高三文科数学基础题周练(导数、切线方程)

合集下载

导数切线方程练习题文科(可编辑修改word版)

导数切线方程练习题文科(可编辑修改word版)

1 n 12 n1、曲线y =1x2在点导数切线方程练习题1 处切线的倾斜角为22、曲线y =x(1, )2在点(1,1) 处的切线方程为.2x -13、曲线y =x3在点(1,1) 处的切线与x 轴、直线x = 2 所围成的三角形面积为.4.函数f (x)=e x cos x 的图像在点(0, f (0))处的切线的倾斜角为5.曲线y =e x在点(2,e2)处的切线与坐标轴所围三角形的面积为6.曲线y = e x在点A 处的切线与直线x -y + 3 = 0 平行,则点A 的坐标为7.设曲线y =x +1在点(3, 2) 处的切线与直线ax +y +1 = 0 垂直,则a 等于x -18.曲线y=2sinx 在点P(π,0)处的切线方程为9.设曲线y =x n+1(n ∈N *) 在点(1,1)处的切线与 x 轴的交点的横坐标为x ,则x ⋅x ⋅ ⋅x 的值为20.函数y=f(x)的图像在点M(1,f(1))处的切线方程为y =x + 2 ,则2f (1) +f '(1) =10.直线y = 2x +b 与曲线y =-x + 3ln x 相切,则b 的值为.11.已知函数f (x) =xe x.(1)求这个函数的导数;(2)求这个函数的图象在点x =1 处的切线方程.12.已知函数f (x)=x +a+b(x ≠ 0),其中a, b ∈R .若曲线y = xy = 3x + 1,求函数f (x)的解析式;f (x)在点P(2, f (2))处的切线方程为13.已知函数 f (x) =x3+x -16 .(1)求曲线y = f (x) 在点(2, -6) 处的切线方程;(2)直线l 为曲线y =f (x) 的切线,且经过原点,求直线l 的方程及切点坐标.14.已知函数f (x) =x2+ax +b ,g(x) =e x(cx +d ) 若曲线y =f (x) 和曲线y =g(x) 都过点P(0,2) ,且在点P 处有相同的切线y = 4x + 2 . 求a ,b ,c ,d 的值;15.设函数f (x) =ae x 求a, b ln x +be x-1x,曲线y = f (x) 在点(1, f (1))处的切线方程为y =e(x - 1) + 216.已知函数f (x) =x3+ax2+bx +c ,g(x) =12x - 4 ,若f (-1) = 0 ,且f (x) 的图象在点(1, f (1)) 处的切线方程为y =g(x) .(1)求实数a ,b,c的值;17. 已知f (x) = 2x2- 1,求过点(1, 0) 的与函数的切线方程。

导数文科大题含详细答案

导数文科大题含详细答案

导数文科大题1.知函数, .(1)求函数的单调区间;(2)若关于的方程有实数根,数的取值围. 答案解析2.已知 , (1)若 ,求函数在点处的切线方程; (2)若函数在上是增函数,数a 的取值围; (3)令 , 是自然对数的底数);求当实数a等于多少时,可以使函数取得最小值为3.解:(1)时,,′(x),′(1)=3,,数在点处的切线方程为,(2)函数在上是增函数,′(x),在上恒成立,即,在上恒成立,令,当且仅当时,取等号,,的取值围为(3),′(x),①当时,在上单调递减,,计算得出(舍去); ②当且时,即,在上单调递减,在上单调递增,,计算得出,满足条件; ③当,且时,即,在上单调递减,,计算得出(舍去);综上,存在实数,使得当时,有最小值3.解析(1)根据导数的几何意义即可求出切线方程.(2)函数在上是增函数,得到f′(x),在上恒成立,分离参数,根据基本不等式求出答案,(3),求出函数的导数,讨论,,的情况,从而得出答案3.已知函数 ,(1)分别求函数与在区间上的极值;(2)求证:对任意 ,解:(1),令,计算得出:,,计算得出:或,故在和上单调递减,在上递增,在上有极小值,无极大值;,,则,故在上递增,在上递减,在上有极大值,,无极小值;(2)由(1)知,当时,,,故;当时,,令,则,故在上递增,在上递减,,;综上,对任意,解析(1)求导,利用导数与函数的单调性与极值关系,即可求得与单调区间与极值;4.已知函数,其中,为自然数的底数.(1)当时,讨论函数的单调性;(2)当时,求证:对任意的,.解:(1)当时,,则,,故则在R上单调递减.(2)当时,,要证明对任意的,.则只需要证明对任意的,.设,看作以a为变量的一次函数,要使,则,即,恒成立,①恒成立,对于②,令,则,设时,,即.,,在上,,单调递增,在上,,单调递减,则当时,函数取得最大值,故④式成立,综上对任意的,.解析:(1)求函数的导数,利用函数单调性和导数之间的关系进行讨论即可.(2)对任意的,转化为证明对任意的,,即可,构造函数,求函数的导数,利用导数进行研究即可.5.已知函数(1)当时,求函数在处的切线方程;(2)求在区间上的最小值.解:(1)设切线的斜率为k.因为,所以,所以,所以所求的切线方程为,即(2)根据题意得, 令,可得①若,则,当时,,则在上单调递增.所以②若,则, 当时,,则在上单调递减. 所以③若,则,所以,随x的变化情况如下表:所以的单调递减区间为,单调递增区间为所以在上的最小值为综上所述:当时,;当时,;当时,解析(1)设切线的斜率为k.利用导数求出斜率,切点坐标,然后求出切线方程.(2)通过,可得.通过①,②,③,判断函数的单调性求出函数的最值.6.已知函数。

导数求切线方程的练习题及答案

导数求切线方程的练习题及答案

导数求切线方程的练习题及答案精品文档导数求切线方程的练习题及答案类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数f?,并代入点斜式方程即可( 例1 曲线y?x3?3x2?1在点处的切线方程为 ,(y?3x?4,(y??3x?,(y?4x?5类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解( 例求过点且与曲线y?例已知函数y?x3?3x,过点A作曲线y?f的切线,切线方程(1x相切的直线方程(,(y??4x?3类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决(例与直线2x?y?4?0的平行的抛物线y?x的切线方程是2,(2x?y?3?0 ,(2x?y?1?0,(2x?y?3?0 ,(2x?y?1?01 / 6精品文档类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法(例求过曲线y?x3?2x上的点的切线方程(高二数学第1页共2页高二数学第2页共2页学校数学学科导学案编制人: 审核人: 授课日期: 月日姓名: 班级: 编号:第周号运用导数求切线方程的专项训练11.对任意x,有f?=4x3,f=,1,则此函数为A.f=x4,2C.f=x3B.f=x4+D.f=,x42.如果质点A按规律s=2t3运动,则在t=s时的瞬时速度为A. B.1C.5 D.813(曲线y=x3,3x2+1在点处的切线方程为A.y=3x,4B.y=,3x+2C.y=,4x+D.y=4x,54.函数f=的导数是A.x2,x+1B.C.3xD.3x2+15.曲线y=f在点)处的切线方程为3x+y+3=0,则A. f?>0B. f? 6. 曲线y?x在点?1,1?处的切线方程为2x?12 / 6精品文档A. x?y?2?0B. x?y?2?0C.x?4y?5?0D. x?4y?5?07. 在平面直角坐标系xoy中,点P在曲线C:y?x?10x?3上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为.8. 曲线f?lnx?x在点处的切线的倾斜角为_______.9(曲线y?xe?2x?1在点处的切线方程为。

