光合作用场所光反应暗反应场所

合集下载

生物光合作用知识点

生物光合作用知识点

生物光合作用知识点光合作用知识点1、光合作用的发现:①1771年英国科学家普里斯特利发现,将点燃的蜡烛与绿色植物一起放在密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠不容易窒息而死,证明:植物可以更新空气。

②1864年,德国科学家把绿叶放在暗处理的绿色叶片一半暴光,另一半遮光。

过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。

证明:绿色叶片在光合作用中产生了淀粉。

③1880年,德国科学家思吉尔曼用水绵进行光合作用的实验。

证明:叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。

④20世纪30年代美国科学家鲁宾卡门采用同位素标记法研究了光合作用。

第一组相植物提供H218O和CO2,释放的是18O2;第二组提供H2O和C18O,释放的是O2。

光合作用释放的氧全部来自来水。

2、叶绿体的色素:①分布:基粒片层结构的薄膜上。

②色素的种类:高等植物叶绿体含有以下四种色素。

A、叶绿素主要吸收红光和蓝紫光,包括叶绿素a蓝绿色和叶绿素b;B、类胡萝卜素主要吸收蓝紫光,包括胡萝卜素和叶素3、叶绿体的酶:分布在叶绿体基粒片层膜上光反应阶段的酶和叶绿体的基质中暗反应阶段的酶。

4、光合作用的过程:①光反应阶段a、水的光解:2H2O4[H]+O2为暗反应提供氢b、ATP的形成:ADP+Pi+光能ATP为暗反应提供能量②暗反应阶段:a、CO2的固定:CO2+C52C3b、C3化合物的还原:2C3+[H]+ATPCH2O+C55、光反应与暗反应的区别与联系:①场所:光反应在叶绿体基粒片层膜上,暗反应在叶绿体的基质中。

②条件:光反应需要光、叶绿素等色素、酶,暗反应需要许多有关的酶。

③物质变化:光反应发生水的光解和ATP的形成,暗反应发生CO2的固定和C3化合物的还原。

④能量变化:光反应中光能ATP中活跃的化学能,在暗反应中ATP中活跃的化学能CH2O中稳定的化学能。

2019年备战高考:高中生物光合作用的知识点汇总

2019年备战高考:高中生物光合作用的知识点汇总

生物知识点:光合作用1、光合作用的发现:①1771年英国科学家普里斯特利发现,将点燃的蜡烛与绿色植物一起放在密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠不容易窒息而死,证明:植物可以更新空气。

②1864年,德国科学家把绿叶放在暗处理的绿色叶片一半暴光,另一半遮光。

过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。

证明:绿色叶片在光合作用中产生了淀粉。

③1880年,德国科学家思吉尔曼用水绵进行光合作用的实验。

证明:叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。

④20世纪30年代美国科学家鲁宾卡门采用同位素标记法研究了光合作用。

第一组相植物提供H218O和CO2,释放的是18O2;第二组提供H2O和C18O,释放的是O2。

光合作用释放的氧全部来自来水。

2、叶绿体的色素:①分布:基粒片层结构的薄膜上。

②色素的种类:高等植物叶绿体含有以下四种色素。

A、叶绿素主要吸收红光和蓝紫光,包括叶绿素a(蓝绿色)和叶绿素b(黄绿色);B、类胡萝卜素主要吸收蓝紫光,包括胡萝卜素(橙黄色)和叶黄素(黄色)3、叶绿体的酶:分布在叶绿体基粒片层膜上(光反应阶段的酶)和叶绿体的基质中(暗反应阶段的酶)。

4、光合作用的过程:①光反应阶段a、水的光解:2H2O→4[H]+O2(为暗反应提供氢)b、ATP的形成:ADP+Pi+光能─→ATP(为暗反应提供能量)②暗反应阶段:a、CO2的固定:CO2+C5→2C3b、C3化合物的还原:2C3+[H]+ATP→(CH2O)+C55、光反应与暗反应的区别与联系:①场所:光反应在叶绿体基粒片层膜上,暗反应在叶绿体的基质中。

