电力系统过电压的产生及限制措施

合集下载

治理过电压的措施

治理过电压的措施

治理过电压的措施过电压是指电路中电压超过额定值的现象,常见的有电力系统中的过电压。

过电压对设备和电路的正常运行会造成严重的影响甚至损坏,因此,采取一定的措施来治理过电压是十分必要的。

本文将从不同角度介绍几种常见的治理过电压的措施。

1. 增加电源的稳定性电源的不稳定性是导致过电压的主要原因之一。

为了增加电源的稳定性,可以采取以下措施:(1) 使用稳压器:稳压器是一种能够将电源输出的电压稳定在一定范围内的电子元件。

通过使用稳压器,可以减小电源波动对电路的影响,从而有效地治理过电压。

(2) 增加电源的容量:通过增加电源的容量,可以提供更稳定的电压输出,减小电网负荷变化对电路的干扰。

(3) 使用UPS电源:UPS电源是一种具有电池备份功能的电源设备,可以在电网电压异常时提供稳定的电源输出,有效地避免过电压对设备的损害。

2. 安装过电压保护装置过电压保护装置是一种能够在电路中检测到过电压时迅速切断电路的设备。

常见的过电压保护装置有:(1) 避雷针:避雷针是一种通过尖端放电来保护建筑物和设备的装置。

当雷电靠近时,避雷针能够迅速将电荷导入地下,避免雷击引起的过电压。

(2) SPD(Surge Protective Device):SPD是一种通过引入电阻、电容和电感等元件来吸收过电压的装置。

当电路中出现过电压时,SPD能够快速将过电压吸收,保护设备的安全。

(3) 熔断器:熔断器是一种能够在电路中出现过电流时迅速切断电路的装置。

在过电压情况下,通常会伴随过电流的出现,熔断器可以起到保护设备的作用。

3. 地线的正确使用地线的正确使用可以有效地降低过电压对设备的影响。

地线的作用是将电路中的故障电流迅速导入地下,保护设备和人身安全。

因此,在安装电路时,应该正确接地,确保地线的连接可靠。

4. 合理设计电路合理设计电路是避免过电压的重要手段之一。

在电路设计中,可以采取以下措施:(1) 使用电压稳定器:电压稳定器是一种能够将输入电压稳定在一定范围内的电子元件。

过电压产生的危害及防止措施

过电压产生的危害及防止措施

编号:中国农业大学现代远程教育毕业论文(设计)论文题目:过电压产生的危害及防止措施学生指导教师专业层次批次学号学习中心工作单位年月中国农业大学网络教育学院制目录摘要 (3)前言 (4)1过电压的基本概念 (4)1.1过电压的定义 (4)1.2过电压的分类 (4)2过电压的危害 (5)2.1雷击过电压的危害 (5)2.2操作过电压的危害 (6)2.3暂态过电压 (7)3过电压的防止措施 (8)3.1变电站倒闸操作 (8)3.1.1切断空载线路过电压 (8)3.1.2切断空载变压器的过电压 (9)3.1.3电弧接地过电压 (10)3.1.4铁磁谐振过电压 (11)3.1.5电磁式电压互感器饱和过电压 (11)3.2雷电 (12)4过电压保护设备及其保护原理、作用 (13)4.1避雷器 (13)4.2避雷针 (14)4.3避雷线 (14)4.4放电间隙 (15)结束语 (15)参考文献 (15)电力系统过电压是危害电力系统安全运行的主要因素之一,过电压一旦发生,往往造成电气设备损坏和大面积停电事故。

过电压来自两个方面,一种是遭受雷击产生的外部过电压,另一种是操作和事故时引起的内部过电压,主要是操作过电压。

过电压的数值与电力网和结构、系统容量及参数、中性点接地方式、断路器性能等有关。

通常采用避雷器、避雷针、避雷线等方法限制外部过电压。

而对于内部过电压,针对操作中产生过电压的形式可采取不同的控制措施,如对于谐振过电压,可采用并联电阻或改变系统运行参数的方法加以限制,对于电弧接地过电压,则产用将系统中性点直接接地的方法等,以达到保证设备安全、系统安全、人员安全的目的。