高三数学上学期周练试卷(十)文(含解析)-人教版高三全册数学试题

高三数学上学期周练试卷(十)文(含解析)-人教版高三全册数学试题

2014-2015学年某某省某某外国语学校高三(上)周练数学试卷(文科)(十)一.选择题1.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.下列说法正确的是()A.若a∈R,则“<1”是“a>1”的必要不充分条件B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件C.若命题p:“∀x∈R,sinx+cosx≤”,则¬p是真命题D.命题“∃x0∈R,使得x02+2x0+3<0”的否定是“∀x∈R,x2+2x+3>0”3.设S n是等差数列a n的前n项和,若,则=()A.B.C.D.4.若△ABC为锐角三角形,则下列不等式中一定能成立的是()A.log cosC>0 B.log cosC>0C.log sinC>0 D.log sinC>05.把函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.6.某几何体的三视图如图所示,则其侧面积为()A.B.C.D.7.对任意非零实数a,b,若a⊗b的运算规则如图的程序框图所示,则(3⊗2)⊗4的值是()A.0 B.C.D.98.设实数x,y满足约束条件,则u=的取值X围是()A.[,] B.[,] C.[,] D.[,]9.若函数f(x)=ax3+bx2+cx+d(a,b,c>0)在R上是单调函数,则的取值X围为()A.(4,+∞)B.(2+2,+∞)C.[4,+∞)D.[2+2,+∞)10.(5分)在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在y轴上且离心率小于的椭圆的概率为()A.B.C.D.11.已知函数f(x)=|x+a|(a∈R)在[﹣1,1]上的最大值为M(a),则函数g(x)=M(x)﹣|x2﹣1|的零点的个数为()A.1个B.2个C.3个D.4个12.过双曲线﹣=1(a>0,b>0)的一个焦点F引它到渐近线的垂线,垂足为M,延长FM交y轴于E,若=2,则该双曲线离心率为()A.B.C.D.313.已知P、M、N是单位圆上互不相同的三个点,且满足||=||,则的最小值是()A.﹣B.﹣C.﹣D.﹣114.设函数y=f(x)的定义域为D,若函数y=f(x)满足下列两个条件,则称y=f(x)在定义域D上是闭函数.①y=f(x)在D上是单调函数;②存在区间[a,b]⊆D,使f(x)在[a,b]上值域为[a,b].如果函数f(x)=为闭函数,则k的取值X围是()A.(﹣1,﹣] B.[,1﹚C.(﹣1,+∞)D.(﹣∞,1)二.填空题15.(5分)(2014某某二模)已知||=2,||=2,||=2,且++=,则++=.16.设,若当且仅当x=3,y=1时,z取得最大值,则k的取值X围为.17.(5分)(2014某某一模)已知点P是椭圆=1(x≠0,y≠0)上的动点,F1,F2为椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且=0,则|的取值X围是.18.对于定义在区间D上的函数f(X),若存在闭区间[a,b]⊊D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)<c恒成立,则称函数f(x)为区间D上的“平顶型”函数.给出下列说法:①“平顶型”函数在定义域内有最大值;②函数f(x)=x﹣|x﹣2|为R上的“平顶型”函数;③函数f(x)=sinx﹣|sinx|为R上的“平顶型”函数;④当t≤时,函数,是区间[0,+∞)上的“平顶型”函数.其中正确的是.(填上你认为正确结论的序号)三.解答题19.(12分)(2014正定县校级三模)已知△ABC是半径为R的圆内接三角形,且2R(sin2A ﹣sin2C)=(a﹣b)sinB.(1)求角C;(2)试求△ABC面积的最大值.20.(12分)(2014某某二模)某公司研制出一种新型药品,为测试该药品的有效性,公司选定2000个药品样本分成三组,测试结果如表:分组A组B组C组药品有效670 a b药品无效80 50 c已知在全体样本中随机抽取1个,抽到B组药品有效的概率是0.35.(1)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取样本多少个?(2)已知b≥425,c≥68,求该药品通过测试的概率(说明:若药品有效的概率不小于90%,则认为测试通过).21.(12分)(2015某某模拟)已知几何体A﹣BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(1)求此几何体的体积V的大小;(2)求异面直线DE与AB所成角的余弦值;(3)试探究在DE上是否存在点Q,使得AQ⊥BQ并说明理由.22.(12分)(2014春雁峰区校级月考)在平面直角坐标系xOy中,已知中心在坐标原点且关于坐标轴对称的椭圆C1的焦点在抛物线C2:y2=﹣4x的准线上,且椭圆C1的离心率为.(1)求椭圆C1的方程,(2)若直线l与椭圆C1相切于第一象限内,且直线l与两坐标轴分别相交与A,B两点,试探究当三角形AOB的面积最小值时,抛物线C2上是否存在点到直线l的距离为.23.(12分)(2014某某校级模拟)已知函数f(x)=lnx+x2﹣ax(a为常数).(1)若x=1是函数f(x)的一个极值点,求a的值;(2)当0<a≤2时,试判断f(x)的单调性;(3)若对任意的a∈(1,2),x0∈[1,2],使不等式f(x0)>mlna恒成立,某某数m的取值X围.2014-2015学年某某省某某外国语学校高三(上)周练数学试卷(文科)(十)参考答案与试题解析一.选择题1.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】利用复数的运算法则、几何意义即可得出.【解答】解:复数==﹣i﹣1对应的点(﹣1,﹣1)位于第三象限,故选:C.【点评】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.2.下列说法正确的是()A.若a∈R,则“<1”是“a>1”的必要不充分条件B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件C.若命题p:“∀x∈R,sinx+cosx≤”,则¬p是真命题D.命题“∃x0∈R,使得x02+2x0+3<0”的否定是“∀x∈R,x2+2x+3>0”【分析】利用充要条件的定义,可判断A,B,判断原命题的真假,进而根据命题的否定与原命题真假性相反,可判断C,根据存在性(特称)命题的否定方法,可判断D.【解答】解:若“<1”成立,则“a>1”或“a<0”,故“<1”是“a>1”的不充分条件,若“a>1”成立,则“<1”成立,故“<1”是“a>1”的必要条件,综上所述,“<1”是“a>1”的必要不充分条件,故A正确;若“p∧q为真命题”,则“p,q均为真命题”,则“p∨q为真命题”成立,若“p∨q为真命题”则“p,q存在至少一个真命题”,则“p∧q为真命题”不一定成立,综上所述,“p∧q为真命题”是“p∨q为真命题”的充分不必要条件,故B错误;命题p:“∀x∈R,sinx+cosx=sin(x+)≤”为真命题,则¬p是假命题,故C 错误;命题“∃x0∈R,使得x02+2x0+3<0”的否定是“∀x∈R,x2+2x+3≥0”,故D错误;故选:A.【点评】本题以命题的真假判断为载体,考查了充要条件,命题的否定等知识点,是简单逻辑的简单综合应用,难度中档.3.设S n是等差数列a n的前n项和,若,则=()A.B.C.D.【分析】由题意可得 S3、S6﹣S3、S9﹣S6、S12﹣S9也成等差数列,由此可得 S6=S9+S3①,S12=3S9﹣3S6+S3②,再由可得 S12=S6③,利用①、②、③化简可得的值.【解答】解:∵S n是等差数列a n的前n项和,∴S3、S6﹣S3、S9﹣S6、S12﹣S9也成等差数列,∴S6﹣2S3=S9﹣2S6+S3,∴S6=S9+S3①.同理可得,S12﹣2S9+S6=S9﹣2S6+S3,即 S12=3S9﹣3S6+S3②.而由可得 S12=S6③.由①、②、③化简可得S3=S9,∴=,故选:C.【点评】本题主要考查等差数列的性质的应用,属于中档题.4.若△ABC为锐角三角形,则下列不等式中一定能成立的是()A.log cosC>0 B.log cosC>0C.log sinC>0 D.log sinC>0【分析】由锐角三角形ABC,可得1>cosC>0,0<A<,0<B<,,利用正弦函数的单调性可得sinB>sin(﹣A)=cosA>0,再利用对数函数的单调性即可得出.【解答】解:由锐角三角形ABC,可得1>cosC>0,0<A<,0<B<,,∴0<<B<,∴sinB>sin(﹣A)=cosA>0,∴1>>0,∴>0.故选:B.【点评】本题考查了锐角三角形的性质、锐角三角函数函数的单调性、对数函数的单调性等基础知识与基本技能方法,属于中档题.5.把函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.【分析】先对函数进行图象变换,再根据正弦函数对称轴的求法,即令ωx+φ=即可得到答案.【解答】解:图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到函数;再将图象向右平移个单位,得函数,根据对称轴处一定取得最大值或最小值可知是其图象的一条对称轴方程.故选A.【点评】本小题综合考查三角函数的图象变换和性质.图象变换是考生很容易搞错的问题,值得重视.一般地,y=Asin(ωx+φ)的图象有无数条对称轴,它在这些对称轴上一定取得最大值或最小值.6.某几何体的三视图如图所示,则其侧面积为()A.B.C.D.【分析】从三视图可以推知,几何体是四棱锥,底面是一个直角梯形,一条侧棱垂直底面,易求侧面积.【解答】解:几何体是四棱锥,底面是一个直角梯形,一条侧棱垂直底面.且底面直角梯形的上底为1,下底为2,高为1,四棱锥的高为1.四个侧面都是直角三角形,其中△PBC的高PB===故其侧面积是S=S△PAB+S△PBC+S△PCD+S△PAD==故选A【点评】本题考查三视图求面积、体积,考查空间想象能力,是中档题.7.对任意非零实数a,b,若a⊗b的运算规则如图的程序框图所示,则(3⊗2)⊗4的值是()A.0 B.C.D.9【分析】由框图知,a⊗b的运算规则是若a≤b成立,则输出,否则输出,由此运算规则即可求出(3⊗2)⊗4的值【解答】解:由图a⊗b的运算规则是若a≤b成立,则输出,否则输出,故3⊗2==2,(3⊗2)⊗4=2⊗4==故选C.【点评】本题考查选择结构,解题的关键是由框图得出运算规则,由此运算规则求值,此类题型是框图这一部分的主要题型,也是这几年对框图这一部分考查的主要方式.8.设实数x,y满足约束条件,则u=的取值X围是()A.[,] B.[,] C.[,] D.[,]【分析】作出不等式组对应的平面区域,利用数形结合将目标函数进行转化,利用直线的斜率结合分式函数的单调性即可得到结论.【解答】解:作出不等式组对应的平面区域如图:则对应的x>0,y>0,则u==,设k=,则u==,由图象可知当直线y=kx,经过点A(1,2)时,斜率k最大为k=2,经过点B(3,1)时,斜率k最小为k=,即.∴,,∴,即,即≤z≤,故选:C【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合是解决本题的关键,综合性较强,运算量较大.9.若函数f(x)=ax3+bx2+cx+d(a,b,c>0)在R上是单调函数,则的取值X围为()A.(4,+∞)B.(2+2,+∞)C.[4,+∞)D.[2+2,+∞)【分析】利用导数求解,由函数f(x)=ax3+bx2+cx+d(a,b,c>0)在R上是单调函数,可得f′(x)>0恒成立,找出a,b,c的关系,再利用基本不等式求最值.【解答】解:∵函数f(x)=ax3+bx2+cx+d(a,b,c>0)在R上是单调函数,∴f′(x)≥0在R上恒成立,即3ax2+2bx+c≥0恒成立,即△=4b2﹣12ac≤0 即b2≤3ac,∴==++2≥2+2≥4.故选C.【点评】考查利用导数即基本不等式的解决问题的能力,把问题转化为恒成立问题解决是本题的关键,应好好体会这种问题的转化思路.10.(5分)在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在y轴上且离心率小于的椭圆的概率为()A.B.C.D.【分析】根据椭圆的性质结合椭圆离心率,求出a,b满足的条件,求出对应的面积,结合几何概型的概率公式进行求解即可.【解答】解:∵在区间[1,5]和[2,4]分别取一个数,记为a,b,∴,若方程表示焦点在y轴上且离心率小于,则,由e=<得c<a,平方得c2<a2,即a2﹣b2<a2,即b2>a2,则b>a或b a(舍),即,作出不等式组对应的平面区域如图:则F(2,2),E(4,4),则梯形ADEF的面积S==4,矩形的面积S=4×2=8,则方程表示焦点在y轴上且离心率小于的椭圆的概率P=,故选:C.【点评】本题主要考查几何概型的概率的计算,根据椭圆的性质求出a,b的条件,求出对应的面积,利用数形结合是解决本题的关键.11.已知函数f(x)=|x+a|(a∈R)在[﹣1,1]上的最大值为M(a),则函数g(x)=M(x)﹣|x2﹣1|的零点的个数为()A.1个B.2个C.3个D.4个【分析】求出M(a)的解析式,根据函数g(x)=M(x)﹣|x2﹣1|的零点,即函数M(x)=与函数y=|x2﹣1|交点的横坐标,利用图象法解答.【解答】解:∵函数f(x)=|x+a|(a∈R)在[﹣1,1]上的最大值为M(a),∴M(a)=,函数g(x)=M(x)﹣|x2﹣1|的零点,即函数M(x)=与函数y=|x2﹣1|交点的横坐标,由图可得:函数M(x)=与函数y=|x2﹣1|有三个交点,故函数g(x)=M(x)﹣|x2﹣1|有3个零点,故选:C【点评】本题考查函数图象的作法,熟练作出函数的图象是解决问题的关键,属中档题.12.过双曲线﹣=1(a>0,b>0)的一个焦点F引它到渐近线的垂线,垂足为M,延长FM交y轴于E,若=2,则该双曲线离心率为()A.B.C.D.3【分析】先利用FM与渐近线垂直,写出直线FM的方程,从而求得点E的坐标,利用已知向量式,求得点M的坐标,最后由点M在渐近线上,代入得a、b、c间的等式,进而变换求出离心率【解答】解:设F(c,0),则c2=a2+b2∵双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x∴垂线FM的斜率为﹣∴直线FM的方程为y=﹣(x﹣c)令x=0,得点E的坐标(0,)设M(x,y),∵=2,∴(x﹣c,y)=2(﹣x,﹣y)∴x﹣c=﹣2x且y=﹣2y即x=,y=代入y=x得=,即2a2=b2,∴2a2=c2﹣a2,∴=3,∴该双曲线离心率为故选C【点评】本题考查了双曲线的几何性质,求双曲线离心率的方法,向量在解析几何中的应用13.已知P、M、N是单位圆上互不相同的三个点,且满足||=||,则的最小值是()A.﹣B.﹣C.﹣D.﹣1【分析】由题意可得,点P在MN的垂直平分线上,不妨设单位圆的圆心为O(0,0),点P (0,1),点M(x1,y1),则点N(﹣x1,y1),由得=,求出最小值.