②条件:光反应需要光、叶绿素等色素、酶,暗反应需要许多有关的酶。

③物质变化:光反应发生水的光解和ATP的形成,暗反应发生CO2的固定和C3化合物的还原。

④能量变化:光反应中光能→ATP中活跃的化学能,在暗反应中ATP中活跃的化学能→CH2O中稳定的化学能。

光合作用必背知识点

光合作用必背知识点

光合作用必背知识点一、光合作用的概念。

1. 光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧气的过程。

反应式为:6CO_2 + 12H_2O →(光能, 叶绿体) C_6H_12O_6+6O_2 + 6H_2O。

二、光合作用的场所 - 叶绿体。

1. 结构。

- 双层膜结构。

- 内部有许多基粒,基粒由类囊体堆叠而成。

类囊体薄膜上分布着光合色素(叶绿素和类胡萝卜素)和与光反应有关的酶。

- 叶绿体基质中含有与暗反应有关的酶,还有少量的DNA和RNA。

2. 光合色素。

- 叶绿素(叶绿素a和叶绿素b):主要吸收红光和蓝紫光。

叶绿素a呈蓝绿色,叶绿素b呈黄绿色。

- 类胡萝卜素(胡萝卜素和叶黄素):主要吸收蓝紫光。

胡萝卜素呈橙黄色,叶黄素呈黄色。

三、光合作用的过程。

1. 光反应阶段。

- 场所:叶绿体的类囊体薄膜上。

- 条件:光、色素、酶。

- 物质变化。

- 水的光解:2H_2O →(光能) 4[H]+O_2。

- ATP的合成:ADP + Pi+能量 →(酶) ATP(此能量来自光能)。

- 能量变化:光能转变为活跃的化学能(储存在ATP和[H]中)。

2. 暗反应阶段(卡尔文循环)- 场所:叶绿体基质。

- 条件:酶、[H]、ATP、CO_2。

- 物质变化。

- CO_2的固定:CO_2 + C_5 →(酶) 2C_3。

- C_3的还原:2C_3 →([H]、ATP、酶) (CH_2O)+C_5。

- 能量变化:活跃的化学能转变为稳定的化学能(储存在有机物中)。

四、影响光合作用的因素。

1. 光照强度。

- 在一定范围内,光合作用强度随光照强度的增强而增强。

当光照强度达到一定值时,光合作用强度不再随光照强度的增强而增加,此时达到光饱和点。

- 光照强度较低时,植物只进行呼吸作用,随着光照强度增强,光合作用强度与呼吸作用强度相等时的光照强度称为光补偿点。

2. 温度。

- 温度通过影响酶的活性来影响光合作用。

(新)人教版高中生物必修一第五章第四节光合作用的过程(光反应和暗反应)

(新)人教版高中生物必修一第五章第四节光合作用的过程(光反应和暗反应)

CO2的固定
暗反应
co2+ C5
酶 叶基
2c3
ATP的合成:

ADP+Pi + 光能
ATP
叶类薄
C3的还原
自产自消
[H] 、ATP
2C3
叶基、酶
(CH2O) + C5
知识补充:
光反应阶段
氧化型辅酶 Ⅱ
还原型辅酶 Ⅱ

NADP+ + H+ + 2e- 叶类薄 NADPH
简写为[H]
暗反应阶段
NADP+ + H+ + 2e- 酶 NADPH 叶基 简写为[H]
+ O2
ATP的合成:

ADP+Pi + 光能
ATP
叶类薄
光能
ATP中活跃的化学能
条件:[H]、 ATP、 多种酶 ❷暗反应
场所: 叶绿体基质
Ⅰ物质变化
CO2的固定
co2+ C5
酶 叶基
2c3
2c3
[H]
固 定
Co2
多种酶 参加催化C5来自ATPC3的还原
2C3
[H] 、ATP
叶基、酶
ADP+Pi
(CH2O)
× 命活动( )
3.结合光反应和暗反应过程分析,若突然停止光照或停止CO2 供应,叶绿体中C3和C5相对含量发生怎样的变化?
(1)停止光照:C3含量相对增加,C5含量相对减少。
(2)停止CO2供应:C3含量相对减少,C5含量相对增加。
光反应
水的光解:
【不需要酶的催化】