关键词:过电压危害防止限制本系统拥有近二十座110kV、35 kV微机综合自动化变电站,吸收xxx、xxx、xxx三个大型发电厂及若干小电厂的电能向xx区供电,并通过重庆xxx变电站同国网相联,是一个具有较高综合自动化水平的大中型电网。

但设备多,接线复杂,且各变电站的设备型号不一,如果发生过电压必将引起电网绝缘溥弱环节击穿,引发严重的电气事故。

过电压指标、标准、措施

过电压指标、标准、措施

过电压指标、标准、措施一、过电压定义及指标1、过电压定义过电压是指工频下交流电压均方根值升高,超过额定值的10%,并且持续时间大与1分钟的长时间电压变动现象;过电压的出现通常是负荷投切的结果,例如:切断某一大容量负荷或向电容器组增能(无功补偿过剩导致的过电压)。

过电压分外过电压和内过电压两大类。

(1)外过电压又称雷电过电压、大气过电压,由大气中的雷云对地面放电而引起的,分直击雷过电压和感应雷过电压两种。

大气过电压由直击雷引起,特点是持续时间短暂,冲击性强,与雷击活动强度有直接关系,与设备电压等级无关。

因此220KV 以下系统的绝缘水平往往由防止大气过电压决定。

1)雷电过电压的持续时间约为几十微秒,具有脉冲的特性。

直击雷过电压是雷闪直接击中电工设备导电部分时所出现的过电压。

雷闪击中带电的导体,如架空输电线路导线,称为直接雷击。

雷闪击中正常情况下处于接地状态的导体,如输电线路铁塔,使其电位升高以后又对带电的导体放电称为反击。

直击雷过电压幅值可达上百万伏,会破坏电工设施绝缘,引起短路接地故障。

2)感应雷过电压是雷闪击中电工设备附近地面,在放电过程中由于空间电磁场的急剧变化而使未直接遭受雷击的电工设备(包括二次设备、通信设备)上感应出的过电压。

(2)内过电压电力系统内部运行方式发生改变而引起的过电压,有暂态过电压、操作过电压和谐振过电压。

1)暂态过电压是由于断路器操作或发生短路故障,使电力系统经历过渡过程以后重新达到某种暂时稳定的情况下所出现的过电压,又称工频电压升高。

特点是持续时间长,过电压倍数不高,一般对设备绝缘危险性不大,但在超高压、远距离输电确定绝缘水平时起重要作用。

常见的有:①空载长线电容效应(费兰梯效应)。

在工频电源作用下,由于远距离空载线路电容效应的积累,使沿线电压分布不等,末端电压最高。

②不对称短路接地。

三相输电线路a相短路接地故障时,b、c 相上的电压会升高。

③甩负荷过电压,输电线路因发生故障而被迫突然甩掉负荷时,由于电源电动势尚未及时自动调节而引起的过电压。

第5章 电力系统内部过电压及其限制措施

第5章  电力系统内部过电压及其限制措施

三、空载线路合闸过电压及其限制措施
1、计划合闸: 、计划合闸: (图6)及式(5-12)的解 )及式( )
uc= E (1-cosω0t) ω
uc——线路绝缘上的电压, 是一个以电源电压 线路绝缘上的电压, 线路绝缘上的电压 E为轴线,以ω0为角频率的高频正弦等幅振荡 为轴线, 为轴线 的随机量。其最大值为2 的随机量。其最大值为 Em。
5.2
电力系统的操作过电压
一、操作过电压的产生及类型
产生: 产生 系统中因断路器的操作中各种故障产生的过度过程而 引起的过电压。 引起的过电压。 特点:时间短, 特点:时间短,过电压倍数高 其过电压倍数K的大小和持续时间与电网的结构、 其过电压倍数 的大小和持续时间与电网的结构、断路器的 的大小和持续时间与电网的结构 性能、系统的接线方式及运行操作方式有关, 一般为 一般为3~ 。 性能、系统的接线方式及运行操作方式有关,K一般为 ~4。 类型: 类型 空载线路合闸过电压、切除空载线路过电压、 空载线路合闸过电压、切除空载线路过电压、 切除空载变压器过电压、 切除空载变压器过电压、 中性点不接地系统中弧光接地过电压。 中性点不接地系统中弧光接地过电压。
