2024年教师资格之中学数学学科知识与教学能力题库附答案(基础题)

合集下载

2024年教师资格之中学数学学科知识与教学能力综合提升测试卷附带答案

2024年教师资格之中学数学学科知识与教学能力综合提升测试卷附带答案

2024年教师资格之中学数学学科知识与教学能力综合提升测试卷附带答案单选题(共20题)1. 义务教育阶段的数学课程应该具有()。

义务教育阶段的数学课程应该具有()。

A.基础性、普及性、发展性B.实践性、普及性、选拔性C.基础性、实践性、选拔性D.实践性、普及性、发展性【答案】 A2. 患者,男,51岁。

尿频、尿痛间断发作2年,下腹隐痛、肛门坠胀1年。

查体:肛门指诊双侧前列腺明显增大、压痛、质偏硬,中央沟变浅,肛门括约肌无松弛。

前列腺液生化检查锌含量为1.76mmol/L,B超显示前列腺增大。

肿瘤病人的机体免疫状态患者,男,51岁。

尿频、尿痛间断发作2年,下腹隐痛、肛门坠胀1年。

查体:肛门指诊双侧前列腺明显增大、压痛、质偏硬,中央沟变浅,肛门括约肌无松弛。

前列腺液生化检查锌含量为1.76mmol/L,B超显示前列腺增大。

肿瘤病人的机体免疫状态A.免疫防御过高B.免疫监视低下C.免疫自稳失调D.免疫耐受增强E.免疫防御低下【答案】 B3. Arthus及类Arthus反应属于Arthus及类Arthus反应属于A.Ⅰ型超敏反应B.Ⅱ型超敏反应C.Ⅲ型超敏反应D.Ⅳ型超敏反应E.以上均正确【答案】 C4. ααA.DIC,SLE,急性肾小球肾炎,急性胰腺炎B.慢性肾小球性疾病,肝病,炎性反应,自身免疫性疾病C.口服避孕药,恶性肿瘤,肝脏疾病D.血友病,白血病,再生障碍性贫血E.DIC,慢性肾小球疾病,肝脏疾病,急性胰腺炎【答案】 A5. 临床有出血症状且APTT延长和PT正常可见于临床有出血症状且APTT延长和PT正常可见于A.痔疮B.FⅦ缺乏症C.血友病D.FⅩⅢ缺乏症E.DIC【答案】 C6. 高中数学课程是义务教育阶段后普通高级中学的主要课程,具有()。

高中数学课程是义务教育阶段后普通高级中学的主要课程,具有()。

A.基础性、选择性和发展性B.基础性、选择性和实践性C.基础性、实践性和创新性D.基础性、选择性和普适性【答案】 A7. 适应性免疫应答适应性免疫应答A.具有特异性B.时相是在感染后数分钟至96hC.吞噬细胞是主要效应细胞D.可遗传E.先天获得【答案】 A8. 内、外源性凝血系统形成凝血活酶时,都需要的因子是内、外源性凝血系统形成凝血活酶时,都需要的因子是A.因子ⅢB.因子ⅤC.因子ⅠD.因子ⅩE.因子Ⅸ【答案】 D9. 淋巴细胞活力的表示常用淋巴细胞活力的表示常用A.活细胞占总细胞的百分比B.活细胞浓度C.淋巴细胞浓度D.活细胞与总细胞的比值E.白细胞浓度【答案】 A10. 最常引起肝、脾、淋巴结肿大及脑膜白血病的是最常引起肝、脾、淋巴结肿大及脑膜白血病的是A.急性粒细胞白血病B.慢性淋巴细胞白血病C.急性粒-单核细胞白血病D.急性淋巴细胞白血病E.慢性粒细胞白血病【答案】 D11. ELISA是利用酶催化反应的特性来检测和定量分析免疫反应。