【解答】解:由题意可得,点P在MN的垂直平分线上,不妨设单位圆的圆心为O(0,0),点P(0,1),点M(x1,y1),则点N(﹣x1,y1),﹣1≤y1<1∴=(x1,y1﹣1),=(﹣x1,y1﹣1),.∴===2﹣,∴当y1=时的最小值是故选:B.【点评】本题主要考查两个向量的数量积公式,二次函数的性质,属于中档题.14.设函数y=f(x)的定义域为D,若函数y=f(x)满足下列两个条件,则称y=f(x)在定义域D上是闭函数.①y=f(x)在D上是单调函数;②存在区间[a,b]⊆D,使f(x)在[a,b]上值域为[a,b].如果函数f(x)=为闭函数,则k的取值X围是()A.(﹣1,﹣] B.[,1﹚C.(﹣1,+∞)D.(﹣∞,1)【分析】若函数f(x)=为闭函数,则存在区间[a,b],在区间[a,b]上,函数f(x)的值域为[a,b],即,故a,b是方程x2﹣(2k+2)x+k2﹣1=0(x,x≥k)的两个不相等的实数根,由此能求出k的取值X围.【解答】解:若函数f(x)=为闭函数,则存在区间[a,b],在区间[a,b]上,函数f(x)的值域为[a,b],即,∴a,b是方程x=的两个实数根,即a,b是方程x2﹣(2k+2)x+k2﹣1=0(x,x≥k)的两个不相等的实数根,当k时,,解得﹣1<k≤﹣.当k>﹣时,,无解.故k的取值X围是(﹣1,﹣].故选A.【点评】本题考查函数的单调性及新定义型函数的理解,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.二.填空题15.(5分)(2014某某二模)已知||=2,||=2,||=2,且++=,则++= ﹣12 .【分析】把++=两边平方,变形可得++=(),代入数据计算可得.【解答】解:∵++=,∴平方可得(++)2=2,∴+2(++)=0,∴++=()=(4+8+12)=﹣12故答案为:﹣12【点评】本题考查平面向量数量积的运算,由++=两边平方是解决问题的关键,属中档题.16.设,若当且仅当x=3,y=1时,z取得最大值,则k的取值X围为(﹣,1).【分析】作出不等式对应的平面区域,利用线性规划的知识,确定目标取最优解的条件,即可求出a的取值X围.【解答】解:作出不等式对应的平面区域如图:由z=kx﹣y得y=kx﹣z,要使目标函数z=kx﹣y仅在x=3,y=1时取得最大值,即此时直线y=kx﹣z的截距最小,则阴影部分区域在直线y=kx﹣z的上方,目标函数处在直线x+2y﹣5=0和x﹣y﹣2=0之间,而直线x+2y﹣5=0和x﹣y﹣2=0的斜率分别为﹣,和1,即目标函数的斜率k,满足﹣<k<1,故答案为:(﹣,1).【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.根据条件目标函数z=kx﹣y仅在点A(3,1)处取得最大值,确定直线的位置是解决本题的关键.17.(5分)(2014某某一模)已知点P是椭圆=1(x≠0,y≠0)上的动点,F1,F2为椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且=0,则|的取值X围是.【分析】延长PF2、F1M,交与N点,连接OM,利用等腰三角形的性质、三角形中位线定理和椭圆的定义,证出|OM|=||PF1|﹣|PF2||.再利用圆锥曲线的统一定义,化简得||PF1|﹣|PF2||=|x0|,利用椭圆上点横坐标的X围结合已知数据即可算出|的取值X围.【解答】解:如图,延长PF2、F1M,交与N点,连接OM,∵PM是∠F1PF2平分线,且=0可得F1M⊥MP,∴|PN|=|PF1|,M为F1F2中点,∵O为F1F2中点,M为F1N中点∴|OM|=|F2N|=||PN|﹣|PF2||=||PF1|﹣|PF2||设P点坐标为(x0,y0)∵在椭圆=1中,离心率e==由圆锥曲线的统一定义,得|PF1|=a+ex0,|PF2|=a﹣ex0,∴||PF1|﹣|PF2||=|a+ex0﹣a+ex0|=|2ex0|=|x0|∵P点在椭圆=1上,∴|x0|∈[0,4],又∵x≠0,y≠0,可得|x0|∈(0,4),∴|OM|∈故答案为:【点评】本题求两点间的距离的取值X围,着重考查了椭圆的定义、等腰三角形的性质、三角形中位线定理和椭圆的简单几何性质等知识,属于中档题.18.对于定义在区间D上的函数f(X),若存在闭区间[a,b]⊊D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)<c恒成立,则称函数f(x)为区间D上的“平顶型”函数.给出下列说法:①“平顶型”函数在定义域内有最大值;②函数f(x)=x﹣|x﹣2|为R上的“平顶型”函数;③函数f(x)=sinx﹣|sinx|为R上的“平顶型”函数;④当t≤时,函数,是区间[0,+∞)上的“平顶型”函数.其中正确的是①④.(填上你认为正确结论的序号)【分析】根据题意,“平顶型”函数在定义域内某个子集区间内函数值为常数c,且这个常数是函数的最大值,但是定义并没有指出函数最小值的情况.由此定义再结合绝对值的性质和正弦函数的图象与性质,对于四个选项逐个加以判断,即得正确答案.【解答】解:对于①,根据题意,“平顶型”函数在定义域内某个子集区间内函数值为常数c,且这个常数是函数的最大值,故①正确.对于②,函数f(x)=x﹣|x﹣2|=的最大值为2,但不存在闭区间[a,b]⊊D和常数c,使得对任意x1∈[a,b],都有f(x1)=2,且对任意x2∈D,当x2∉[a,b]时,f(x2)<2恒成立,故②不符合“平顶型”函数的定义.对于③,函数f(x)=sinx﹣|sinx|=,但是不存在区间[a,b],对任意x1∈[a,b],都有f(x1)=2,所以f(x)不是“平顶型”函数,故③不正确.对于④当t≤时,函数,,当且仅当x∈[0,1]时,函数取得最大值为2,当x∉[0,1]且x∈[0,+∞)时,f(x)=<2,符合“平顶型”函数的定义,故④正确.故答案为:①④.【点评】本题以命题真假的判断为载体,着重考查了函数的最值及其几何意义、带绝对值的函数和正弦函数的定义域值域等知识点,属于中档题.三.解答题19.(12分)(2014正定县校级三模)已知△ABC是半径为R的圆内接三角形,且2R(sin2A ﹣sin2C)=(a﹣b)sinB.(1)求角C;(2)试求△ABC面积的最大值.【分析】(1)根据正弦定理,已知等式中的角转换成边,可得a、b、c的平方关系,再利用余弦定理求得cosC的值,可得角C的大小;(2)根据正弦定理算出c=R,再由余弦定理c2=a2+b2﹣2abcosC的式子,结合基本不等式找到边ab的X围,利用正弦定理的面积公式加以计算,即可求出△ABC面积的最大值.【解答】解:(1)∵2R(sin2A﹣sin2C)=(a﹣b)sinB,∴根据正弦定理,得a2﹣c2=(a﹣b)b=ab﹣b2,可得a2+b2﹣c2=ab∴cosC===,∵角C为三角形的内角,∴角C的大小为(2)由(1)得c=2Rsin=R由余弦定理c2=a2+b2﹣2abcosC,可得2R2=a2+b2﹣ab≥2ab﹣ab=(2﹣)ab,当且仅当a=b时等号成立∴ab≤=()R2∴S△ABC=absinC≤()R2=R2即△ABC面积的最大值为R2【点评】本题给出三角形的外接圆半径为R,在已知角的关系式情况下,求三角形面积最大值.着重考查了三角形的外接圆、正余弦定理和基本不等式求最值等知识,属于中档题.20.(12分)(2014某某二模)某公司研制出一种新型药品,为测试该药品的有效性,公司选定2000个药品样本分成三组,测试结果如表:分组A组B组C组药品有效670 a b药品无效80 50 c已知在全体样本中随机抽取1个,抽到B组药品有效的概率是0.35.(1)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取样本多少个?(2)已知b≥425,c≥68,求该药品通过测试的概率(说明:若药品有效的概率不小于90%,则认为测试通过).【分析】(1)利用抽样的性质先求出a,再根据样本总个数得出b+c=500,从而根据分层抽样的特点确定应在C组抽取样本多少个;(2)列举(b,c)的所有可能性,找出满足b≥425,c≥68,情况,利用古典概型概率公式计算即可.【解答】解:(1)∵,∴a=700∵b+c=2000﹣670﹣80﹣700﹣50=500∴应在C组抽取样本个数是个.(2)∵b+c=500,b≥425,c≥68,∴(b,c)的可能性是(425,75),(426,74),(427,73),(428,72),(429,71),(430,70),(431,69),(432,68)若测试通过,则670+700+b≥2000×90%=1800∴b≥430∴(b,c)的可能有(430,70),(431,69),(432,68)∴通过测试的概率为.【点评】本题考查分层抽样的性质,古典概型概率公式的应用,属于中档题.21.(12分)(2015某某模拟)已知几何体A﹣BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(1)求此几何体的体积V的大小;(2)求异面直线DE与AB所成角的余弦值;(3)试探究在DE上是否存在点Q,使得AQ⊥BQ并说明理由.【分析】(1)由该几何体的三视图知AC⊥面BCED,且EC=BC=AC=4,BD=1,则体积可以求得.(2)求异面直线所成的角,一般有两种方法,一种是几何法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求.还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解.(3)假设存在这样的点Q,使得AQ⊥BQ.解法一:通过假设的推断、计算可知以O为圆心、以BC为直径的圆与DE相切.解法二:在含有直线与平面垂直垂直的条件的棱柱、棱锥、棱台中,也可以建立空间直角坐标系,设定参量求解.这种解法的好处就是:1、解题过程中较少用到空间几何中判定线线、面面、线面相对位置的有关定理,因为这些可以用向量方法来解决.2、即使立体感稍差一些的学生也可以顺利解出,因为只需画个草图以建立坐标系和观察有关点的位置即可.以C为原点,以CA,CB,CE所在直线为x,y,z轴建立空间直角坐标系.设满足题设的点Q存在,其坐标为(0,m,n),点Q在ED上,∴存在λ∈R(λ>0),使得=λ,解得λ=4,∴满足题设的点Q存在,其坐标为(0,,).【解答】解:(1)由该几何体的三视图知AC⊥面BCED,且EC=BC=AC=4,BD=1,∴S梯形BCED=×(4+1)×4=10∴V=S梯形BCED AC=×10×4=.即该几何体的体积V为.(3分)(2)解法1:过点B作BF∥ED交EC于F,连接AF,则∠FBA或其补角即为异面直线DE与AB所成的角.(5分)在△BAF中,∵AB=4,BF=AF==5.∴cos∠ABF==.即异面直线DE与AB所成的角的余弦值为.(7分)解法2:以C为原点,以CA,CB,CE所在直线为x,y,z轴建立空间直角坐标系.则A(4,0,0),B(0,4,0),D(0,4,1),E(0,0,4)∴=(0,﹣4,3),=(﹣4,4,0),∴cos<,>=﹣∴异面直线DE与AB所成的角的余弦值为.(3)解法1:在DE上存在点Q,使得AQ⊥BQ.(8分)取BC中点O,过点O作OQ⊥DE于点Q,则点Q满足题设.(10分)连接EO、OD,在Rt△ECO和Rt△OBD中∵∴Rt△ECO∽Rt△OBD∴∠EOC=∠OBD∵∠EOC+∠CEO=90°∴∠EOC+∠DOB=90°∴∠EOB=90°.(11分)∵OE==2,OD==∴OQ===2∴以O为圆心、以BC为直径的圆与DE相切.切点为Q∴BQ⊥CQ∵AC⊥面BCED,BQ⊂面CEDB∴BQ⊥AC∴BQ⊥面ACQ(13分)∵AQ⊂面ACQ∴BQ⊥AQ.(14分)解法2:以C为原点,以CA,CB,CE所在直线为x,y,z轴建立空间直角坐标系.设满足题设的点Q存在,其坐标为(0,m,n),则=(﹣4,m,n),=(0,m﹣4,n)=(0,m,n﹣4),=(0,4﹣m,1﹣n)∵AQ⊥BQ∴m(m﹣4)+n2=0①∵点Q在ED上,∴存在λ∈R(λ>0)使得=λ∴(0,m,n﹣4)=λ(0,4,m,1﹣n)⇒m=,n=②②代入①得(﹣4)()2=0⇒λ2﹣8λ+16=0,解得λ=4∴满足题设的点Q存在,其坐标为(0,,).【点评】本小题主要考查空间线面关系、面面关系、二面角的度量、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.22.(12分)(2014春雁峰区校级月考)在平面直角坐标系xOy中,已知中心在坐标原点且关于坐标轴对称的椭圆C1的焦点在抛物线C2:y2=﹣4x的准线上,且椭圆C1的离心率为.(1)求椭圆C1的方程,(2)若直线l与椭圆C1相切于第一象限内,且直线l与两坐标轴分别相交与A,B两点,试探究当三角形AOB的面积最小值时,抛物线C2上是否存在点到直线l的距离为.【分析】(1)由题意设椭圆C1的方程,(a>b>0),且,由此能求出椭圆C1的方程.(2)设直线l的方程为y=kx+m(k<0,m>0)由,得(3+4k2)x2+8kmx+4m2﹣12=0,由此利用根的判别式、韦达定理、点到直线距离公式、弦长公式能推导出抛物线C2上不存在点到直线l的距离为.【解答】解:(1)∵椭圆C1的焦点在抛物线C2:y2=﹣4x的准线上,且椭圆C1的离心率为.∴椭圆焦点在x轴上,设椭圆C1的方程:,(a>b>0),且,解得a=2,b=,∴椭圆C1的方程为.(2)∵直线l与椭圆C1相切于第一象限内,∴直线l的斜率存在且小于零,设直线l的方程为y=kx+m(k<0,m>0)由,得(3+4k2)x2+8kmx+4m2﹣12=0,由题可知,△=0,∴m2=4k2+3,当即时上式等号成立,此时,直线l为设点D为抛物线C2上任意一点,则点D到直线l的距离为,利用二次函数的性质知,∴抛物线C2上不存在点到直线l的距离为.【点评】本题考查椭圆方程的求法,考查当三角形面积最小时满足条件的点是否存在的判断与求法,解题时要认真审题,注意根的判别式、韦达定理、点到直线距离公式、弦长公式的合理运用.23.(12分)(2014某某校级模拟)已知函数f(x)=lnx+x2﹣ax(a为常数).(1)若x=1是函数f(x)的一个极值点,求a的值;(2)当0<a≤2时,试判断f(x)的单调性;(3)若对任意的a∈(1,2),x0∈[1,2],使不等式f(x0)>mlna恒成立,某某数m的取值X围.【分析】(1)求导数,利用极值的定义,即可求a的值;(2)当0<a≤2时,判断导数的符号,即可判断f(x)的单调性;(3)问题等价于:对任意的a∈(1,2),不等式1﹣a>mlna恒成立.即恒成立.【解答】解:.(1)由已知得:f'(1)=0,∴1+2﹣a=0,∴a=3.…(3分)(2)当0<a≤2时,f′(x)=因为0<a≤2,所以,而x>0,即,故f(x)在(0,+∞)上是增函数.…(8分)(3)当a∈(1,2)时,由(2)知,f(x)在[1,2]上的最小值为f(1)=1﹣a,故问题等价于:对任意的a∈(1,2),不等式1﹣a>mlna恒成立.即恒成立记,(1<a<2),则,…(10分)令M(a)=﹣alna﹣1+a,则M'(a)=﹣lna<0所以M(a),所以M(a)<M(1)=0…(12分)故g'(a)<0,所以在a∈(1,2)上单调递减,所以即实数m的取值X围为(﹣∞,﹣log2e].…(14分)【点评】本题考查导数知识的综合运用,考查函数的极值,考查函数的单调性,考查恒成立问题,正确分离参数是关键.。