cosα f ↑ —ω ↑ —α=ω/v ↑ —αl ↑ —cosαl ↓ — α /cosα K21=1/cosαl↑ (5-3) 运行经验表明: 运行经验表明: 220KV及以下电网一般不需要采取特殊限制措 及以下电网一般不需要采取特殊限制措 施; 220KV及以上电网需要考虑,伴随着雷闪过电 及以上电网需要考虑, 及以上电网需要考虑 压和操作过电压采取限制措施。 压和操作过电压采取限制措施。
二、特点
1、 过电压倍数不大 , 对正常绝缘的电气设备一般没有 、 过电压倍数不大, 威胁。 威胁。 2、 在超高压输电中成为确定系统绝缘水平的重要因素 。 、 在超高压输电中成为确定系统绝缘水平的重要因素。 伴随着工频电压的升高直接影响操作过电压的幅值。 伴随着工频电压的升高直接影响操作过电压的幅值 。 工频电压升高是决定保护电器工作条件的重要因素 (如单相接地非故障相电压升高使避雷器的灭弧电压 升高)。 升高) 工频电压升高持续时间长,将严峻考验设备的绝缘。 工频电压升高持续时间长,将严峻考验设备的绝缘。 如油纸绝缘内部游离、绝缘子闪络或沿面放电、 如油纸绝缘内部游离、绝缘子闪络或沿面放电、铁芯 过热、 过热、电晕等

电网过电压问题分析及防范措施

电网过电压问题分析及防范措施

电网过电压问题分析及防范措施摘要:电网在正常运行时,由于会遭受雷击、倒闸操作、设备故障或参数配合不当等原因,造成电网某一部分短时电压升高,这种电压升高称为过电压。

过电压的出现,会破坏设备绝缘、从而导致设备损坏,甚至造成系统安全事故。

研究过电压的成因,预测其幅值,并采取相应限制措施,这对电气设备的制造应用和电力系统安全运行都具有重要意义。

关键词:过电压;防范措施电网过电压是电力系统中很常见的故障,对电力系统安全运行造成威胁。

如何分析及防范,提高电网抵御过电压能力,保障电力系统安全稳定,具有重大意义。

本文通过对过电压产生的各种原因进行分析,并提出相应的防护措施。

过电压一般分为外部过电压和内部过电压。

一、外部过电压又称大气过电压,它是由雷云放电产生的直击雷过电压和感应雷过电压这种现象在电网过电压中所占比例极大。

其过电压的幅值取决于雷电参数和防雷措施,该种过电压的特点是持续时间短,冲击性强,具有脉冲特性,与雷击强度有直接关系,其持续时间一般只有数十秒左右。

对大气过电压的防护技术措施主要包括可装设符合技术要求的防雷装置,如避雷线、避雷针、避雷器(包括由间隙组成的管型避雷器)和放电间隙,它又分接闪器、引下线和接地装置三部分组成。

二、内部过电压它是电网内部的能量在传递或转化过程中产生,施加于电气设备上,造成瞬时或持续高于电网额定允许电压,对设备安全运行构成威胁。

由于内部过电压的能量来自于电网本身,所以它的幅值和电网电压基本成正比例关系。

根据产生原因不同,内部过电压可分为两大类,一类是由于故障或操作开关引起,如工频过电压、操作过电压。

另一类是由于电网中电感和电容参数相互配合发生谐振而引起的,如谐振过电压。

1、工频过电压及限制措施工频过电压是指由电力系统故障、电网运行方式的改变、长线路的电容效应、突然甩负荷等原因引起的短时工频电压升高(超过正常工作电压),其特点是持续时间较长,但数值不很大,对设备绝缘一般威胁不大,但对超高压、远距离输电电网影响较大,对配置其设备绝缘水平起重要作用。