2024年教师资格(中学)-数学学科知识与教学能力(初中)考试历年真题摘选附带答案

2024年教师资格(中学)-数学学科知识与教学能力(初中)考试历年真题摘选附带答案

2024年教师资格(中学)-数学学科知识与教学能力(初中)考试历年真题摘选附带答案第1卷一.全考点押密题库(共100题)1.(单项选择题)(每题 5.00 分)我国古代关于求解一次同余式组的方法被西方称作“中国剩余定理”,这一方法的首创者是()。

A. 贾宪B. 刘徽C. 朱世杰D. 秦九韶2.3.(单项选择题)(每题 1.00 分)关于倍立方体问题中最重大的成就是柏拉图学派的()为解决倍立方体问题而发现了圆锥曲线。

A. 梅内赫莫斯B. 泰勒斯C. 欧几里得D. 阿基米德4.(单项选择题)(每题5.00 分)下列说法正确的是()。

A. 单调数列必收敛B. 收敛数列必单调C. 有界数列必收敛D. 收敛数列必有界5.(单项选择题)(每题 5.00 分) 一元三次方程x3 -3x-4 = 0的解的情况是()。

A. 方程有三个不相等的实根B. 方程有一个实根,一对共轭复根C. 方程有三个实根,其中一个两重根D. 无解6.(单项选择题)(每题 5.00 分) 我国现行法律认为,教师职业是一种()。

A. 私人职业B. 从属职业C. 专门职业D. 附加职业7.(单项选择题)(每题 1.00 分)下列关于椭圆的论述,正确的是()。

A. 平面内到两个定点的距离之和等于常数的动点轨迹是椭圆B. 平面内到定点和定直线距离之比小于1的动点轨迹是椭圆C. 从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆另一个焦点D. 平面与圆柱面的截线是椭圆8.(单项选择题)(每题 1.00 分)设4阶矩阵A与B仅有第3行不同,且|A|=1,|B|=3,则|A+B|=()。

A. 3B. 6C. 12D. 329.(单项选择题)(每题 5.00 分) 设向量a,b满足:|a| = 3,|b| = 4, a.b=0。

以a,b,a-b的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为()。

A. 3B. 4C. 5D. 610.(单项选择题)(每题 1.00 分)《义务教育数学课程标准(2011 年版)》从四个方面阐述了课程目标,这四个目标是()。

2024年教师资格考试初中学科知识与教学能力数学试卷与参考答案

2024年教师资格考试初中学科知识与教学能力数学试卷与参考答案

2024年教师资格考试初中数学学科知识与教学能力复习试卷(答案在后面)一、单项选择题(本大题有8小题,每小题5分,共40分)1、在下列函数中,属于一次函数的是:A.(f(x)=x2+3x−2)B.(g(x)=2x+4)C.(ℎ(x)=√x+5)+3)D.(j(x)=1x2、下列关于三角形内角和定理的说法正确的是:A. 任何三角形的内角和小于180°B. 等边三角形的内角和等于360°C. 所有三角形的内角和等于180°D. 任何三角形的内角和大于180°3、题干:在平面直角坐标系中,点A的坐标为(3,4),点B的坐标为(-2,1)。

下列关于点B的坐标的描述正确的是()A. 点B在第二象限B. 点B在第三象限C. 点B在第四象限D. 点B在x轴上4、题干:若等差数列{an}的首项为2,公差为3,则第10项an的值为()A. 25B. 28C. 31D. 345、下列关于函数图像的说法正确的是()A. 函数y=x^2的图像是一个开口向上的抛物线B. 函数y=√x的图像是一个开口向下的抛物线C. 函数y=2x+1的图像是一条直线,斜率为2,y轴截距为1D. 函数y=|x|的图像是一个开口向左的绝对值函数6、下列关于一元二次方程的解法,错误的是()A. 因式分解法可以求解一元二次方程B. 配方法可以求解一元二次方程C. 求根公式法可以求解一元二次方程D. 降次法不能求解一元二次方程7、在下列函数中,属于二次函数的是())A.(y=1xB.(y=x2+2x+1)C.(y=√x)D.(y=x3−2x2+x+1)8、已知函数(f(x)=2x2−3x+1),则函数的对称轴是())A.(x=−34)B.(x=34)C.(y=−34)D.(y=34二、简答题(本大题有5小题,每小题7分,共35分)第一题请结合初中数学学科特点,谈谈如何有效运用信息技术进行数学教学?第二题题目:简述在教授初中数学时如何运用直观演示法,并举例说明其在几何教学中的应用。