导数基础训练题(文科)

导数基础训练题(文科)

导数基础训练题1.变化率与导数1、设()f x 在0x x =可导,且'0()2f x =-,则000()()lim x f x f x x x∆→--∆∆等于( ) A .0 B .2 C .-2 D .不存在2、在曲线2y x =上切线倾斜角为4π的点是( ) A .(0,0) B .(2,4) C .11(,)416 D .11(,)24 3、曲线221y x =+在点(1,3)P -处的切线方程为( )A .41y x =--B .47y x =--C .41y x =-D .47y x =+ 4、曲线2212-=x y 在点)23,1(-处切线的倾斜角是( ) A 1 B 4π C 43π D 4π- 5、函数在322y x x =-+在2x =处的切线的斜率为 。

6.曲线y=x x e +2x+1在点(0, 1)处的切线方程为 .2.导数的计算1、下列运算正确的是( )A .2'2''()()()ax bx c a x b x -+=+-B .2'''2'(sin 2)(sin )(2)()x x x x -=-C .'''(cos sin )(sin )cos (cos )cos x x x x x x =+D .23'322[(3)(2)]2(2)3(3)x x x x x x +-=-++ 2、函数1y x x=+的导数是( ) A .211x - B .11x - C .211x + D .11x+ 3、函数cos x y x=的导数是( ) A .2sin x x - B .sin x - C .2sin cos x x x x +- D . 2cos cos x x x x +- 4、函数sin (cos 1)y x x =+的导数是( )A .cos2cos x x -B .cos2sin x x +C .cos2cos x x +D .2cos cos x x +5、已知32()32f x ax x =++,若'(1)4f -=,则a 的值是( )A .193B .163C .133D .1036、函数sin 4y x =在点(,0)M π处的切线方程为( )A .y x π=-B .0y =C . 4y x π=-D .44y x π=-7、已知函数ln y x x =。

【高考数学】导数的切线方程(原卷版含参考答案)

【高考数学】导数的切线方程(原卷版含参考答案)

【高考数学】导数的切线方程【套路秘籍】1. 导数的几何意义:切线的斜率2. 求斜率的方法 (1)公式:/12012tan ()y y k f x x x α-===-0απ为直线的倾斜角,范围[0,),x 是切点的横坐标(2)当直线l 1、l 2的斜率都存在时:1212l l k k ⇔=,12120l l k k ⊥⇔•= 3. 切线方程的求法 (1)求出直线的斜率 (2)求出直线上的一点或切点(3)利用点斜式00()y y k x x -=-写出直线方程。

【套路修炼】考向一 斜率(或倾斜角)与切点互求【例1】(1)曲线y =13x 3在x =1处切线的倾斜角为 。

(2)设函数()ln f x x x =,若0()2f x '=,则0x =______________.【举一反三】1.已知在曲线2y x =上过点00(),P x y 的切线为l . (1)若切线l 平行于直线45y x =-,求点P 的坐标; (2)若切线l 垂直于直线2650x y -+=,求点P 的坐标; (3)若切线l 的倾斜角为135︒,求点P 的坐标.考向二 在某点处求切线方程【例2】设函数f (x )=x ln x ,则点(1,0)处的切线方程是________.【举一反三】1.函数f (x )=e x cos x 在点(0,f (0))处的切线方程为 。

2.曲线y =-5e x +3在点(0,-2)处的切线方程为_ __.考向三 过某点处求切线方程【例3】已知函数()3f x x =,则过(1,1)的切线方程为__________.【举一反三】1.已知曲线f(x)=1x ,则过点(−1,3),且与曲线y =f(x)相切的直线方程为 。

2.过点p(−4,0)作曲线y =xe x 的切线,则切线方程为_______________________. 3.过坐标原点(0, 0)作曲线y =e x 的切线,则切线方程为________.考向四 求参数【例4】已知函数f (x )=bx +ln x ,其中b ∈R ,若过原点且斜率为k 的直线与曲线y =f (x )相切,则k -b 的值为 . 【举一反三】1.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m = .2.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为 。

(完整版)导数求切线方程专题训练

(完整版)导数求切线方程专题训练

(完整版)导数求切线方程专题训练导数求切线方程专题训练一、典型例题(一)已知曲线方程和切点坐标,求切线方程例1、求43x y =在点()8,16P 处的切线方程.(二)已知曲线方程和切点斜率,求切线方程例2、已知x y =,求与直线42--=x y 垂直的切线方程.(三)已知曲线方程和曲线外一点,求切线方程例3、过原点做曲线x e y =的切线,求切线斜率和切线方程.(四)已知曲线方程和曲线上一点,求过该点的切线方程例4、求曲线33x x y -=过点()2,2-A 的切线方程.二、当堂检测1.求过曲线x x y +-=3上过点()0,1的切线方程.2.求经过原点且与曲线59++=x x y 相切的曲线方程.3.求过曲线232131x x y +=上一点()0,0的切线方程.4.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值.5 曲线3231y x x =-+在点(11)-,处的切线方程为()6 与直线240x y -+=的平行的抛物线2y x =的切线方程是()7 求过曲线32y x x =-上的点(11)-,的切线方程.8 求过点(20),且与曲线1y x=相切的直线方程.【2012北京市高考文】已知函数2()1(0)f x ax a =+>,3()g x x bx =+.(Ⅰ)若曲线()y f x =与曲线()y g x =在它们的交点(1,)c 处具有公共切线,求,a b 的值;(Ⅱ)当3a =,9b =-时,若函数()()f x g x +在区间[,2]k 上的最大值为28,求k 的取值范围.【2013北京市高考文】已知函数2()sin cos f x x x x x =++.(Ⅰ)若曲线()y f x =在点(,())a f a )处与直线y b =相切,求a 与b 的值。