电网运行的过电压控制与分析

电网运行的过电压控制与分析

电网运行的过电压控制与分析一、引言电网是现代社会的重要基础设施之一,它为人们的生活和工作提供了稳定的电力供应。

然而,随着电力系统的发展,过电压问题也日益凸显。

过电压是指电网中出现的高于额定电压的电压波动,会给电力设备造成不良影响,甚至引发设备损坏、系统故障等严重后果。

因此,对电网的过电压进行控制与分析,具有重要的理论和实践意义。

二、过电压的来源过电压主要分为内源性和外源性两种类型。

内源性过电压是由电力系统本身的运行特性和工作状态导致的,例如断路器切除、容性补偿和短路故障等。

外源性过电压则是由外来因素引起的,如雷击、电网扰动和负荷突变等。

三、过电压的危害1. 电力设备损坏:过电压会使电力设备受到过大的电压冲击,导致设备内部绝缘击穿或者烧坏,影响设备寿命和正常运行。

2. 能源浪费:过电压导致电力系统中的电力损耗增大,降低整个系统的能源利用效率。

3. 系统稳定性下降:过电压会对电力系统的稳定性产生负面影响,引发电网跳闸、重大事故和电压波动等。

4. 无序运行:过电压对电网中的运行设备造成不稳定的状态,导致电力无序分布,进一步影响用户用电需求。

四、过电压的控制措施1. 负荷控制:通过合理的负荷管理和平衡,避免负荷突变引发过电压,确保电网运行的稳定性。

2. 电力调度:通过电力调度交易和系统运行优化,实现电力供需的平衡,减少过电压发生的可能性。

3. 预防措施:增加电力设备的额定电压,提高设备的抗过电压能力,减少设备故障率。

4. 过电压保护装置:安装过电压保护装置,既能对电网中可能出现的过电压进行监测和控制,又能及时采取切除不稳定节点的措施。

五、过电压的分析方法1. 频域分析:通过对电网中出现的过电压信号进行频域分析,了解不同频段的谐波特性,找出过电压的波动规律。

2. 时域分析:通过对电压和电流波形的具体时域特性进行分析,找出过电压的具体波动形式和变化趋势。

3. 状态检测:通过电力设备监测系统,实时检测设备的工作状态和电压变化,发现异常情况并及时响应。

操作过电压产生的不同原因及限制措施

操作过电压产生的不同原因及限制措施

操作过电压产生的不同原因及限制措施作者:杨亮亮来源:《硅谷》2015年第04期摘要操作过电压是电力设备内部产生的电压,由于电力设备的运行状态发生改变,系统中的就会发生一系列的电磁振荡出现了高于系统正常运行时的电压幅值,而这个值远大于设备设计的额定绝缘水平,这样就会给设备的绝缘带来危害,从而影响电力系统的安全稳定运行。

为保障电力系统的安全性与稳定性必须综合考虑过电压的产生原因、种类及其相应的限制措施,从而最大限度的减少过电压造成的危害,为电力系统正常运行提供可靠保障。

关键词操作过电压;空载;电力系统中图分类号:TM531 文献标识码:A 文章编号:1671-7597(2015)04-0251-01电力系统要适应经济的进步就要不断的改革创新,电力改革的成功与否直接关系着国民经济的发展,甚至可以说电力建设是国家经济发展的命脉,为经济的发展提供可靠地保障。

操作过电压是系统发生改变时必然会产生的问题,它的产生会对电力设备绝缘造成危害,影响整个电力系统的正常运行,妨碍经济的正常发展。

要保障电力系统的安全性与稳定性必须针对工作中过电压产生的具体事例进行分析,总结发生原因并找到相应的限制措施,从而将危害降到最低,使电力系统稳定运行为经济建设保驾护航。

1 操作过电压产生的原因电力系统的大多数设备都是储能的元件,当系统内开关或者系统出现突发事故时,储存在电感中的磁能和储存在电容中的静电场能量发生了转换过渡的振荡过程,系统从一种稳定状态变为另一种稳定状态,产生了高于系统本身的电压形成了操作过电压。

