初中数学——平方根专项练习6

合集下载

平方根(巩固篇)(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

平方根(巩固篇)(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

专题6.3平方根(巩固篇)(专项练习)一、单选题1)A .7±B .7-C .D2.若实数x 10x +≤,则()A .x =2或-1B .2≥x ≥-1C .x =2D .x =-13.下列说法中,正确的是()A .64的平方根是8B4和-4C .()23-没有平方根D .4的平方根是2和-24.下列各数中,不一定有平方根的是()A .x 2+1B .|x |+2C 1D .|a |-15.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是()A .n +1B .21n +C D6.若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,-a b 等于()A .a-B .aC .2b a+D .2b a-7.已知{}min ,,a b c 表示取三个数中最小的那个数,例加:min{1,2,3}3---=-,当}21min,81x x =时,则x 的值为()A .181B .127C .13D .198.如下表,被开方数a律可得m ,n 的值分别为()A .=0.025m ,7.91n ≈B . 2.5m =,7.91n ≈C .7.91m ≈, 2.5n =D . 2.5m =,0.791n ≈9.如图,将一张长方形纸片按如图所示的方式沿虚线折叠,得到两个面积分别为16和5的正方形,则阴影部分的面积为()A .5B .C .4D .410.设12211112S =++,22211123S =++,32211134S =++,⋯,22111(1)n S n n =+++,则的值为()A .62425B C .2425D .57524二、填空题11()21-=______.12.写出一个比____.13a,小数部分为b ,则________,_________a b ==.14.如果a ,b 是2020的两个平方根,则a + b - 2021的值是__________.15.如图,每个小正方形的边长为1,可通过“剪一剪”“拼一拼”,将10个小正方形拼成一个大正方形,若10个小正方形的面积之和等于大正方形的面积,则这个大正方形的边长是__________.16.如图是一个数值运算的程序,若输出y 的值为4,则输入的值为__.17.把如图①中的长方形分割成A ,B 两个小长方形,现将小长方形B 的一边与A 重合,另一边对齐恰好组成如图②的大正方形,(空余部分C 是正方形).若拼接后的大正方形的面积为5,则图①中原长方形的周长为_________.18.将自然数的算术平方根如右图排列,第3行第2则第101行第100列是______.三、解答题19.求满足条件的的值:(1)23126x -=;(2)()21218x -=20.(1)已知某正数的平方根为3a +和215a -,求这个数是多少?(2)已知m ,n 320n -=,求22m n +的平方根.21.如图,有一只蚂蚁从点B 沿数轴向左爬了2个单位长度到达点A ,若点B设点A 所表示的数为m .(1)实数m 的值是_________;(2)求()221m m +++的值.(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有24c +238c d ++的平方根.22.(1)如图1,分别把两个边长为1dm 的小正方形沿一条对角线裁成4个小三角形,可以拼成一个大正方形,由此可知,小正方形的对角线长为______dm .(2)若一个圆的面积与一个正方形的面积都是22cm π,则圆的周长C 圆,正方形的周长C 正的大小关系是:C 圆______C 正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为216cm ,李明同学想沿这块正方形边的方向裁出一块面积为212cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?23.探究题:(1的值.对于任意实数a 等于多少?(2)求222222,,,,,的值.对于任意非负实数2等于多少?24.【初步感知】(1)直接写出计算结果.=___________;=_______;=________;=________;…【深入探究】观察下列等式.①(12)2122+⨯+=;②(13)31232+⨯++=;③(14)412342+⨯+++=;④(15)5123452+⨯++++=;…根据以上等式的规律,在下列横线上填写适当内容.(2)_________(12022)20222+⨯=;(3)123(1)++++++= n n _______,【拓展应用】计算:(5)333331112131920+++++ .参考答案1.C【分析】先求出49的算术平方根,再根据一个正数有两个平方根,它们互为相反数解答即可.【详解】7=,7的平方根是,故选:C.【点睛】本题考查了算术平方根和平方根,熟练掌握算术平方根的性质,一个正数有两个平方根,它们互为相反数,先求出49的算术平方根,是解题关键.2.A【分析】根据非负数性质求解即可.x+≤,10≥,|x+1|≥0,∴x-2=0或x+1=0,解得:x=2或x=-1,故选:A.