次函数图象可得y ∈[27,+∞)(6)∵函数定义域为x ∈R 由原函数可化得:y =22222224)1(5)1()1(5+++=+++x x x x x x=2222222222)1(11)1(5)1()1(5+-+++=+++x x x x x x =111)1(5222++-+x x 令t =112+x∵x ∈R ∴t ∈(0,1] ∴y =5t 2-t +1=5(t -101)2+2019根据二次函数的图象得当t =101时y min =2019当t =1时,y max =5 ∴函数的值域为y ∈[2019,5](7)∵y =-21+5227+x∵5227+x ≠0 ∴y ≠-21∴函数y 的值域为y ∈(-∞,-21)∪(-21,+∞) (8)由y =1223222++--x x x x 得x ∈R 且可化为:(2y -1)x 2+2(y +1)x +(y +3)=0 ∴当y ≠21时,Δ=[2(y +1)]2-4(2y -1)(y +3)≥0 ∴y 2+3y -4≤0 ∴-4≤y ≤1且y ≠21 又当y =21时,2(1+21)x +(21+3)=0 得:x =-67,满足条件∴函数的值域为y ∈[-4,1] (9)∵-3≤x ≤1 ∴-2≤x +1≤2∴|x +1|≤2即(x +1)2≤4∴y =3-2x -x 2=-(x +1)2+4∈[0,4] ∴函数值域为y ∈[0,4](10)由y =21322+-x x 可知,x ∈R 且yx 2+2y =3x 2-1即(3-y )x 2=2y +1若y =3时,则有0=7,这是不可能的. ∴y ≠3 得:x 2=y y -+312 ∵x 2≥0 ∴yy -+312≥0 解得:-21≤y <3 ∴函数值域为y ∈[-21,3) 评述:(1)求函数的值域是一个相当复杂的问题,它没有现成的方法可套用,要结合函数表达式的特征,以及与所学知识联系,灵活地选择恰当的方法.(2)对于以上例题也可以采取不同的方法求解每一个值域,请读者不妨试一试.(3)除以上介绍的方法求函数值域外,随着学生的继续学习,我们今后还会有“反函数”法、“单调性”法、“三角换元”法、“不等式”法及“导数法”等.二、二次函数(含参数)在区间上的值域问题 [例2]、求下列函数的值域 (1)]1,0(1222∈-++=x a ax x y(2)]1,[142+∈++=t t x x x y三、含参数的其他值域问题[例3]已知函数f (x )=xax x ++22,x ∈[1,+∞)(1)当a =21时,求函数f (x )的最小值.(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.知识依托:本题主要通过求f (x )的最值问题来求a 的取值范围,体现了转化的思想与分类讨论的思想.错解分析:考生不易考虑把求a 的取值范围的问题转化为函数的最值问题来解决.技巧与方法:解法一运用转化思想把f (x )>0转化为关于x 的二次不等式;解法二运用分类讨论思想解得.(1)解:当a =21时,f (x )=x +x21+2∵f (x )在区间[1,+∞)上为增函数,∴f (x )在区间[1,+∞)上的最小值为f (1)=27.(2)解法一:在区间[1,+∞)上,f (x )=xax x ++22 >0恒成立⇔x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈[1,+∞)∵y =x 2+2x +a =(x +1)2+a -1递增,∴当x =1时,y min =3+a ,当且仅当y min =3+a >0时,函数f (x )>0恒成立,故a >-3.解法二:f (x )=x +xa+2,x ∈[1,+∞)当a ≥0时,函数f (x )的值恒为正;当a <0时,函数f (x )递增,故当x =1时,f (x )min =3+a ,当且仅当f (x )min =3+a >0时,函数f (x )>0恒成立,故a >-3.练习一、选择题1.函数y =x 2+x1(x ≤-21)的值域是( )A.(-∞,-47]B.[-47,+∞)C.[2233,+∞)D.(-∞,-3223]2.函数y =x +x 21-的值域是( )A.(-∞,1] B.(-∞,-1]C.RD.[1,+∞)一、1.解析:∵m 1=x 2在(-∞,-21)上是减函数,m 2=x1在(-∞,-21)上是减函数, ∴y =x 2+x1在x ∈(-∞,-21)上为减函数,∴y =x 2+x1(x ≤-21)的值域为[-47,+∞).答案:B2.解析:令x 21-=t (t ≥0),则x =212t -.∵y =212t -+t =-21 (t -1)2+1≤1∴值域为(-∞,1].。