2 操作过电压常见的种类2.1 电弧接地过电压当中性点不接地系统单相接地时,故障点流过数值不大的接地电容电流,当电压等级提高时接地电流也随之增加,当电流过大时产生的电弧可能出现时燃灭的不稳定状态,引起电网运行的瞬间变化,进而导致电磁能量振荡产生过电压也就是电弧接地过电压。

2.2 切除空载线路过电压切除空载线路过电压是系统常见的操作过电压之一,当断路器最初分闸时,断路器触头间的恢复电压上升速度大于介质绝缘恢复速度,这样会导致电弧重燃,而一旦电弧发生重燃系统就会发生电磁振荡最终出现幅值较大的过电压。

简述过电压的概念

简述过电压的概念

过电压的概念什么是过电压?过电压是指电力系统中出现的超过额定电压的瞬时电压波动。

它是指短时间内电压突然升高,超出了电力设备所能承受的标准电压值,导致电力系统中电流过大,对设备和线路造成潜在危害的现象。

过电压的产生原因过电压主要由以下原因引起: 1. 雷电击中高压输电线路或设备:当雷电击中高压输电线路或设备时,电力系统的电压会瞬间发生剧烈的变化,导致过电压的出现。

2. 设备故障:电力系统中的设备故障,如绝缘损坏、短路等,可能导致电流突然增大,引发过电压。

3. 突然断电和恢复电力:当电力系统发生突然断电后,重新恢复供电时,电压会瞬间增加,可能导致过电压的产生。

4. 改变电力系统结构:电力系统的结构变动,如开关操作、切换操作等,都有可能引起过电压。

过电压的分类根据过电压的源头和形态,过电压可分为不同的类型: 1. 大气过电压:即雷电过电压,是由雷电击打导致的,是最常见的一种过电压。

雷电的电磁辐射和电磁感应作用会引起电压的剧烈变化,从而产生高电压。

2. 操作过电压:即由电力系统开关操作引起的过电压。

在开关操作时,电压会出现突变,可能产生过电压。

3. 暂态过电压:由电力设备故障、突然断电和电力系统结构改变等引起的短暂电压升高。

过电压对设备的影响过电压对电力设备和线路有很大的危害,可能导致以下问题: 1. 设备绝缘损坏:过电压会使设备绝缘受损,加速绝缘老化,降低设备的绝缘性能,可能导致设备短路、跳闸等故障。

2. 设备烧毁:过电压过大时,设备无法承受电压的冲击,可能导致设备烧毁,严重影响设备的使用寿命。

3. 数据丢失:过电压可能导致设备失效,造成数据丢失,对数据中心等关键设备造成严重影响。

4. 系统中断:过电压可能引发电力系统的短路、跳闸等问题,导致系统中断,影响正常的供电。

过电压保护措施为了保护设备和线路,防止过电压产生的损害,需要采取一些过电压保护措施: 1. 避雷器安装:在建筑物、设备和电力线路上都需要安装避雷器,以吸收雷电的过电压,保护设备和线路的安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统过电压的产生及限制措施
电力系统正常运行时,电气设备的绝缘处于电源额定电压下,当雷击、操作、故障、或参数配置等原因使系统中某部分电压升高大大超过正常运行的数值此称过电压。

过电压分为大气过电压和内部过电压,其中大气过电压又分直击雷过电压、感应雷击过电压和侵入雷电波过电压,特点是持续时间短暂,冲击性强,与雷电活动强度有直接关系,与设备电压等级无关。