2024年教师资格(中学)-数学学科知识与教学能力(初中)考试历年真题摘选附带答案

2024年教师资格(中学)-数学学科知识与教学能力(初中)考试历年真题摘选附带答案

2024年教师资格(中学)-数学学科知识与教学能力(初中)考试历年真题摘选附带答案第1卷一.全考点押密题库(共100题)1.(单项选择题)(每题 1.00 分)设λ1,λ2是矩阵A的两个不同的特征值,a,β分别为A对应于λ1,λ2的特征向量,则a,β( )。

A. 线性相关B. 线性无关C. 正交D. 平行2.(单项选择题)(每题 5.00 分)中学数学的()是沟通教学理论与教学实践的中介与桥梁,是体现教学理论,指导教学实践的“策略体系”和“便于操作的实施程序”。

A. 教学标准B. 教学大纲C. 教学策略D. 教学模式3.(单项选择题)(每题 1.00 分)已知随机变量X服从正态分布N(μ,σ2),设随机变量Y=2X,那么Y服从的分布是()。

A. N(2μ,2σ2)B. N(4μ,4σ2)C. N(2μ,4σ2)D. N(μ,σ2)4.(单项选择题)(每题5.00 分) 设an}是公差为-2的等差数列,如果a1+a4+a7+...+a28=90,那么a3+a6+a9+...+a30的值为()。

{A. 80B. 60C. 50D. 705.(单项选择题)(每题 1.00 分)将一枚硬币重复掷n次,以x和y,分别表示正面朝上和反面朝上的次数,则x与y的相关系数等于( )A. -1B. OC. 1/2D. 16.(单项选择题)(每题 5.00 分)设f(x),g(x)在x=x0处均不连续,则在x=x0处()A. f(x)+g(x)f(x)·g(X)均不连续B. f(x)+g(x)不连续,f(x)·g(x)的连续性不确定C. f(x)+g(x)的连续性不确定,f(x)·g(x)不连续D. f(x)+g(x)f(x)·g(x)的连续性均不确定7.(单项选择题)(每题 5.00 分) 对于不重合的两个平面α与β,给定下列条件:① 存在平面γ,使得α、β都垂直于γ;② 存在平面γ,使得α、β都平行于γ;③ α内有不共线的三点到P的距离相等;④ 存在异面直线1、m,使得1//α, 1//β, m//α, m//β。

初级中学数学教师资格考试学科知识与教学能力试卷与参考答案(2024年)

初级中学数学教师资格考试学科知识与教学能力试卷与参考答案(2024年)

2024年教师资格考试初级中学数学学科知识与教学能力复习试卷(答案在后面)一、单项选择题(本大题有8小题,每小题5分,共40分)1、题干:在下列数学概念中,属于实数范畴的是:A、有理数B、虚数C、分数D、无理数2、题干:在初中数学教学中,教师引导学生通过观察、操作、推理等活动,认识并掌握数学概念和法则的过程称为:A、直观教学B、启发式教学C、探究式教学D、发现式教学3、在平面直角坐标系中,点A(2, 5)关于y轴对称的点B的坐标是:A. (2, -5)B. (-2, 5)C. (-2, -5)D. (5, 2)4、若直线l经过点(1, 2)且斜率为-3,则下列哪个选项是该直线的方程?A. y = -3x + 5B. y = -3x - 1C. y = 3x - 1D. y = 3x + 55、在平面直角坐标系中,点A(3,4)关于y轴的对称点为()。