高中数学:求函数值域的方法十三种(一)

高中数学:求函数值域的方法十三种(一)

2
2
26
又 ∵ 在 [m, n] 上 当
x
增大时
f (x)





f (x)max f (n) f (x)min f (m)
3n 3m
m 4, n 0
解得
评注:解法 2 利用闭区间上的最值不超过整个定义域上的最值,缩小了 m ,n 的取值范围,
避开了繁难的分类讨论,解题过程简洁、明了。
(2) 求函数 y x(x a) 在 x [1 , 1] 上的最大值。
【解析】(1)二次函数的对称轴方程为 x a ,
当 a
1 2
即a
1 时, 2
f ( x )max
f ( 2 ) 4a 5 ;
当 a 1 2
即 a1 2
时,
f ( x )max f ( 1 ) 2a 2

f ( x )max 42aa52,,aa2121 。
y
x2 x2 x
x 1
x2 x x2
11 x 1
1
(x
1 1)2
3
不妨令:
24
f (x) (x 1)2 3 , g(x) 24
1 ( f (x) 0) 从而 f (x)
f
(
x)
3,
4
注意:在本题中应排

f
(x)
0 ,因为
f
(x)
作为分母。所以
g(x) 0,
3 4

y
1,1
3
f (x)max f (x)min
f (1) f (n)
3n 3m
,无解
④若
,则
f f
( x) max ( x) min

高中函数值域的12种解法(含练习题)

高中函数值域的12种解法(含练习题)

高中函数值域的12 种求法一、观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例1 求函数y=3+√ (2-3x)的值域。

点拨:根据算术平方根的性质,先求出√(2-3x)的值域。

解:由算术平方根的性质,知√(2-3x)≥ 0,故3+√(2-3x)≥ 3。

∴函数的知域为[3 ,+∞]。

点评:算术平方根具有双重非负性,即:( 1 )被开方数的非负性,(2 )值的非负性。

本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

练习:求函数y=[x](0 ≤ x≤ 5)的值域。

(答案:值域为:{0,1,2,3,4,5})二、反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例2 求函数y=(x+1)/(x +2)的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x +2)的反函数为:x=(1 -2y)/ (y-1 ),其定义域为y≠ 1 的实数,故函数y 的值域为{y∣ y≠ 1,y∈ R}。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。

这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10 x+10 -x)/(10 x-10-x)的值域。

(答案:函数的值域为{y∣ y<- 1 或y> 1 })三、配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。

例3:求函数y=√(-x2+x+2)的值域。

点拨:将被开方数配方成完全平方数,利用二次函数的最值求。

解:由-x2+x+2≥ 0,可知函数的定义域为x∈[-1 ,2]。

此时-x2+x+2=-(x-1/2)2+9/4 ∈ [0,9/4] ,∴ 0≤√ (-x2+x+2)≤ 3/2, 函数的值域是[0,3/2] 。

点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。

(word完整版)高中数学必修一函数的值域求法

(word完整版)高中数学必修一函数的值域求法

高一数学必修一 函数的值域 最新精题配方法 例1. ]53(232,求函数-∈+-=x x x y 的值域;练习已知函数y =-3x 2+2ax -1,x ∈[0,1],记f(a)为其最小值,求f(a)的表达式,并求f(a)的最大值例2. 求562---=x x y 函数 的值域;换元法: 形如常用换元法求值域的函数且为常数、、、)0(≠+±+=a ,d c b a d cx b ax y ;例3. 求函数x x y -+=142的值域利用函数的单调性求函数的值域例4求函数21y x =-在区间[2,6] 上的最大值和最小值.练习1函数y=f(x) 在R 上单调递增,且f(m 2)>f(-m),则实数m 的取值范围是( )A. (-∞,-1 )B. ( 0,+∞)C.(-1,0 )D. (-∞,-1 )∪( 0,+∞)2.已知x ∈[0,1],则函数y=2x+2-1-x 的最大值为 ,最小值为 。