(Ⅱ)若曲线()y f x =与直线y b = 有两个不同的交点,求b 的取值范围。

2025年高考数学一轮复习-导数切线方程11种题型-专项训练【含解析】

2025年高考数学一轮复习-导数切线方程11种题型-专项训练【含解析】

第5讲导数切线方程11类【原卷版】【题型一】求切线基础型:给切点求切线【典例分析】已知函数()2sin 1xf x x =+,则曲线()y f x =在点()0,0处的切线的方程为__________.【变式演练】1.曲线()()1xf x x e x =++在点()0,1处的切线方程为______.2.已知点()1,1P -在曲线2xy x a=+上,则曲线在点P 处的切线方程为_________.3.已知曲线2()ln x f x x a=+在点(1,(1))f 处的切线的倾斜角为3π4,则a 的值为()A .1B .1-C .12-D .4-【题型二】求切线基础型:有切线无切点求切点【典例分析】曲线()32f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为()A .()1,0B .()2,8C .()1,0和()1,4--D .()2,8和()1,4--【变式演练】1.已知函数()x x af x e e=+为偶函数,若曲线()y f x =的一条切线与直线230x y +=垂直,则切点的横坐标为()AB .2C .2ln 2D .ln 22.过曲线cos y x =上一点π1,32P ⎛⎫⎪⎝⎭且与曲线在点P 处的切线垂直的直线的方程为()A .2π2032x -=B 2103y +--=C .2π203x -=D 210y +=3.曲线sin 21y x x =++在点P 处的切线方程是310x y -+=,则切点P 的坐标是____________.【题型三】求切线基础:无切点求参【典例分析】已知曲线3y x =在点(),a b 处的切线与直线310x y ++=垂直,则a 的取值是()A .-1B .±1C .1D .3±【变式演练】1.若曲线ln (0)y x x =>的一条切线是直线12y x b =+,则实数b 的值为___________2.已知曲线3y ax =与直线640x y --=相切,则实数a 的值为__________.3.已知x 轴为曲线()()34411f x x a x =+-+的切线,则a 的值为________.【题型四】无切点多参【典例分析】若直线2y x b =+是曲线2ln y a x =的切线,且0a >,则实数b 的最小值是______.【变式演练】1已知函数f (x )=axlnx ﹣bx (a ,b ∈R )在点(e ,f (e ))处的切线方程为y =3x ﹣e ,则a +b =_____.2.若曲线()xf x mxe n =+在()()1,1f 处的切线方程为y ex =,则m n +=__________3.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则()A .,1a eb ==-B .,1a eb ==C .1,1a eb -==D .1,1a eb -==-【题型五】“过点”型切线【典例分析】过原点作曲线ln y x =的切线,则切点的坐标为___________,切线的斜率为__________.【变式演练】1.过点(1,1)--与曲线x y e x =+相切的直线方程为______________.2.过点(0,1)-作曲线ln f x =(0x >)的切线,则切点坐标为________.3.已知直线y ax =是曲线ln y x =的切线,则实数a =()A .12B .12eC .1e D .21e 【题型六】判断切线条数【典例分析】已知曲线3:3S y x x =-,则过点()2,2P 可向S 引切线,其切线条数为()A .1B .2C .3D .0【变式演练】1.已知过点A(a,0)作曲线C:y=x•e x的切线有且仅有两条,则实数a 的取值范围是()A .(﹣∞,﹣4)∪(0,+∞)B .(0,+∞)C .(﹣∞,﹣1)∪(1,+∞)D .(﹣∞,﹣1)2.已知函数()=-xa f x x e 存在单调递减区间,且()y f x =的图象在0x =处的切线l 与曲线x y e =相切,符合情况的切线l ()A .有3条B .有2条C .有1条D .不存在3.已知函数()3291,f x x ax x a R =+-+∈,当01x ≠时,曲线()y f x =在点()()00,x f x 与点()()02,2x f x --处的切线总是平行时,则由点(),a a 可作曲线()y f x =的切线的条数为()A .1B .2C .3D .无法确定【题型七】多函数(多曲线)的公切线【典例分析】直线y kx b =+与曲线()y f x =相切也与曲线()y g x =相切,则称直线y kx b =+为曲线()y f x =和曲线()y g x =的公切线,已知函数2(),()ln ,f x x g x a x ==,其中0a ≠,若曲线()y f x =和曲线()y g x =的公切线有两条,则a 的取值范围为()A .0a <B .1a <-C .02ea <<D .20a e<<【变式演练】1.函数()ln 1mxf x x x =++与2()1g x x =+有公切线,(0)y ax a =>,则实数m 的值为()A .4B .2C .1D .122.曲线1()x f x e -=与曲线()ln g x x =有()条公切线.A .1B .2C .3D .43.若函数()ln (0)f x x x =>与函数2()g x x a =+有公切线,则实数a 的最小值为()A .11ln222--B .ln 21--C .12-D .ln 2-【题型八】切线的应用:距离最值【典例分析】点P 在函数ln y x =的图像上,若满足到直线y x a =+的距离为1的点P 有且仅有1个,则a =()A1B 1C .1-D .1【变式演练】1.点A 在直线y =x 上,点B 在曲线ln y x =上,则AB 的最小值为()A2B .1C D .22.已知点M 在函数()x f x e =图象上,点N 在函数()ln g x x =图象上,则||MN 的最小值为()A .1B C .2D .33.抛物线上的一动点到直线距离的最小值是A .B .C .D .【题型九】切线的应用:距离公式转化型【典例分析】若12,x x R ∈,则()()212212e e x x x x -+-的最小值是A .1B .2C .3D .4【变式演练】1.若12,x x R ∈,则()()212212e e x x x x -+-的最小值是A .1B .2C .3D .42.设0b <,当224()()a b a b++-取得最小值c 时,函数()||||f x x b x c =-+-的最小值为___________.3.已知a R ∈,b R ∈______.【题型十】切线的应用:恒成立求参等应用【典例分析】已知a 为实数,则“e x ax >对任意的实数x 恒成立”是“02a <<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【变式演练】1.已知函数()(0,1)x f x a a a =>≠的图象在(0,1)处的切线方程为21y x =+,若()f x mx x ≥+恒成立,则m 的取值范围为()A .[]1,21e --B .(,21]e -∞-C .[]1,1e --D .(,1]e -∞-2.若曲线ln y x =在点()11,P x y 处的切线与曲线x y e =相切于点()22,Q x y ,则12111x x x ++=-__________.3.已知函数()ln f x x =,()1g x ax =+,若存在01x e≥使得()()00f x g x =-,则实数a 的取值范围是()A .212,e e ⎡⎤-⎢⎥⎣⎦B .21,2e e ⎡⎤-⎢⎥⎣⎦C .21,2e e ⎡⎤⎢⎥⎣⎦D .21,2e e ⎡⎤⎢⎥⎣⎦【题型十一】切线的应用:零点等【典例分析】已知函数()f x 满足1()()f x f x =,当[1,3]x ∈时,()ln f x x =,若在区间1[,3]3内,函数()()g x f x ax =-与x 轴有三个不同的交点,则实数a 的取值范围是.【变式演练】1.已知函数sin(),2,2()2223sin(),2,2()222x x k k k z y x x k k k z ππππππππππ⎧⎡⎫+∈-+∈⎪⎪⎢⎪⎣⎭=⎨⎡⎫⎪-+∈++∈⎪⎢⎪⎣⎭⎩的图象与直线(2)(0)y m x m =+>恰有四个公共点11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,其中1334x x x x <<<,则44(2)tan x x +=______.2.关于x 的方程sin ((0,1))kx x k =∈在(3,3)ππ-内有且仅有5个根,设最大的根是α,则α与tan α的大小关系是A .tan αα>B .tan αα<C .tan αα=D .以上都不对3.已知函数()f x 满足()()11f x f x +=-,且21,x e ⎡⎤∈⎣⎦时,()ln f x x =,若22,1x e ⎡⎤∈-⎣⎦时,方程()()2f x k x =-有三个不同的根,则k 的取值范围为()A .221,e e ⎛⎤ ⎥⎝⎦B .1,e ⎛⎫-∞ ⎪⎝⎭C .212,e e ⎛⎤-- ⎥⎝⎦D .1,e ⎛⎫-+∞ ⎪⎝⎭【课后练习】1.已知函数()ln()f x a x =+在()()0,0f 处的切线方程为y x =,则满足()021f x ≤-≤的x 的取值范围为_________.2.已知函数()2ln xf x ax x=-,若曲线()y f x =在()()1,1f 处的切线与直线210x y -+=平行,则a =______.3.已知过点(,0)A a 作曲线:x C y x e =⋅的切线有且仅有1条,则实数a 的取值是()A .0B .4C .0或-4D .0或44.已知直线0x y -=是函数ln ()a xf x x=图像的一条切线,且关于x 的方程(())f f x t =恰有一个实数解,则()A .{}ln 2t e ∈B .[0,ln 2]t e ∈C .[0,2]t ∈D .(,0]t ∈-∞5..函数()ln f x x =在点()()00,P x f x 处的切线l 与函数()xg x e =的图象也相切,则满足条件的切点P 的个数有()A.0个B.1个C.2个D.3个6.已知过点(),0M m 作曲线C :ln y x x =⋅的切线有且仅有两条,则实数m 的取值范围是______.7.已知函数21()44,()f x x x g x x -=-+=,则()f x 和()g x 的公切线的条数为A .三条B .二条C .一条D .0条8.若两曲线21y x =-与ln 1y a x =-存在公切线,则正实数a 的取值范围是__________.9.已知函数()21f x x =+,()ln g x x =,若曲线()y f x =与()y g x =的公切线与曲线()y f x =切于点()11,x y ,则()211ln 2x x -=___________.10.已知ln 0a b -=,1c d -=,求22()()a c b d -+-的最小值________.11.已知方程cos (0)xk k x=>有且仅有两个不同的实数解θ,()ϕθϕ>,则以下有关两根关系的结论正确的是A .cos sin ϕϕθ=B .sin cos ϕϕθ=-C .cos cos θθϕ=D .sin sin θθϕ=-12.已知11,1()4ln ,1x x f x x x ⎧+≤⎪=⎨⎪>⎩,则方程()f x ax =恰有2个不同的实根,实数a 取值范围__________________.13.已知函数()3.f x x x =-(1)求曲线()y f x =在点()1,0M 处的切线方程;(2)如果过点()1,b 可作曲线()y f x =的三条切线,求实数b 的取值范围第5讲导数切线方程11类【解析版】【题型一】求切线基础型:给切点求切线【典例分析】已知函数()2sin 1xf x x =+,则曲线()y f x =在点()0,0处的切线的方程为__________.【答案】20x y -=【解析】【分析】先求导函数,求得在切点处的直线斜率;再根据点斜率求得切线方程.【详解】因为()()()221cos 2sin 1x x xf x x +-'=+,所以()02k f ='=,则所求切线的方程为2y x =.故答案为:20x y -=.【变式演练】1.曲线()()1xf x x e x =++在点()0,1处的切线方程为______.【答案】310x y -+=【分析】利用导数的几何意义求解,先对函数求导,然后将点()0,1的横坐标代入导函数所得的值就是切线的斜率,再利用点斜式可与出切线方程.解:由()()1xf x x e x =++,得()'(1)1x x fx e x e =+++,所以在点()0,1处的切线的斜率为()'000(01)13fe e =+++=,所以所求的切线方程为13(0)y x -=-,即310x y -+=,故答案为:310x y -+=,2.已知点()1,1P -在曲线2x y x a=+上,则曲线在点P 处的切线方程为_________.【答案】 32y x =--【分析】将点P 的坐标代入曲线方程,可求得a 的值,然后利用导数的几何意义可求得曲线在点P 处的切线方程.【详解】因为点()1,1P -在曲线2x y x a=+上,111a ∴=-,可得2a =,所以,22x y x =+,对函数求导得()()()222222422x x x x xy x x +-+'==++,则曲线在点P 处的切线斜率为13x k y =-'==-,因此,曲线在点P 处的切线方程为()131y x -=-+,即32y x =--.故答案为:32y x =--.3.已知曲线2()ln x f x x a=+在点(1,(1))f 处的切线的倾斜角为3π4,则a 的值为()A .1B .1-C .12-D .4-【答案】B【分析】求出函数()2ln x f x x a=+的导数'12()x f x x a =+,利用函数f(x)在x=1处的倾斜角为34π得'(1)1f =-,由此可求a 的值.解:函数()2ln x f x x a =+的导数'12()x f x x a =+,函数f(x)在x=1处的倾斜角为34π,∴'(1)1f =-,∴211a+=-,∴1a =-故选B.【题型二】求切线基础型:有切线无切点求切点【典例分析】曲线()32f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为()A .