A、(-3,4)B、(3,-4)C、(-3,-4)D、(3,4)6、下列函数中,自变量x的取值范围为全体实数的是()。

A、y = √(x+2)B、y = 1/(x-3)C、y = 2x + 1D、y = x² - 17、已知函数f(x)=2x2−3x+1,则该函数的顶点坐标是:A.(34,−18)B.(−34,1 8 )C.(34,1 8 )D.(−34,−18)8、在平面直角坐标系中,若直线l1:y=2x+3与直线l2:y=kx−1垂直,则实数k 的值为:A.−2B.−12C.12D.2二、简答题(本大题有5小题,每小题7分,共35分)第一题请简述数学教学中,如何运用问题引导策略,激发学生的学习兴趣,提高教学效果。

第二题题目:在中学数学教学过程中,如何运用数形结合的思想解决一元二次方程的应用问题?请举例说明,并解释数形结合方法的优势。

第三题请结合实际教学案例,谈谈如何通过教学活动培养学生的数学思维能力。

第四题题目:请结合初中数学教学实际,阐述如何有效进行数学课堂提问,以提高学生的学习兴趣和参与度。

2024年教师资格之中学数学学科知识与教学能力高分题库附精品答案

2024年教师资格之中学数学学科知识与教学能力高分题库附精品答案

2024年教师资格之中学数学学科知识与教学能力高分题库附精品答案单选题(共45题)1、通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所需的数学的基础知识、基本技能、基本思想和( )A.基本方法B.基本思维方式C.基本学习方法D.基本活动经验【答案】 D2、有限小数与无限不循环小数的关系是()。

A.对立关系B.从属关系C.交叉关系D.矛盾关系【答案】 A3、新课程标准将义务教育阶段的数学课程目标分为()。

A.过程性目标和结果性目标B.总体目标和学段目标C.学段目标和过程性目标D.总体目标和结果性目标【答案】 B4、下列哪项不是B细胞的免疫标志A.CD10B.CD19C.CD64D.HLA-DRE.CD22【答案】 C5、浆细胞性骨髓瘤的诊断要点是A.骨髓浆细胞增多>30%B.高钙血症C.溶骨性病变D.肾功能损害E.肝脾肿大【答案】 A6、血管损伤后伤口的缩小和愈合有赖于血小板的哪项功能A.黏附B.聚集C.收缩D.促凝E.释放【答案】 C7、某女,30岁,乏力,四肢散在瘀斑,肝脾不大,血红蛋白45g/L,红细胞1.06×10A.粒细胞减少症B.AAC.巨幼红细胞贫血D.急性白血病E.珠蛋白生成障碍性贫血【答案】 B8、通常下列哪种疾病不会出现粒红比例减低()A.粒细胞缺乏症B.急性化脓性感染C.脾功能亢进D.真性红细胞增多症E.溶血性贫血【答案】 B9、设 a,b 为非零向量,下列命题正确的是()A.a× b 垂直于 aB.a× b 平行于 aC.a·b 平行于 aD.a·b 垂直于 a【答案】 A10、3~6个月胚胎的主要造血器官是A.骨髓B.脾脏C.卵黄囊D.肝脏E.胸腺【答案】 D11、男性,30岁,黄疸,贫血4年,偶见酱油色尿。

检验:红细胞2.15×10A.Coomb试验B.血清免疫球蛋白测定C.Ham试验D.尿隐血试验E.HBsAg【答案】 C12、下列描述为演绎推理的是( )。

教师资格考试初中数学学科知识与教学能力试卷及解答参考(2024年)

教师资格考试初中数学学科知识与教学能力试卷及解答参考(2024年)