3.若函数y =f (x )的值域是[-2,3],则函数y =∣f (x )∣的值域是 ( )A .[-2,3]B .[2,3]C .[0,2]D .[0,3]判别式法:形如域的函数用判别式法求值不同时为零,)(2122221121a a c x b x a c x b x a y ++++=; 例4 求函数xx y 1+=的值域;分离常数法:形如)0(≠++=a bax d cx y 的函数也可用此法求值域; 例5求函数213-+=x x y 的值域;数形结合法。

例6求函数的值域|4||1|++-=x x y (方法一可用到图象法)当堂检测1.函数y =4x -x 2,x ∈[0,3]的最大值、最小值分别为( ) (A)4,0(B)2,0 (C)3,0 (D)4,3 2.函数21x x y -=的最小值为( ) (A)21(B)1 (C)2 (D)4 3、函数3(2)2y x x =≠+ 在区间〔0,5〕上的最大值、最小值分别是( ) A. 3,07 B.3,02 C. 33,27D. 最大值37,无最小值。

高中函数求值域的九种方法和例题讲解

高中函数求值域的九种方法和例题讲解

函数求值域最常用的九种方法和例题讲解.一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例1求函数y=3+√(2-3x)的值域。

点拨:根据算术平方根的性质,先求出√(2-3x)的值域。

解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。

∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

练习:求函数y=[x](0≤x≤5)的值域。

(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例2求函数y=(x+1)/(x+2)的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。

这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。

(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。

点拨:将被开方数配方成完全平方数,利用二次函数的最值求。

解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。

此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。

配方法是数学的一种重要的思想方法。

练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。

高中数学求值域的方法

高中数学求值域的方法

高中数学求值域的方法高中数学求值域有时候对学生来说十分的困难,这也是一个考试的难点重点,那么有什么方法吗?下面小编就来和大家说说高中数学求值域的方法吧!高中数学求值域的方法一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例1求函数y=3+√(2-3x)的值域。

点拨:根据算术平方根的性质,先求出√(2-3x)的值域。

解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。

∴函数的值域为{y∣y≥3}.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

练习:求函数y=[x](0≤x≤5)的值域。

(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例2求函数y=(x+1)/(x+2)的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。