()1,0B .()2,8C .()1,0和()1,4--D .()2,8和()1,4--【答案】C 【详解】令()'2314f x x =+=,解得1x =±,()()10,14f f =-=-,故0p 点的坐标为()()1,0,1,4--,故选C.【点睛】本小题考查直线的斜率,考查导数与斜率的对应关系,考查运算求解能力,属于基础题.【变式演练】1.已知函数()xx af x e e=+为偶函数,若曲线()y f x =的一条切线与直线230x y +=垂直,则切点的横坐标为()A B .2C .2ln 2D .ln 2【答案】D【分析】先根据偶函数求参数1a =,再求导数,根据导数几何意义得斜率,最后根据直线垂直关系得结果.【详解】()f x 为偶函数,则()()(1)0xxx x x x a a f x e e e e a e e----=+=+∴--=∴1a =,()x x f x e e -∴=+,'().x x f x e e -∴=-设切点得横坐标为0x ,则0003'().2x x f x e e -=-=解得02x e =,(负值舍去)所以0ln 2x =.故选:D2.过曲线cos y x =上一点π1,32P ⎛⎫⎪⎝⎭且与曲线在点P 处的切线垂直的直线的方程为()A.2π203x -=B210y +-=C.2π2032x -=D2103y +-+=【答案】A 【分析】求出函数得导函数,根据导数得几何意义即可求得切线得斜率,从而可求得与切线垂直得直线方程.【详解】解:∵cos y x =,∴sin y x '=-,曲线在点π1,32P ⎛⎫⎪⎝⎭处的切线斜率是π3πsin32x y ='=-=,∴过点P 且与曲线在点P∴所求直线方程为1π23y x ⎫-=-⎪⎭,即2π203x -=.故选:A.3.曲线sin 21y x x =++在点P 处的切线方程是310x y -+=,则切点P 的坐标是____________.【答案】()0,1【分析】由导数的几何意义,求得切点P 处的切线的斜率,得到0cos 1x =,求得02()x k k Z π=∈,分类讨论,即可求解.【详解】由函数sin 21y x x =++,则cos 2y x '=+,设切点P 的坐标为()00,x y ,则斜率00cos 23x x k y x ==+'==,所以0cos 1x =,解得02()x k k Z π=∈,当0k =时,切点为()0,1,此时切线方程为310x y -+=;当0k ≠,切点为(2,41)()k k k Z ππ+∈,不满足题意,综上可得,切点为()0,1.故答案为:()0,1.【题型三】求切线基础:无切点求参【典例分析】已知曲线3y x =在点(),a b 处的切线与直线310x y ++=垂直,则a 的取值是()A .-1B .±1C .1D .3±【答案】B【分析】求导得到()2'3f x x =,根据垂直关系得到()2'33f a a ==,解得答案.【详解】()3y f x x ==,()2'3f x x =,直线310x y ++=,13k =-,故()2'33f a a ==,解得1a =±.故选:B .【变式演练】1.若曲线ln (0)y x x =>的一条切线是直线12y x b =+,则实数b 的值为___________【答案】1ln 2-+【解析】【分析】先设切点为00(,)x y ,对函数求导,根据切线斜率,求出切点坐标,代入切线方程,即可得出结果.【详解】设切点为00(,)x y ,对函数ln y x =求导,得到1y x'=,又曲线ln (0)y x x =>的一条切线是直线12y x b =+,所以切线斜率为0112x =,∴02x =,因此0ln 2y =,即切点为()2,ln 2,代入切线12y x b =+,可得1ln 2b =-+.故答案为:1ln 2-+.2.已知曲线3y ax =与直线640x y --=相切,则实数a 的值为__________.【答案】2【分析】先设出切点坐标(,)m n ,然后由切点是公共点和切点处的导数等于切的斜率列方程组可求得结果.解:设切点为(,)m n ,由3y ax =得'23y ax =,则由题意得,2336640am m n n am ⎧=⎪--=⎨⎪=⎩,解得1,2,2m n a ===,故答案为:23.已知x 轴为曲线()()34411f x x a x =+-+的切线,则a 的值为________.【答案】14【分析】设x 轴与曲线()f x 的切点为()0,0x ,由题意结合导数的几何意义可得()()()3002004411012410x a x f x x a ⎧+-+=⎪⎨=+-='⎪⎩,解方程即可得解.【详解】由题意()()21241f x x a '=+-,设x 轴与曲线()f x 的切点为()0,0x ,则()()()302004411012410x a x f x x a ⎧+-+=⎪⎨=+-='⎪⎩,解得01214x a ⎧=⎪⎪⎨⎪=⎪⎩.故答案为:14.【题型四】无切点多参【典例分析】若直线2y x b =+是曲线2ln y a x =的切线,且0a >,则实数b 的最小值是______.【答案】2-【解析】【分析】求出2ln y a x =的导数,设切线为(,)m n ,由切点处的导数值为切线斜率求出m a =,再由切点坐标可把b 表示为a 的函数,再利用导数可求得b 的最小值.【详解】2ln y a x =的导数为2a y x '=,由于直线2y x b =+是曲线2ln y a x =的切线,设切点为(),m n ,则22am=,∴m a =,又22ln m b a m +=,∴2ln 2b a a a =-(0a >),()2ln 122ln b a a '=+-=,当1a >时,0b '>,函数b 递增,当01a <<时,0b '<,函数b 递减,∴1a =为极小值点,也为最小值点,∴b 的最小值为2ln122-=-.故答案为:2-.【变式演练】1已知函数f (x )=axlnx ﹣bx (a ,b ∈R )在点(e ,f (e ))处的切线方程为y =3x ﹣e ,则a +b =_____.【答案】0【分析】由题意()()'2,3f e e fe ==,列方程组可求,a b ,即求+a b .【详解】∵在点()(),e f e 处的切线方程为3y x e =-,()2f e e ∴=,代入()ln f x ax x bx =-得2a b -=①.又()()()''1ln ,23f x a x b f e a b =+-∴=-=②.联立①②解得:1,1a b ==-.0a b ∴+=.故答案为:0.2.若曲线()xf x mxe n =+在()()1,1f 处的切线方程为y ex =,则m n +=__________【答案】12e +解:将1x =代入y ex =,得切点为()1,e ,∴e me n =+①,又()()1xf x me x '=+,∴()12f me e '==,12m =②.联立①②解得:12m =,2e n =,故11222e e m n ++=+=.故答案为:12e +.3.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则()A .,1a e b ==-B .,1a eb ==C .1,1a eb -==D .1,1a eb -==-【答案】D【详解】ln 1,x y ae x '=++1|12x k y ae ='==+=,1a e -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D .【题型五】“过点”型切线【典例分析】过原点作曲线ln y x =的切线,则切点的坐标为___________,切线的斜率为__________.【答案】(),1e 1e【分析】设切点坐标为(,)x lnx ;利用导数求切线方程并求切点坐标.解:设切点坐标为(,)x lnx ;1y x '=;故由题意得,1lnx x x=;解得,x e =;故切点坐标为(,1)e ;切线的斜率为1e;故切线方程为1()1y x e e =-+,整理得0x ey -=.故答案为:(,1)e ;1e.【变式演练】1.过点(1,1)--与曲线x y e x =+相切的直线方程为______________.【答案】21y x =+.【详解】设切点坐标为()000,e xx x +,由x y e x =+得e 1x y '=+,∴切线方程为()()0000e 1e x x y x x x =+-++,切线过点()1,1--,∴()()00001e 11e x xx x -=+--++,即00e 0x x =,∴00x =,即所求切线方程为21y x =+.故答案为:21y x =+.2.过点(0,1)-作曲线ln f x =(0x >)的切线,则切点坐标为________.【答案】【分析】先求出曲线的方程,再根据导数值为切线斜率,求出切点坐标.【详解】由ln f x =(0x >),则2()ln ,0f x x x =>,化简得()2ln ,0f x x x =>,则2()f x x'=,设切点为00(,2ln )x x ,显然(0,1)-不在曲线上,则0002ln 12x x x +=,得0x =,则切点坐标为.故答案为:.3.已知直线y ax =是曲线ln y x =的切线,则实数a =()A .12B .12eC .1eD .21e 【答案】C【分析】设切点为00(,ln )x x ,求出切线方程00ln 1xy x x =+-,即得001ln 10a x x ⎧=⎪⎨⎪-=⎩,解方程即得a 的值.【详解】设切点为00(,ln )x x ,∴切线方程是000001ln ()ln 1xy x x x y x x x -=-⇒=+-,∴0011ln 10a x a e x ⎧=⎪⇒=⎨⎪-=⎩,故答案为:C 【题型六】判断切线条数【典例分析】已知曲线3:3S y x x =-,则过点()2,2P 可向S 引切线,其切线条数为()A .1B .2C .3D .0【答案】C 【解析】【分析】设切点为()3,3t t t-,利用导数求出曲线S 在切点()3,3t t t -处的切线方程,再将点P 的坐标代入切线方程,可得出关于t 的方程,解出该方程,得出该方程根的个数,即为所求.【详解】设在曲线S 上的切点为()3,3t t t -,33y x x =-,则233y x '=-,所以,曲线S 在点()3,3t t t-处的切线方程为()()()32333y t t t x t --=--,将点()2,2P 的坐标代入切线方程得32320t t -+=,即()()21220t t t ---=,解得11t =,21t =+31t =.因此,过点()2,2P 可向S 引切线,有三条.故选:C.【变式演练】1.已知过点A(a,0)作曲线C:y=x•e x的切线有且仅有两条,则实数a 的取值范围是()A .(﹣∞,﹣4)∪(0,+∞)B .(0,+∞)C .(﹣∞,﹣1)∪(1,+∞)D .(﹣∞,﹣1)【答案】A【详解】设切点为()000,e xx x ,(1)x y x e =+',000(1)x x x y x e =∴=+⋅',则切线方程为:()00000=1()x x y x e x e x x -+⋅-,切线过点(,0)A a 代入得:()00000=1()x x x e x e a x -+⋅-2001x a x ∴=+,即方程2000x ax a --=有两个解,则有2400a a a ∆=+>⇒>或4a <-.故答案为:A.2.已知函数()=-xa f x x e 存在单调递减区间,且()y f x =的图象在0x =处的切线l 与曲线x y e =相切,符合情况的切线l ()A .有3条B .有2条C .有1条D .不存在【答案】D 【解析】试题分析:()1x a e f x a=-',依题意,()0f x '<在R 上有解.当0a <时,()0f x '<在R 上无解,不符合题意;当0a >时,()0,,ln x af x a e x a a <'符合题意,故0a >.易知曲线()y f x =在0x =处的切线为111y x a ⎛⎫=-- ⎪⎝⎭.假设该直线与x y e =相切,设切点为()00,x y ,即有0011111xe x a a ⎛⎫=-=-- ⎪⎝⎭,消去a 化简得0001x x ex e =-,分别画出,1x x e xe -的图像,观察可知它们交点横坐标01x >,0x e e >,这与111a-<矛盾,故不存在.3.已知函数()3291,f x x ax x a R =+-+∈,当01x ≠时,曲线()y f x =在点()()00,x f x 与点()()02,2x f x --处的切线总是平行时,则由点(),a a 可作曲线()y f x =的切线的条数为()A .1B .2C .3D .无法确定【答案】C 【解析】分析:由曲线()y f x =在点()()00,x f x 与点()()002,2x f x --处的切线总是平行,可得导函数的对称轴,从而求出a 的值,设出切点坐标,可得关于切点横坐标的方程有三个解,从而可得结果.详解:由()3291f x x ax x =+-+,得()2'329f x x ax =+-,曲线()y f x =在点()()00,x f x 与点()()002,2x f x --处的切线总是平行,()'y f x ∴=关于1x =对称,即133aa -=⇒=-,点(),a a ,即为()3,3--,所以()32391f x x x x =--+,()2'329f x x ax =+-,设切点为()(),t f t 切线的方程为()()3'3y f t x +=+,将点()32,391t t t t --+代入切线方程可得()()3223933693t t t t t t --+=--+,化为322636310t t t ---=,设()32263631g t t t t =---()2'61218g t t t =--令()'0g t >得3t >或1t <-,令()'0g t <得10t -<<,()32263631g t t t t =---在()(),1,3,-∞-+∞上递增,在()1,3-上递减,t ∴在1-处有极大值,在3处有极小值,()110g ∴-=>且()31390g =-<,()32263631g t t t t =---与x 有三个交点,∴方程()0g t =有三个根,即过(),a a 的切线有3条,故答案为3.