2024年教师资格考试初中数学学科知识与教学能力复习试卷(答案在后面)一、单项选择题(本大题有8小题,每小题5分,共40分)1、在下列数学概念中,不属于实数范畴的是()A、有理数B、无理数C、整数D、分数2、在下列教学方法中,适用于培养学生创新精神和实践能力的是()A、讲授法B、演示法C、讨论法D、练习法3、题干:在数学教学中,教师为了帮助学生理解“因式分解”的概念,采用了以下哪种教学方法?A. 演示法B. 案例分析法C. 小组合作探究法D. 讲授法4、题干:以下哪项不属于数学教学目标中的“知识与技能”领域?A. 理解数学概念B. 掌握数学运算C. 培养数学思维D. 传承数学文化5、在下列函数中,属于反比例函数的是()A.(y=x2+1)B.(y=2x−3))C.(y=1xD.(y=√x)6、在等差数列({a n})中,已知(a1=3),公差(d=2),则第10项(a10)的值是()A. 15B. 20C. 25D. 307、在平面直角坐标系中,点A(2,3)关于y轴的对称点是()A. A’(-2,3)B. A’(2,-3)C. A’(-2,-3)D. A’(2,3)8、下列函数中,在其定义域内为增函数的是()A.(f(x)=−x2+4x−3)B.(f(x)=2x−5))C.(f(x)=1xD.(f(x)=√x)二、简答题(本大题有5小题,每小题7分,共35分)第一题请简述数学课程标准中对于“数学思考”这一核心素养的要求,并结合初中数学教学实际,举例说明如何在教学中培养学生的数学思考能力。

1.能够从数学的视角观察、分析现实世界中的现象,提出数学问题,并用数学语言进行表述。

2.能够运用数学的基本思想和方法,对问题进行抽象和建模,形成数学表达式或图形。

3.能够运用逻辑推理、归纳总结、类比等数学思维方法,对问题进行探究和解决。

4.能够理解和欣赏数学的简洁美和逻辑美,体验数学思考的乐趣。

5.能够在解决问题过程中,培养创新精神和实践能力。

初中数学教师资格考试学科知识与教学能力2024年复习试题与参考答案

初中数学教师资格考试学科知识与教学能力2024年复习试题与参考答案

2024年教师资格考试初中数学学科知识与教学能力复习试题与参考答案一、单项选择题(本大题有8小题,每小题5分,共40分)1、题干:在下列函数中,函数y=√(x+1)的定义域是()A、[1,+∞)B、(-∞,-1]C、[0,+∞)D、(-1,+∞)答案:A解析:函数y=√(x+1)中,根号下的表达式x+1必须大于等于0,即x+1≥0。

解得x≥-1。

因此,函数的定义域是[-1,+∞),故选A。

2、题干:已知函数f(x)=2x-3,若f(2a+b)=7,则2a+b的值为()A、5B、4C、3D、2答案:A解析:根据题意,f(2a+b)=2(2a+b)-3=7。

解得2a+b=5。

因此,2a+b的值为5,故选A。

3、在解析几何中,若点A(2,3)关于直线y=kx+k的对称点为B,则k的值为:B. 2C. 1/2D. -1/2答案:B解析:点A(2,3)关于直线y=kx+k的对称点为B,则线段AB的中点在直线上,设中点为M,则M的坐标为(1, (3+k)/2)。

由于M在直线上,代入直线方程得:(3+k)/2 = k + k 3 + k = 4k k = 3/3 k = 1所以,k的值为1,选择B。

4、下列关于函数y=2x+3的性质描述正确的是:A. 该函数是增函数B. 该函数是减函数C. 该函数在x=0时有极值D. 该函数在x=0时无极值答案:A解析:由于函数y=2x+3的导数y’ = 2,导数恒大于0,所以该函数是增函数。

因此,选择A。

注意:题目及答案仅供参考,实际教师资格考试题型及答案可能有所不同。

5、若某班学生的数学成绩服从正态分布,平均分为80分,标准差为10分,则成绩在70分至90分之间的学生大约占全班的多少百分比?A. 34%B. 50%D. 95%【答案】C. 68%【解析】根据统计学中的经验法则,即68-95-99.7规则,在一个正态分布中,大约68%的数据位于平均值的一个标准差范围内。