2H2O 叶类薄 4[H]
+ O2
原因是有氧呼吸第一阶段产物 2C3H4O3 进入线粒体,要消耗2ATP。

光合作用的场所是什么

光合作用的场所是什么

叶绿体是绿色植物特有的细胞器,是进行光合作用的场所。

叶绿体的化学成分主要是蛋白质、脂类、色素、RNA和少量的DNA。

叶绿体中大部分蛋白质是以酶分子的形式出现的,还有一部分与RNA结合成核糖体颗粒。

叶绿体的DNA在遗传上有相对的独立性,使一些叶绿体不受细胞核的控制而进行自我繁殖。

在光学显微镜下,叶绿体呈扁圆形或扁椭圆形,典型的叶绿体长5~10微米,宽2~4微米,厚1~2微米,其大小和形状可随光、暗及其活性而有一定的改变。

在电子显微镜下,叶绿体为双层膜,内膜在几处地方延伸而横过叶绿体呈片层结构。

有的地方,几乎相同的片层结构叠成一叠如硬币的叠膜,把它叫做基粒,成熟的叶绿体一般含有40~60个基粒。

基粒与基粒间的片层膜称为基粒间膜,基粒与基粒间膜沉浸在无色的水溶性基质中,基质中含有固定二氧化碳的各种酶类。

基粒是光合作用中光反应的场所,暗反应则在基质中进行。

基粒膜中结合着叶绿素及类胡萝卜素。

叶绿体中具有叶绿素酸酯结构的有机色素,是重要的光合色素,光能只有通过叶绿素才能启动光化学反应。

叶绿素有叶绿素a、叶绿素b、叶绿素c1、叶绿素c2和叶绿素d五种。

高等植物的叶绿素是叶绿素a和叶绿素b,胡萝卜素可能将光能有效的传递给叶绿素a。

植物学中的光合作用测试题

植物学中的光合作用测试题

植物学中的光合作用测试题在植物学的广袤领域中,光合作用无疑是一个核心且至关重要的概念。

为了深入理解和掌握光合作用的原理、过程以及其在生态系统中的作用,我们设计了一系列的测试题,以帮助大家巩固和检验所学的知识。

一、选择题1、光合作用的场所是()A 线粒体B 叶绿体C 液泡D 细胞核2、光合作用中,光反应为暗反应提供了()A 氧气和 ATPB 二氧化碳和 ATPC H和 ATPD 氧气和H3、能够吸收红光和蓝紫光的色素是()A 叶绿素 a 和叶绿素 bB 胡萝卜素和叶黄素C 花青素D 叶绿素和类胡萝卜素4、光合作用产生的氧气来自于()A 二氧化碳B 水C 葡萄糖D 五碳化合物5、在光合作用的暗反应阶段,二氧化碳被固定后形成的物质是()A 三碳化合物B 五碳化合物C 葡萄糖D 淀粉6、下列哪种条件会使光合作用强度下降()A 增加二氧化碳浓度B 增强光照强度C 降低温度D 增加水分供应7、光反应发生在叶绿体的()A 外膜B 内膜C 基质D 类囊体薄膜8、暗反应不需要的条件是()A 光B 酶C ATPD H二、填空题1、光合作用的总反应式是____________________。