【题型七】多函数(多曲线)的公切线【典例分析】直线y kx b =+与曲线()y f x =相切也与曲线()y g x =相切,则称直线y kx b =+为曲线()y f x =和曲线()y g x =的公切线,已知函数2(),()ln ,f x x g x a x ==,其中0a ≠,若曲线()y f x =和曲线()y g x =的公切线有两条,则a 的取值范围为()A .0a <B .1a <-C .02ea <<D .20a e<<【答案】C 【解析】【分析】设切点求出两个函数的切线方程,根据这个两个方程表示同一直线,可得方程组,化简方程组,可以得到变量a 关于其中一个切点横坐标的函数形式,求导,求出函数的单调性,结合该函数的正负性,画出图象图形,最后利用数形结合求出a 的取值范围.【详解】设曲线2()f x x =的切点为:2(,)s s ,2'()()2f x x f x x ⇒==,所以过该切点的切线斜率为'()2f s s =,因此过该切点的切线方程为:222()2y s s x s y sx s -=-⇒=-;设曲线()y g x =的切点为:(,ln )t a t ,'()ln ()a g x a x g x x =⇒=,所以过该切点的切线斜率为'()a g t t=,因此过该切点的切线方程为:ln ()ln a ay a t x t y x a a t t t-=-⇒=-+,则两曲线的公切线应该满足:2224(1ln )ln a s a t t t s a a t⎧=⎪⇒=-⎨⎪-=-+⎩,构造函数2'()4(1ln )(0)()4(12ln )h t t t t h t t t =->⇒=-,当12t e>时,'()0,()h t h t <单调递减,当120t e<<时,'()0,()h t h t >单调递增,所以函数有最大值为:12()2h e e =,当t e >时,()0h t <,当0t e <<,()0h t >,函数的图象大致如下图所示:要想有若曲线()y f x =和曲线()y g x =的公切线有两条,则a 的取值范围为02e a <<.故选:C【变式演练】1.函数()ln 1mxf x x x =++与2()1g x x =+有公切线,(0)y ax a =>,则实数m 的值为()A .4B .2C .1D .12【答案】A 【解析】【分析】设两个切点A ()11x y ,和B ()22x y ,,然后求函数的导函数(),()f x g x '',由()g x 的导函数()g x '分析求解参数2a =,再由()f x 的导函数和公切线分析得出关于m 的方程组,求解即可得出答案.【详解】设公切线,(0)y ax a =>与两个函数()ln 1mxf x x x =++与2()1g x x =+图象的切点分别为A ()11x y ,和B ()22x y ,,由()21()1m f x x x '=++,()2g x x '=,可得()22222222()21g x x ay ax g x x y⎧==⎪=='⎨⎪+=⎩解得2a =,所以有()1211111111111()21()ln 12m f x a x x mx f x x y x y ax x ⎧=+==⎪+⎪⎪⎪=+'=⎨+⎪⎪==⎪⎪⎩化简得21112ln 10x x x -+-=,令()22ln 1h x x x x =-+-()0x >,则()11304h x x x'+-≥>=恒成立,即得函数()22ln 1h x x x x =-+-()0x >在定义域上为增函数,又因()10h =,则可解得方程21112ln 10x x x -+-=,11x =,则由()21(1)2111mf '=+=+解得4m =.故选:A.2.曲线1()x f x e -=与曲线()ln g x x =有()条公切线.A .1B .2C .3D .4【答案】B 【详解】设()010,x x e -是曲线()f x 图像上任意一点,()'1x f x e-=,所以()01'0x fx e -=,所以过点()010,x x e -的切线方程为()00110x x y e e x x ---=-,整理得()001101x x y e x x e --=⋅+-①.令()01'1x g x e x-==,解得011x x e -=,则()101g x x =-,所以曲线()g x 上过点()010,1x e x --的切线方程为:()()001101x x y x e x e ----=-,整理得010x y e x x -=⋅-②.由于切线①②重合,故()01001x x e x --=-,即()010010x x ex --⋅-=③.构造函数()()11x h x x e x -=--,则()'11x h x xe -=-,()()''11x h x x e -=+,故当1x <-时()()'''0,h x h x <递减、当1x >-时()()'''0,h x h x >递增,注意到当0x <时()'0h x <,且()'10h =,所以当1x <时()()'0,h x h x <递减,当1x >时,()()'0,h x h x >递增,而()()()22110,110,220h h h e e-=->=-<=->,根据零点存在性定理可知在区间()()1,1,1,2-各存在()h x 的一个零点,也即()h x 有两个零点,也即方程③有两个根,也即曲线()f x 和曲线()g x 有两条公切线.故选:B 3.若函数()ln (0)f x x x =>与函数2()g x x a =+有公切线,则实数a 的最小值为()A .11ln 222--B .ln 21--C .12-D .ln 2-【答案】A 【解析】【分析】求出()f x 导数,设出切点,求出切线,将其与2()g x x a =+联立,通过判别式为零,可得切点坐标的关系式,整理得到关于一个坐标变量的方程,借助于函数的极值和最值,即可得到a 的最小值.【详解】解:'1()f x x=,设公切线与曲线()ln f x x =相切的切点为(),ln ,0m m m >,则公共切线为()1ln y x m m m=-+,即ln 0x my m m m --+=,其与2y x a =+相切,联立消去y 得:2ln 0mx x am m m m -++-=,则()14ln 0m am m m m ∆=-+-=有解,即211ln 4a m m=-+有解,令()211ln 4h m m m=-+,0m >,则()2'33112122m h m m m m -=-+=,令232102m m -=,得22m =,则()211ln 4h m m m =-+在0,2⎛⎫ ⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,则()2min11ln 224211ln 222h m h ⎛⎫==-+= ⎪ ⎪⎛⎫⎝⎭ ⎪⎝--⎭,则11ln 222a --≥,所以实数a 的最小值为11ln 222--.故选:A.【题型八】切线的应用:距离最值【典例分析】点P 在函数ln y x =的图像上,若满足到直线y x a =+的距离为1的点P 有且仅有1个,则a =()A1+B1C.1-D.1【答案】B 【分析】先求导,设直线y x m =+与ln y x =相切于点00(,)x y ,利用导数几何意义和切点在曲线、直线上求得切点()1,0,再利用()1,0到直线y x a =+的距离为1,结合图象解得参数即可.【详解】函数ln y x =的导函数为1y x=,设直线y x m =+与ln y x =相切于点00(,)x y ,则00000ln 11y x y x m x ⎧⎪=⎪⎪=+⎨⎪⎪=⎪⎩,解得切点为()1,0,由题可知()1,0到直线y x a =+的距离为1,1=,解得1a =,结合图象可知,1a =-.故选:B.【变式演练】1.点A 在直线y =x 上,点B 在曲线ln y x =上,则AB 的最小值为()A.2B .1CD .2【答案】A设平行于直线y =x 的直线y =x +b 与曲线ln y x =相切,将题意转化为两平行线间的距离,由导数的几何意义可得b 的值,进而可得结果.【详解】设平行于直线y =x 的直线y =x +b 与曲线ln y x =相切,则两平行线间的距离即为AB 的最小值.设直线y =x +b 与曲线ln y x =的切点为(,ln )m m ,则由切点还在直线y =x +b 上可得ln m m b =+,由切线斜率等于切点的导数值可得11m=,联立解得m =1,b =-1,由平行线间的距离公式可得AB=故选:A.2.已知点M 在函数()x f x e =图象上,点N 在函数()ln g x x =图象上,则||MN 的最小值为()A .1BC .2D .3【答案】B 【分析】根据函数()x f x e =与函数()ln g x x =互为反函数,将问题转化为求函数()x f x e =的图象与直线y x =平行的切线的切点00(,)x y 到直线y x =的距离的两倍,利用导数求出切点坐标,根据点到直线的距离公式可得结果.【详解】因为函数()x f x e =与函数()ln g x x =互为反函数,它们的图象关于直线y x =对称,所以||MN 的最小值为函数()x f x e =的图象上的点M 到直线y x =的距离的2倍,即为函数()x f x e =的图象与直线y x =平行的切线的切点00(,)x y 到直线y x =的距离的两倍,因为()x f x e '=,所以函数()x f x e =的图象上与直线y x =平行的切线的斜率01x k e ==,所以00x =,所以切点为(0,1),它到直线y x =的距离d ==所以||MN 故选:B.3.抛物线上的一动点到直线距离的最小值是A .B .C .D .【答案】A试题分析:对y=x 2求导可求与直线x-y-1=0平行且与抛物线y=x 2相切的切线方程,然后利用两平行线的距离公司可得所求的最小距离d .解:(法一)对y=x 2求导可得y′=2x ,令y′=2x=1可得x=∴与直线x-y-1=0平行且与抛物线y=x 2相切的切点(,),切线方程为y-=x-即x-y-=0由两平行线的距离公司可得所求的最小距离d=,故选A.【题型九】切线的应用:距离公式转化型【典例分析】若12,x x R ∈,则()()212212e e x x x x -+-的最小值是A .1B .2C .3D .4【答案】B 【分析】原题等价于函数x y e =上的点()11,x A x e 与函数ln y x =上的点()22,xB e x 间的距离最小值的平方,结合两个函数关于y x =对称,将其转化为函数ln y x =与y x =的距离的最小值2倍的平方,利用导数求切线方程最后转化求两平行线间的距离平方即可.【详解】由题意可转化为点()11,x A x e 与点()22,xB e x 间的距离最小值的平方,点A 在函数x y e =上,点B 在函数ln y x =上,这两个函数关于y x =对称,所以转化为函数ln y x =与y x =的距离的最小值2倍的平方,此时11y x '==,∴ln y x =斜率为1的切线方程为1y x =-,它与y x =的距离为2.故原式的最小值为2.故选:B .【变式演练】1.若12,x x R ∈,则()()212212e e x x x x -+-的最小值是A .1B .2C .3D .4【答案】B 【分析】原题等价于函数x y e =上的点()11,x A x e 与函数ln y x =上的点()22,xB e x 间的距离最小值的平方,结合两个函数关于y x =对称,将其转化为函数ln y x =与y x =的距离的最小值2倍的平方,利用导数求切线方程最后转化求两平行线间的距离平方即可.【详解】由题意可转化为点()11,x A x e 与点()22,xB e x 间的距离最小值的平方,点A 在函数x y e =上,点B 在函数ln y x =上,这两个函数关于y x =对称,所以转化为函数ln y x =与y x =的距离的最小值2倍的平方,此时11y x'==,∴ln y x =斜率为1的切线方程为1y x =-,它与y x =的距离为2.故原式的最小值为2.故选:B .2.设0b <,当224()()a b a b++-取得最小值c 时,函数()||||f x x b x c =-+-的最小值为___________.【答案】10【分析】224()(a b a b ++-表示点(,)a a 与点4(,b b -距离的平方,而点(,)a a 是直线y x =上任一点,点4(,b b-(0b <)是反比例函数4y x=-在第四象限上的点,然后由反比例函数和正比例函数的性质可求得0,2a b ==-,从而得8c =,再利用绝对值三角不等式可求出函数()f x 的最小值【详解】解:224()()a b a b++-表示点(,)A a a 与点4(,B b b -距离的平方,而点A 是直线y x =上任一点,点B 是反比例函数4y x =-在第四象限上的点,当B 是斜率为1的直线与4y x=-相切的切点时,点B 到直线y x =的距离即为||AB 的最小值,由2244,|1,2(0),(2,2)x b y y b b B x b ='='==∴=>-,min ||8AB c ∴===,所以()|||||2||8|(2)(8)10f x x b x c x x x x =-+-=++-≥+--=,当且仅当28x -≤≤取等号,所以函数()||||f x x b x c =-+-的最小值为10,故答案为:103.已知a R ∈,b R ∈______.【分析】利用算术根的几何意义,把所求转化为两个图形上点的距离最小值即可作答.【详解】(),1a a -到点(),bb e 的距离,而点(),1a a -的轨迹是直线1y x =-,点(),b b e 的轨迹是曲线()xf x e =,则所求最小值可转化为曲线()x f x e =上的点到直线1y x =-距离的最小值,而曲线()xf x e =在直线1y x =-上方,平移直线1y x =-使其与曲线()xf x e =相切,则切点到直线1y x =-距离即为所求,设切点00(,)xx e ,()x f x e '=,由()001x f x e '==得00x =,切点为(0,1)则(0,1)到直线1y x =-距离d ==.【题型十】切线的应用:恒成立求参等应用【典例分析】已知a 为实数,则“e x ax >对任意的实数x 恒成立”是“02a <<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【分析】先根据导数的几何意义求出直线y kx =与曲线x y e =相切时k 的值,再数形结合将e x ax >对任意的实数x 恒成立转化为0a e ≤<,最后判断充要关系即可得解.【详解】设直线y kx =与曲线x y e =相切,且切点为()00,xx e ,则000xx k e e kx ⎧=⎪⎨=⎪⎩,解得01x =,所以切点为()1,e ,k e =,所以切线方程为y ex =.数形结合可知,e x ax >对任意的实数x 恒成立等价于0a e ≤<.