本题中,平均分为80分,标准差为10分,因此70分至90分(即平均分的正负一个标准差之间)涵盖了约68%的学生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2024年教师资格之中学数学学科知识与教学能力题库附答案(基础题)单选题(共40题)1、对脾功能亢进的诊断较有价值的检查是()A.全血细胞计数B.骨髓穿刺涂片检查C.脾容积测定D.血细胞生存时间测定E.尿含铁血黄素试验【答案】 D2、定量检测病人外周血免疫球蛋白常用的方法是()A.间接血凝试验B.双向琼脂扩散C.单向琼脂扩散D.外斐试验E.ELISA【答案】 C3、下列描述的四种教学场景中,使用的教学方法为演算法的是()。

A.课堂上老师运用实物直观教具将教学内容生动形象地展示给学生B.课堂上老师运用口头语言,辅以表情姿态向学生传授知识C.课堂上在老师的指导下,学生运用所学知识完成课后练习D.课堂上老师向学生提出问题,并要求学生回答,以对话方式探索新知识【答案】 C4、下列选项中,运算结果一定是无理数的是()A.有理数和无理数的和B.有理数与有理数的差C.无理数和无理数的和D.无理数与无理数的差【答案】 A5、外周血三系减少,而骨髓增生明显活跃,下列哪一项与此不符()A.巨幼红细胞性贫血B.再障C.颗粒增多的早幼粒细胞白血病D.阵发性睡眠性蛋白尿E.以上都符合【答案】 B6、下列哪种疾病血浆高铁血红素白蛋白试验阴性A.肝外梗阻性黄疸B.肿瘤C.蚕豆病D.感染E.阵发性睡眠性血红蛋白尿【答案】 B7、患者男性,60岁,贫血伴逐渐加剧的腰痛半年余,肝、脾不大,Hb85g/L,白细胞3.6×10A.原发性巨球蛋白血症B.浆细胞白血病C.多发性骨髓瘤D.尿毒症E.急淋【答案】 C8、珠蛋白生成障碍性贫血的主要诊断依据是A.粒红比缩小或倒置B.血红蛋白尿C.外周血出现有核红细胞D.血红蛋白电泳异常E.骨髓中幼稚红细胞明显增高【答案】 D9、多发性骨髓瘤患者,血清中M蛋白含量低,不易在电泳中发现,常出现本周蛋白质、高血钙、肾功能损害及淀粉样变,属于免疫学分型的哪一型()A.IgA型B.IgD型C.轻链型D.不分泌型E.IgG型【答案】 B10、教学方法中的发现式教学法又叫()教学法A.习惯B.态度C.学习D.问题【答案】 D11、下列关于高中数学课程变化的内容,说法不正确的是()。

A.高中数学课程中的向量既是几何的研究对象,也是代数的研究对象B.高中数学课程中,概率的学习重点是如何计数C.算法是培养逻辑推理能力的非常好的载体D.集合论是一个重要的数学分支【答案】 B12、内源凝血途径的始动因子是下列哪一个()A.因子ⅧB.因子ⅩC.因子ⅫD.因子E.因子Ⅺ【答案】 C13、为及早发现胎儿有胎内溶血,应尽早对孕妇Rh抗体进行监测,首次检测一般为妊娠A.8周B.16周C.20周D.24周E.36周【答案】 B14、有限小数与无限不循环小数的关系是()。

A.对立关系B.从属关系C.交叉关系D.矛盾关系【答案】 A15、浆细胞性骨髓瘤的诊断要点是A.骨髓浆细胞增多>30%B.高钙血症C.溶骨性病变D.肾功能损害E.肝脾肿大【答案】 A16、义务教育阶段的数学教育的三个基本属性是()。