2、叶绿素主要吸收________光和________光。

3、光反应的产物有________、________和________。

4、暗反应包括________和________两个过程。

5、影响光合作用的环境因素主要有________、________、________等。

三、简答题1、简述光合作用的光反应和暗反应的过程及相互关系。

答:光反应发生在叶绿体的类囊体薄膜上,需要光照。

其过程包括水的光解,产生氧气和H;同时,光能转化为活跃的化学能储存在ATP 中。

暗反应发生在叶绿体基质中,不需要光照。

在酶的催化下,二氧化碳被固定形成三碳化合物,然后利用光反应产生的H和 ATP,将三碳化合物还原为有机物(如葡萄糖)。

光反应为暗反应提供了H和 ATP,暗反应为光反应提供了 ADP 和Pi,二者相互依存,共同完成光合作用。

光合作用的光反应和暗反应过程

光合作用的光反应和暗反应过程

光合作用的光反应和暗反应过程光合作用通常是指绿色植物(包括藻类)吸收光能,把二氧化碳(CO2)和水(H2O)合成富能有机物,同时释放氧的过程。

1、光反应场所:基粒的类囊体薄膜上。

条件:光、色素、酶、水、adp、pi。

adp+pi+能量→atp。

能量转变:光能转化成atp中活跃的化学能。

2、暗反应场所:叶绿体基质中。

条件:酶,[h],atp,co2,c5。

能量转化:atp中活跃的化学能转变成有机物中稳定的化学能。

光反应与暗反应的联系:光反应为暗反应提供更多[h],和能量,暗反应为光反应提供更多制备atp的原料。

6co2+6h2o(光照、酶、叶绿体)→c6h12o6(ch2o)+6o2。

光合作用速率外部因素一、光照1、光强度对光合作用的影响光强度-光合速率曲线黑暗条件下,叶片不展开光合作用,只有呼吸作用释放出来。

随着光强度的减少,无机速率也可以适当提升;当到达某一特定光强度时,叶片的无机速率等同于呼吸速率,即为二氧化碳吸收量等同于二氧化碳释放出来量。

当少于一定的反射率,无机速率的减少就可以转慢。

当达至某一反射率时,无机速率不再减少,即光饱和点。

光照不足会成为光合作用的限制因素,光能过剩也会对光合作用产生不利影响。

当光合机构接受的光能否超过所能利用的量时,会引起光合速率降低的`现象。

2、光质对光合作用的影响太阳辐射中,只有可见光部分才能被光合作用利用,光合作用的作用光谱与叶绿体色素的吸收光谱大体吻合。

二、二氧化碳1、二氧化碳-光合速率曲线二氧化碳就是光合作用的原料,对无机速率影响非常大。

二氧化碳-无机速率曲线与反射率曲线相近。

2、二氧化碳的供给二氧化碳主要就是通过气孔步入叶片,强化通风或设法施肥量二氧化碳能够明显提升作物的无机速率,对碳三植物尤为显著。

三、温度无机过程的暗反应就是由酶催化剂的生物化学反应,受到温度的猛烈影响。

四、水分水分亏缺减少无机的主要原因存有1、气孔导度下降。

2、光合产物输入减慢。

光合作用暗反应发生的场所

光合作用暗反应发生的场所

光合作用暗反应发生的场所
光合作用是植物及其他光合生物利用光能将二氧化碳和水转化为能量丰富的有
机物质的过程。

在光合作用中,光合作用暗反应是一个重要的过程,它通常发生在植物细胞的叶绿体内。

叶绿体的结构
叶绿体是植物细胞中负责光合作用的器官,其结构复杂而精致。

叶绿体内包含
了许多重要的结构,如类囊体、基质、内膜等。

其中,类囊体是光合作用暗反应的主要场所。

类囊体的作用
类囊体是叶绿体内的一种结构,其内部含有多种光合色素,如叶绿素等。

在光
合作用暗反应中,类囊体扮演着接收光能和进行光合作用的重要角色。

光合作用暗反应的过程
光合作用暗反应是一种复杂的生物化学反应过程,其主要功能是将光合色素吸
收的光能转化为化学能,并将二氧化碳和水合成为葡萄糖等有机物质。

这一过程中,多种酶和辅酶参与其中,完成一系列化学反应。

光合作用暗反应的重要性
光合作用暗反应是植物生长发育过程中不可或缺的一环。

通过这一过程,植物
可以利用光能合成有机物质,为自身提供能量和营养。

同时,光合作用暗反应还可以释放氧气,维持大气中的氧气浓度。

结语
光合作用暗反应是植物生命活动中一个重要的过程,其发生的主要场所是植物
细胞内的叶绿体类囊体。

通过这一过程,植物可以利用光能合成有机物质,维持自身生长发育所需的能量和营养。

这一过程的理解不仅有助于深化对植物生理过程的认识,同时也对生态环境的维护和改善具有积极意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光合作用场所光反应暗反应场所
光合作用是植物体内最重要的一个生物过程,它能够将光能转化为植物体内的化学能量,从而支持植物的生长。

光合作用主要有光反应场所和暗反应场所两部分组成。

1.光反应场所
光反应场所是光合作用中最重要的一部分,它包含草绿素、过氧化物酶等参与光反应的一系列物质组成。

为了完成光合作用,植物要合成所需要的草绿素,同时细胞内需要有大量的过氧化物酶参与光反应,其中能够将日光降解夏季水分子,来产生能量供给植物体内的细胞。

2.暗反应场所
暗反应场所也是光合作用的一部分,它主要参与细胞内把光能转化为化学能量的过程。

该反应场所的功能主要是通过分解氧化碳的反应,将原料氧化成糖、氮磷酸等植物体内可以利用的有机物质,从而支持植物体内的其他生物活动。

通过光反应场所和暗反应场所,植物体内的光合作用过程得以进行,植物体内蓝绿藻参与的光反应场所,能够将其他有机物质转化为可供其他植物体内细胞利用的氮和磷肥料,而暗反应场所则是将光能转化
为化学能量的关键部位,这就是photophosphorylation过程。

以上就是光合作用场所光反应暗反应场所的总结。

光合作用能够使植物体内参与光反应的草绿素、过氧化物酶等物质能够合成和氧化,让植物体内的细胞可以获得大量氮磷肥料,支持植物的生长发育。

同时也能支持植物体内细胞继续进行光合作用,把光能转换成化学能量,从而为植物体内提供能量和生理物质。

相关文档
最新文档