而由0a e ≤<不能得到02a <<,故充分性不成立;反之,由02a <<可得到0a e ≤<,故必要性成立.故选:B .【变式演练】1.已知函数()(0,1)x f x a a a =>≠的图象在(0,1)处的切线方程为21y x =+,若()f x mx x ≥+恒成立,则m 的取值范围为()A .[]1,21e --B .(,21]e -∞-C .[]1,1e --D .(,1]e -∞-【答案】A 【分析】由题意求得a ,代入函数解析式,把问题转化为2x e mx x + 恒成立,对x 分类讨论,分离参数m ,再由导数求最值得答案.【详解】解:因为()x f x a =,所以()ln x f x a a '=,又函数()f x 的图象在(0,1)处的切线方程为21y x =+,所以0(0)ln 2f a a '==,解得2e a =,所以2()e x f x =,因为()f x mx x ≥+恒成立,所以2e x mx x ≥+恒成立.当0x =时,0e 0≥成立.当0x ≠时,令2e ()1x g x x =-,则22e (21)()x x g x x -'=.当1(,0)0,2x ⎛⎫∈-∞⋃ ⎪⎝⎭时,()0g x '<,()g x 在(,0)-∞和10,2⎛⎫⎪⎝⎭上单调递减.当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '>,()g x 单调递增,当0x >时,e 1xm x ≤-恒成立,所以2mine 112e 12x m g x ⎛⎫⎛⎫≤-==- ⎪⎪⎝⎭⎝⎭;当0x <时,2e 1xm x ≥-恒成立,而2e ()11xg x x=-<-,所以1m ≥-.综上,12e 1m ≤≤-一,所以m 的取值范围为[1,2e 1]--.故选:A 2.若曲线ln y x =在点()11,P x y 处的切线与曲线x y e =相切于点()22,Q x y ,则12111x x x ++=-__________.【答案】0【分析】利用导数的几何意义分别求解出ln y x =在点()11,P x y 处的切线方程以及x y e =在点()22,Q x y 处的切线方程,根据两切线重合,求解出12,x x 之间的关系式,由此可化简计算出12111x x x ++-的值.【详解】ln y x =的导数为1y x'=,可得曲线ln y x =在点()11,P x y 处的切线方程为()1111ln y x x x x -=-,x y e =的导数为e x y '=,可得曲线x y e =在点()22,Q x y 处的切线的方程为()222x xy e e x x -=-,由两条切线重合的条件,可得211x e x =,且()212ln 11xx e x -=-,则21ln x x =-,即有()1111ln 11ln x x x -=+,可得1111ln 1x x x +=-,则121111ln ln 01x x x x x ++=-=-.故答案为:03.已知函数()ln f x x =,()1g x ax =+,若存在01x e≥使得()()00f x g x =-,则实数a 的取值范围是()A .212,e e ⎡⎤-⎢⎥⎣⎦B .21,2e e ⎡⎤-⎢⎥⎣⎦C .21,2e e ⎡⎤⎢⎥⎣⎦D .21,2e e ⎡⎤⎢⎥⎣⎦【答案】B 【分析】利用()()00f x g x =-,把问题转化为ln y x =与1y ax =-+在1x e≥有交点,利用数形结合进行分析,即可求解【详解】()()00f x g x =-,所以,00ln 1x ax =-+,即ln y x =与1y ax =-+在1x e≥有交点,分情况讨论:①直线1y ax =-+过点1(,1)e -,即11ae-=-+,得2a e =;②直线1y ax =-+与ln y x =相切,设切点为(,)m n ,得1ln 1am m a m -+=⎧⎪⎨-=⎪⎩⇒221m e a e ⎧=⎪⎨=-⎪⎩,切点为2(,2)e ,故实数a 的取值范围是21,2e e ⎡⎤-⎢⎥⎣⎦故选:B【题型十一】切线的应用:零点等【典例分析】已知函数()f x 满足1()(f x f x =,当[1,3]x ∈时,()ln f x x =,若在区间1[,3]3内,函数()()g x f x ax =-与x 轴有三个不同的交点,则实数a 的取值范围是.【答案】ln 31[,)3e 【解析】试题分析:由题意知,ln ,[1,3]()12ln ,[,1)3x x f x x x ∈⎧⎪=⎨-∈⎪⎩,∵在区间1[,3]3内,函数()()g x f x ax =-与x 轴有三个不同的交点,∴函数ln ,[1,3]()12ln ,[,1)3x x f x x x ∈⎧⎪=⎨-∈⎪⎩与y ax =在区间1[,3]3内有三个不同的交点,合图象可知,当直线y ax =与()ln f x x =相切时,ln 1x x x =,解得:x e =;此时1a e =;当直线y ax =过点(3,ln 3)时,ln 33a =;故ln 313a e≤<.【变式演练】1.已知函数sin(),2,2()2223sin(2,2()222x x k k k z y x x k k k z ππππππππππ⎧⎡⎫+∈-+∈⎪⎪⎢⎪⎣⎭=⎨⎡⎫⎪-+∈++∈⎪⎢⎪⎣⎭⎩的图象与直线(2)(0)y m x m =+>恰有四个公共点11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,其中1334x x x x <<<,则44(2)tan x x +=______.【答案】1-函数的图象如下图所示:直线(2)(0)y m x m =+>过定点(2,0)-,当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()cos f x x =-,()sin f x x '=,由图象可知切点坐标为()44,cos x x -,切线方程为:()444cos sin y x x x x +=-,又因为切线过点(2,0)-,则有()444cos sin 2x x x =--,即44(2)tan 1.x x +=-2.关于x 的方程sin ((0,1))kx x k =∈在(3,3)ππ-内有且仅有5个根,设最大的根是α,则α与tan α的大小关系是A .tan αα>B .tan αα<C .tan αα=D .以上都不对【答案】C 【分析】由题,先做出图像,然后找到最大根α,利用斜率公式可得α与tan α的大小关系.【详解】由题意作出y kx =与sin y x =在(3,3)ππ-的图象,如图所示:∵方程sin ((0,1))kx x k =∈在(3,3)ππ-内有且仅有5个根,最大的根是α.∴α必是y kx =与sin y x =在(2,3)ππ内相切时切点的横坐标设切点为()00,x y ,052,2x ππ⎛⎫∈ ⎪⎝⎭,则0x α=,斜率0cos k x =则000sin cos cos tan y x x ααααα=∴=⋅∴=故选C.3.已知函数()f x 满足()()11f x f x +=-,且21,x e ⎡⎤∈⎣⎦时,()ln f x x =,若22,1x e ⎡⎤∈-⎣⎦时,方程()()2f x k x =-有三个不同的根,则k 的取值范围为()A .221,e e ⎛⎤ ⎝⎦B .1,e ⎛⎫-∞ ⎪⎝⎭C .212,e e ⎛⎤-- ⎥⎝⎦D .1,e ⎛⎫-+∞ ⎪⎝⎭【答案】C 【分析】由()()11f x f x +=-,可得函数()f x 的图像关于直线1x =对称,由此可画出函数图像,而直线()2y k x =-为过定点()2,0的一条直线,当直线与当22,1x e ⎡⎤∈-⎣⎦时的函数()f x 的图像相切时,直线与()f x 在22,1e ⎡⎤-⎣⎦的图像有两个公共点,然后利用导数求出切线的斜率,再结合图像可得答案【详解】因为()()11f x f x +=-,所以函数()f x 的图像关于直线1x =对称.当21,x e ⎡⎤∈⎣⎦时,()ln f x x =,则当22,1x e ⎡⎤∈-⎣⎦时,()f x 的图像如图所示,直线()2y k x =-为过定点()2,0的一条直线.当直线与当22,1x e ⎡⎤∈-⎣⎦时的函数()f x 的图像相切时,直线与()f x 在22,1e ⎡⎤-⎣⎦的图像有两个公共点.当22,1x e ⎡⎤∈-⎣⎦时,函数()()()2ln 2f x f x x =-=-,()12x f x '=-,设切点为()()00,ln 2x x -,切线的斜率012k x =-,则切线方程为()()0001ln 22y x x x x --=--,把点()2,0代入得02x e =-,所以1k e =-;当直线过点()22,2e -时,22k e =-,所以k 的取值范围为212,e e ⎛⎤-- ⎥⎝⎦,故选:C.【课后练习】1.已知函数()ln()f x a x =+在()()0,0f 处的切线方程为y x =,则满足()021f x ≤-≤的x 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数、切线方程练习
一、选择题
1.函数()22)(x x f π=的导数是( )C
A.x x f π4)(='
B.x x f 24)(π='
C. x x f 28)(π='
D. x x f π16)(='
()∴==,42)(222x x x f ππ=⋅='x x f 242)(πx x f 28)(π=';
2.曲线231
3-=x y 在点)37
,1(--处的切线的倾斜角为( )B
A . 30o
B . 45o
C . 135o
D . -45o
3. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( ) A
A.1
B.2
C.-1
D. 0
4.曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为(
B )
A. (1,0)
B. (2,8)
C. (1,0)和(1,4)--
D. (2,8)和(1,4)--
5.曲线223y x x =-+在点(1,2)处的切线方程为( )A
A .31y x =-
B .35y x =-+
C .35y x =+
D .2y x =
6.曲线x y e =在点A (0,1)处的切线斜率为( )A
A .1
B .2
C .e
D .1
e
答案:A 解析: 1,0,0'===e x e y x
7.曲线2y 21x x =-+在点(1,0)处的切线方程为( )A
A .1y x =-
B .1y x =-+
C .22y x =-
D .22y x =-+
解析:232y x '=-,所以11x k y ='==,所以选A .
8.若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则
A .1,1a b ==
B . 1,1a b =-=
C .1,1a b ==-
D . 1,1a b =-=-
【解析】A :本题考查了导数的几何意思即求曲线上一点处的切线方程
∵ 02x y x a a ='=+=,∴ 1a =,(0,)b 在切线10x y -+=,∴ 1b =
9.若曲线4
y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A
A .430x y --=
B .450x y +-=
C .430x y -+=
D .430x y ++=
10.曲线x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( )D A.294
e B.22e C.2e D.22
e 二、填空题 11.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________..34π
12.曲线y =x (3ln x +1)在点)1,1(处的切线方程为________34-=x y 【解析】函数的导数为4ln 331ln 3)('+=⨯++=x x
x x x f ,所以在)1,1(的切线斜率为 4=k ,所以切线方程为)1(41-=-x y ,即34-=x y .
三、解答题:
13.已知a ∈R,函数f(x)=2x 3-3(a +1)x 2+6a x 若a =1,求曲线y=f(x)在点(2,f(2))处的切线方程;
解:(Ⅰ)当1a =时,
32()266(2)1624124f x x x x f =-+∴=-+=, 所以2()6126(2)242466f x x x f ''=-+∴=-+=,所以()y f x =在(2,(2))f 处的切线方程是:46(2)680y x x y -=-⇒--=;
14.已知函数1()ln 1()a f x x ax a R x -=-+
-∈)当1a =-时,求曲线()y f x =在点(2,(2))
f 处的切线方程; 【解析】解: 当=-=)(1x f a 时,),,0(,12ln +∞∈-+
+x x
x x 所以 )('x f
因此,,)(12=f 即 曲线.1))2(2)(,处的切线斜率为
,在点(f x f y =
又 ,22ln )2(+=f
所以曲线.
02ln ,
2)22(ln ))2(2)(=+--=+-=y x x y f x f y 即处的切线方程为,在点(
15.已知函数f (x )=3231()2
ax x x R -+∈,其中a >0. 若a =1,求曲线y=f (x )在 点(2,f (2))处的切线方程;
解:当a=1时,f (x )=323x x 12
-+,f (2)=3;f ’(x)=233x x -, f ’(2)=6.所以曲线y=f (x )在点(2,f (2))处的切线方程为y-3=6(x-2),即y=6x-9.
16. 已知函数f (x )=3213
x x ax b -++的图像在点P (0,f(0))处的切线方程为y=3x-2. 求实数a , b 的值;a =3,b=-2 17. 已知函数32()23 3.f x x x =-+求曲线()y f x =在点2x =处的切线方程;
.解(1)2()66,(2)12,(2)7,f x x x f f ''=-==
∴曲线()y f x =在2x =处的切线方程为712(2)y x -=-,即12170x y --=;
18.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程 解:设切点为(,)P a b ,函数3235y x x =+-的导数为'236y x x =+
切线的斜率'2|363x a k y a a ===+=-,得1a =-,代入到32
35y x x =+-
得3b =-,即(1,3)P --,33(1),360y x x y +=-+++=。

相关文档
最新文档