A.基础性、竞争性、普及型B.基础性、普及型、发展性C.竞争性、普及性、发展性D.基础性、竞争性、发展性【答案】 B17、在现代免疫学中,免疫的概念是指A.排斥抗原性异物B.清除自身突变、衰老细胞的功能C.识别并清除从外环境中侵入的病原生物D.识别和排斥抗原性异物的功能E.机体抗感染而不患病或传染疾病【答案】 D18、重症肌无力的自身抗原是A.甲状腺球蛋白B.乙酰胆碱受体C.红细胞D.甲状腺细胞表面TSH受体E.肾上腺皮质细胞【答案】 B19、男性,28岁,农民,头昏乏力半年有余。

体检:除贫血貌外,可见反甲症。

检验:外周血涂片示成熟红细胞大小不一,中央淡染;血清铁7.70μmol/L(43μg/dl),总铁结合力76.97μmol/L(430μg/dl);粪便检查有钩虫卵。

其贫血诊断为A.珠蛋白生成再生障碍性贫血B.慢性肾病C.缺铁性贫血D.慢性感染性贫血E.维生素B【答案】 C20、与向量 a=(2,3,1)垂直的平面是( )。

A.x-2y+z=3B.2x+y+3z=3C.2x+3y+z=3D.x—y+z=3【答案】 C21、下面哪位不是数学家? ()A.祖冲之B.秦九韶C.孙思邈D.杨辉【答案】 C22、ELISA是利用酶催化反应的特性来检测和定量分析免疫反应。

ELISA中常用的固相载体A.聚苯乙烯B.尼龙网C.三聚氧胺D.硝酸纤维膜E.醋酸纤维膜【答案】 A23、创立解析几何的主要数学家是().A.笛卡尔,费马B.笛卡尔,拉格朗日C.莱布尼茨,牛顿D.柯西,牛顿【答案】 A24、设函数f(x)满足f”(x)-5f’(x)+6f(x)=0,若f(x0)>0,f'(x0)=0,则()。

A.f(x)在点x0处取得极大值B.f(x)在点x0的某个领域内单调增加C.f(x)在点x0处取得极小值D.f(x)在点x0的某个领域内单调减少【答案】 A25、男性,10岁,发热1周,并有咽喉痛,最近两天皮肤有皮疹。

体检:颈部及腋下浅表淋巴结肿大,肝肋下未及,脾肋下1cm。

入院时血常规结果为:血红蛋白量113g/L:白细胞数8×10A.慢性淋巴细胞白血病B.传染性单核细胞增多症C.上呼吸道感染D.恶性淋巴瘤E.急性淋巴细胞白血病【答案】 B26、下列划分正确的是()。

A.有理数包括整数、分数和零B.角分为直角、象限角、对顶角和同位角C.数列分为等比数列、等差数列、无限数列和递减数列D.平行四边形分为对角线互相垂直的平行四边形和对角线不互相垂直的平行四边形【答案】 D27、义务教育阶段的数学教育是()。

A.基础教育B.筛选性教育C.精英公民教育D.公民教育【答案】 A28、已知随机变量 X 服从正态分布X(μ,σ2),假设随机变量 Y=2X-3,Y 服从的分布是()A.N(2μ-3,2σ2-3)B.N(2μ-3,4σ2)C.N(2μ-3,4σ2+9)D.N(2μ-3,4σ2-9)【答案】 B29、单核-吞噬细胞系统和树突状细胞属于A.组织细胞B.淋巴细胞C.辅佐细胞D.杀伤细胞E.记忆细胞【答案】 C30、下列划分正确的是()。

A.有理数包括整数、分数和零B.角分为直角、象限角、对顶角和同位角C.数列分为等比数列、等差数列、无限数列和递减数列D.平行四边形分为对角线互相垂直的平行四边形和对角线不互相垂直的平行四边形【答案】 D31、原发性肝细胞癌的标志A.AFPB.CEAC.PSAD.CA125E.CA15-3【答案】 A32、提出“一笔画定理”的数学家是()。