220KV以下系统的绝缘水平由防止大气过电压决定。

内部过电压是由于拉、合闸操作、接地或断线事故及其他原因引起电力系统状态发生突然变化产生对系统有威胁的过电压。

究其原因是系统内部电磁能的振荡和集聚引起的故称内部过电压。

内部过电压可分为操作过电压和暂态过电压(含谐振过电压、工频过电压)。

操作过电压是系统操作和故障时出现,特点是具有随机性,在最不利的情况下过电压倍数较高,330KV及以上超高压系统的绝缘水平取决于操作过电压。

操作过电压具有幅值高、高频振荡、衰减快的特点。

其产生原因:1.切除空载线路时过电压的根源是电弧重燃及线路上的残余电压。

2.空载线路的合闸过电压是由于在合闸瞬间的暂态过程中,回路发生高频振荡造成的。

3.在中性点不接地的电网中发生单相金属接地将引起正常相的电压升高到线电压。

如果单相通过间歇燃烧的电弧接地,在系统正常相合故障相都会产生过电压(称电弧接地过电压),其实质是高频振荡的过程。

4.切除空载变压器引起的过电压。

原因是当变压器空载电流突变时变压器绕组的磁场能量全转化为电场能量对变压器等值电容充电,导致过电压。

同样,在切除感性负载可能在电容器和断路器上出现过电压。

限制操作过电压的措施有:1.选用灭弧能力强的高压断路器。

2.提高断路器动作的同期性。

3.断路器断口加装并联电阻。

4.采用性能较好的避雷器。

5.电网中性点接地运行。

谐振过电压是电力网中的电容元件和电感元件参数的不利组合,由谐振产生,特点是过电压倍数高、持续时间长。

其产生原因是:1.线性谐振过电压。

谐振回路由不带铁芯的电感元件如输电线路的电感、变压器的漏感或励磁特性接近线性的带铁芯的电感元件如消弧线圈和系统中电容元件组成。

2.铁磁谐振过电压。

谐振回路由带铁芯的电感元件如空载变压器、电压互感器和系统的电容元件组成,因铁芯电感元件的饱和现象,使回路电感参数是非线性的,当满足一定谐振条件时产生铁磁谐振。

3.参数谐振过电压。

由电感参数作周期性变化的电感元件和系统电容元件组成回路,当参数配合时,通过电感的周期性变化,不断向谐振系统输送能量,造成谐振过电压。

限制谐振过电压的措施:1.提高断路器动作的同期性。

防止非全相运行时产生谐振过电压。

2.在并联高压电抗器中性点加装小电抗,阻断非全相运行工频电压的传递及串连谐振。

3.破坏发电机产生自励磁的条件,防止谐振过电压。

工频过电压产生的原因:1.由于长线路电容效应及电网运行方式的突然改变引起工频过电压,特点是持续时间长,过电压倍数不高,对设备绝缘威胁不大,但对超高压、远距离输电确定绝缘水平起重要作用。

2.不对称短路引起的工频过电压,在单相或两相不对称短路时,非故障相的电压可达到较高值。

3.突然甩负荷引起的工频电压升高。

原因有:①线路输送大功率时,发电机电势高于母线电压,甩负荷后,发电机的磁链不能突变,在短时间内维持输送大功率的暂态电势,导致工频电压升高。

②线路末端断路器跳闸后,空载线路仍由电源充电,电容效应显著,导致工频高压。

③甩负荷后发电机转速增加造成电势和频率上升,工频电压上升严重。

限制工频过电压的措施有:1.并联高压电抗器补偿空载线路的电容效应。

2.静止无功补偿器补偿空载线路电容效应。

3.变压器中性点直接接地降低不对称故障引起的工频电压升高。

4.发电机配置性能良好的励磁调节器或调压装置,使发电机甩负荷时抑制容性电流对发电机助磁电枢反应。

防止过电压的产生和发展。

5.发电机配置反应灵敏的调速系统,甩负荷时限制发电机转速的上升造成的工频过电压。

大气过电压又称为外部过电压,包括对设备的直击雷过电压和雷击于设备附近时在设备上感应的过电压。

为防止直击雷对变电站设备的侵害,变电站装有避雷针和避雷线。

为防止进行波的侵害,按电压等级装阀型避雷器、磁吹避雷器、氧化锌避雷器和与此配合的进线保护段,即架空地线、管型避雷器或火花间隙,在中性点不接地系统中装消弧线圈,可减少雷击跳闸次数。

所有防雷设备都装有可靠的接地装置。

防雷装置的主要功能是引雷、泄流、限幅、均压。

过电压可能引起电气设备绝缘弱点的闪络及电气绝缘的损坏甚至烧毁。

在超高压系统中,内部过电压是反映绝缘水平的主要因素之一,因此了解过电压产生的原因采取相应限制过电压措施对电力系统运行及检修人员是十分必要的。

相关文档
最新文档