这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。

(答案:函数的值域为{y∣y1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。

点拨:将被开方数配方成完全平方数,利用二次函数的最值求。

解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。

此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。

求函数值域的8种方法带例题

求函数值域的8种方法带例题

求函数值域的8种方法带例题在数学的世界里,函数就像是画家的调色板,每个数字都是一块颜色,它们组合起来描绘出一个个美妙的世界。

而我们的任务,就是找到那些能让我们眼前一亮的颜色——函数值域。

想象一下,你走进一个神秘的画展,每一幅画都有它独特的色彩和主题。

同样地,每个函数也有它自己的色彩,这些色彩就是它的值域。

要找到这些色彩,我们可以采取8种不同的方法。

就像探险家寻找宝藏一样,我们一步步揭开函数值域的秘密。

我们可以用“试错法”。

就像孩子第一次尝试骑自行车时那样,我们用直觉去猜测,然后不断调整,直到找到正确的路径。

比如,如果函数是y=x^2+1,那么它的值域就是所有非负数,因为任何正数的平方都大于1。

我们可以使用“代入法”。

就像侦探分析线索一样,我们把可能的数值一个个代入到函数中,看看会发生什么。

例如,如果我们想知道函数y=x^35x+6的值域,我们可以把x从0到无穷大代入进去,看看结果是什么。

我们还可以利用“图像法”。

想象一下,函数就像是一幅画,它的值域就像是这幅画的色彩范围。

比如,函数y=2x+1在区间(∞,0)内是红色的,在(0,∞)内是蓝色的。

通过画出这个函数的图像,我们就可以直观地看到它的值域。

我们可以借助“对数法”。

就像数学家们用对数来探索未知数一样,我们也可以用对数来探索函数的值域。

比如,函数y=log_2(x)的值为域是所有正数,因为任何正数的对数都是正数。

这四种方法各有千秋,就像是四种不同的工具,帮助我们揭开函数值域的秘密。

但是,别忘了,最重要的还是直觉。

我们的直觉就像是一把钥匙,能够打开函数值域的大门。

所以,不要害怕犯错,大胆地尝试吧!我想说的是,函数值域就像是一场奇妙的冒险,充满了未知和惊喜。

只要我们有勇气、有智慧,就能像探险家一样,找到属于自己的宝藏。

所以,让我们一起踏上这场冒险之旅吧!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

L S高一数学函数值域求法
及例题
The latest revision on November 22, 2020
函数值域(最值)的常用方法
姓名:
一、基本函数的值域:
一次函数()0y kx b k =+≠的值域为R .
二次函数()2
0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ⎡⎫-+∞⎪⎢⎣⎭, 当0a <时的值域为24,4ac b a ⎛⎤--∞ ⎥⎝
⎦. 反比例函数()0k y k x
=≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >.
对数函数()log 01a y x a a =>≠且的值域为R .
正,余弦函数的值域为[]1,1-,正,余切函数的值域为R .
二、其它函数值域
一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数)
1、求242-+-=x y 的值域.
2、求函数
y =的值域. 二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域)
1、求函数][)4,0(422∈+--=x x x y 的值域.
说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制.
2、若,42=+y x 0,0>>y x ,试求xy 的最大值。

三、反表示法(分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型)
对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和值域分别为其反函数的值域和定义域”这一性质,先求出其反函数,进而通过求其反函数的定义域的方法求原函数的值域。

1、求函数1
2+=x x y 的值域. 2、求函数2241
x y x +=-的值域. 四、判别式法(分子、分母中含有二次项的函数类型,此函数经过变形后可以化为
0)()()(2=++y C x y B x y A 的形式,再利用判别式加以判断)
1、求函数3
274222++-+=x x x x y 的值域. 2、求函数2122
x y x x +=++的值域. 五、换元法(通过简单的换元把一个函数变为简单函数,其题型特征是无理函数、三角函数(用三角代换)等)
1、求函数x x y 41332-+-=的值域.
六、数形结合法(对于一些能够准确画出函数图像的函数来说,可以先画出其函数图像,然后利用函数图像求其值域)
1、求函数13y x x =-+-的值域。

七、不等式法(能利用几个重要不等式及推论来求得最值.(如:
ab b a ab b a 2,222≥+≥+),利用此法求函数的值域,要合理地添项和拆项,添项和拆项的原则是要使最终的乘积结果中不含自变量,同时,利用此法时应注意取""=成立的条件.)
1、求函数1(0)y x x x
=+>的值域. 注意:在使用此法时一定要注意
a b +≥a >0,b >0,且能取到a =b .
八、部分分式法(分离常数法)(分式且分子、分母中有相似的项,通过该方法可将原函数转化为为)(x f k y ±=(为k 常数)的形式)
1、求函数1
22+--=x x x x y 的值域. 九、单调性法(利用函数在给定的区间上的单调递增或单调递减求值域)
十、利用导数求函数的值域(若函数f 在(a 、b )内可导,可以利用导数求得f 在(a 、
b )内的极值,然后再计算f 在a ,b 点的极限值。

从而求得f 的值域)
十一、最值法(对于闭区间[a ,b ]上的连续函数y =f (x ),可求出y =f (x )在区间[a ,b ]内的极值,
并与边界值f (a )、f (b )作比较,求出函数的最值,可得到函数y 的值域)
十二、构造法(根据函数的结构特征,赋予几何图形,数形结合)
十三、比例法(对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值
求函数的值域
①31y x =+,x∈{1,2,3,4,5}.(观察法)
②246y x x =-+,x ∈[)1,5.(配方法:形如2y ax bx c =++)
③2y x =-(换元法
:形如y ax b =+④1x y x =+.(分离常数法:形如cx d y ax b
+=+) ⑤221y x x =+.(判别式法:形如21112222
a x
b x
c y a x b x c ++=++) 变式1.求下列函数的值域
①2243y x x =-+
.②y x =+
③y =213
x x +-.④2224723x x y x x +-=++. ⑤37y x x =-++.⑥93(0)4y x x x =+>。

相关文档
最新文档