A.高斯B.牛顿C.欧拉D.莱布尼兹【答案】 C33、设函数f(x)满足f”(x)-5f’(x)+6f(x)=0,若f(x0)>0,f'(x0)=0,则()。

A.f(x)在点x0处取得极大值B.f(x)在点x0的某个领域内单调增加C.f(x)在点x0处取得极小值D.f(x)在点x0的某个领域内单调减少【答案】 A34、可由分子模拟而导致自身免疫性疾病的病原体有()A.金黄色葡萄球菌B.伤寒杆菌C.溶血性链球菌D.大肠杆菌E.痢疾杆菌【答案】 C35、单核巨噬细胞的典型的表面标志是A.CD2B.CD3C.CD14D.CD16E.CD28【答案】 C36、骨髓病态造血最常出现于下列哪种疾病A.缺铁性贫血B.再生障碍性贫血C.骨髓增生异常综合征D.传染性单核细胞增多症E.地中海贫血【答案】 C37、皮内注射DNP引起的DTH反应明显降低是因为()A.接受抗组胺的治疗B.接受大量X线照射C.接受抗中性粒细胞血清治疗D.脾脏切除E.补体水平下降【答案】 B38、肝素酶存在于A.微丝B.致密颗粒C.α颗粒D.溶酶体颗粒E.微管【答案】 D39、下列描述为演绎推理的是()。

A.从一般到特殊的推理B.从特殊到一般的推理C.通过实验验证结论的推理D.通过观察猜想得到结论的推理【答案】 A40、要定量检测人血清中的生长激素,采用的最佳免疫检测法是()A.免疫荧光法B.免疫酶标记法C.细胞毒试验D.放射免疫测定法E.补体结合试验【答案】 D大题(共10题)一、《义务教育教学课程标准(2011年版)》关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理——平行四边形的对边以及对角相等,请基于该要求,完成下列教学设计任务:(1)设计平行四边形性质的教学目标;(6分)(2)设计两种让学生发现平行四边形性质的教学流程;(12分)(3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的教学思想方法。

(12分)【答案】本题主要以初中数学教学中的重要内容之一“平行四边形的性质定理”为例,平行四边形的性质定理的基础知识,初中数学课程内容、课程标准及实施建议,教学过程的基本要素及教学方法的选择,教学设计中的教学目标、教学过程及教学策略等相关知识,比较综合性地考查学科知识、课程知识、教学知识以及教学技能的基本知识和基本技能。

(1)新课标倡导三维教学目标,知识与技能目标、过程与方法目标、情感态度与价值观目标。

知识与技能目标,是对学生学习结果的描述,即学生同学习所要达到的结果,又叫结果性目标。

这种目标一般有三个层次的要求:学懂、学会、能应用。

过程与方法目标,是学生在教师的指导下,如何获取知识和技能的程序和具体做法,是过程中的目标,又叫程序性目标。

这种目标强调三个过程:做中学、学中做、反思。

情感态度与价值观目标,是学生对过程或结果的体验后的倾向和感受,是对学习过程和结果的主观经验,又叫体验性目标。

它的层次有认同、体会、内化三个层次。

知识与技能目标是过程与方法目标、情感态度与价值观目标的基础;过程与方法目标是实现知识与技能目标的载体,情感态度与价值观目标对其他目标有重要的促进和优化作用。

(2)让学生发现平行四边形性质的教学流程,可以从不同角度进行设计,如“观察—猜想—验证—归纳”,“动手操作—小组讨论—归纳总结”等,但重要的是让学生在学习过程中进行主动学习,教师只是起到引导的作用,充分体现“学生是主体,教师是主导”的教学理念。

(3)平行四边形关于边、角的性质定理,即平行四边形的对边以及对角相等,这一定理的证明是通过证明三角形全等来证明对边、对角相等来进行的。

注意在平行四边形性质证明的教学流程中,务必使学生领悟证明过程中所用到的转化思想与方法。

二、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为17只,总的腿数应为34条,但现在有48条腿,造成腿的数目不够是由于小兔的数目是O,每有一只小兔便会增加两条腿,敌应有(48—17×2)÷2=7只小兔。

相关文档
最新文档