【点睛】本题考查非负数的性质,熟练掌握算术平方根的非负数,绝对值的非负数是解题的关键.3.D【详解】A.64的平方根是±8,故本选项不符合题意;4=,4的平方根是±2,故本选项不符合题意;-=,9的平方根是±3,故本选项不符合题意;C.()239D.4的平方根是±2,故本选项符合题意.故选:D.【点睛】本题考查了平方根的知识,如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.4.D【分析】根据平方根的性质解答即可.【详解】A、∵x2+1>0,∴该数有平方根;B 、∵|x |+2>0,∴该数有平方根;C 1>0,∴该数有平方根;D 、∵0a ≥,∴|a |-1不一定大于0,故该数不一定有平方根;故选:D.【点睛】此题考查了平方根的性质:正数有两个平方根,0有一个平方根是0,负数没有平方根,正确掌握实数的大小估算确定其为正数、负数或是0是解题的关键.5.D【分析】根据算术平方根的平方等于这个这个自然数,得出下一个自然数,可得答案.【详解】解:这个自然数是2n ,则和这个自然数相邻的下一个自然数是21n +,.故选:D .【点睛】本题考查了算术平方根,掌握一个数算术平方根的平方等于这个数是解题关键.6.A【分析】先根据数轴的性质可得0,0a b ><,从而可得0a b ->,再根据算术平方根的性质、化简绝对值、整式的加减法即可得.【详解】解:由题意得:0,0a b ><,所以0a b ->,()a b b a b -=---b a b =--+a =-,故选:A .【点睛】本题考查了数轴、算术平方根、绝对值、整式的加减,熟练掌握数轴的性质是解题关键.7.D2,x x 都小于1且大于0,根据平方根求得x 的值即可求解.【详解】解:∵}21min,81x x =2,x x 都小于1且大于02x x ∴<<2181x ∴=19x ∴=(负值舍去)故选D2,x x 的范围是解题的关键.8.B【分析】根据算术平方根的定义解决此题.【详解】解:由题意得:从0.0625开始,小数点每向右移动两位,对应算术平方根扩大10倍,从0.625开始,小数点每向右移动两位,对应算术平方根扩大10倍,∴可得:6.25的算术平方根为2.5,62.5的算术平方根约为7.91,故选B .【点睛】本题主要考查数字类规律探索,算术平方根,熟练掌握原数和平方根的变化规律是解决本题的关键.9.A【分析】首先根据面积确定大长方形的长和宽,然后再利用长方形的面积减去两个小正方形的面积.【详解】解: 两个面积分别为16和5的正方形,∴大正方形的边长为4∴阴影部分的长方形的宽为4∴5=,故选:A .【点睛】此题主要考查了算术平方根,关键是正确理解题意,确定长方形的长和宽.10.A【分析】观察第一步的几个计算结果,得出一般规律.3111112122===+=+-⨯,71111162323===+=+-⨯,1311111123434===+=+-⨯,2111111204545===+=+-⨯,⋯,1111n n=+-+,+⋯+1111111112232425=+-++-+⋯++-124125=+-62425=.故选A.【点睛】本题考查了数字算式的变化规律.关键是观察几个结果的结果,由特殊到一般,得出规律.11.2【分析】按顺序先分别进行算术平方根和平方运算,然后再进行减法运算即可.2(1)-=3-1=2,故答案为:2.【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.12.答案不唯一,如:1【详解】解:∵<2∴-2<x<2,(x为整数)故答案为:-1,0,1(答案不唯一)【点睛】本题考查算术平方根的估值.理解算术平方根的定义是关键.13.【答题空1】3【答题空23【详解】∵9<10<16∴3<4,∴a=3,-3,故答案为3﹣3.14.2021-【分析】利用平方根的性质可知0a b +=,代入题中代数式直接求值即可得到答案.【详解】解:如果a ,b 是2020的两个平方根,则0a b +=,2021020212021a b ∴+-=-=-,故答案为:2021-.【点睛】本题考查平方根的性质及代数式求值,熟练掌握一个正数的两个平方根互为相反数是解决问题的关键.15【分析】由题可知,每个小正方形的边长为1,面积为1,可得出拼成的大正方形的面积为11.【详解】解:由题意可知,每个小正方形的边长为1,∴每个小正方形的面积为1,∴10个小正方形拼成的大正方形的面积为1×10=10,.【点睛】本题考查图形的剪拼和算术平方根,熟练掌握“如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根”.16.±3【分析】设输入的数是x ,根据题意得出方程(x 2-1)÷2=4,求出即可.【详解】解:设输入的数是x ,则根据题意得:(x 2-1)÷2=4,x 2-1=8,x=±3,故答案为±3.【点睛】本题考查了对平方根的应用,关键是能根据题意得出方程.17.【分析】设矩形B的长为a,宽为b,表示大正方形边长:a+b,进而求出a+b 得出图①中原长方形的周长.【详解】解:设矩形B的长为a,宽为b,∵C是正方形,∴C的边长为b,∴大正方形边长:a+b,∵大正方形的面积为5,∴a+b∵图①中的长方形的周长为:(a+b+b+a)×2=4(a+b),∴图①中原长方形的周长为:故答案为:18【分析】根据所给数据排列的顺序,找出规律即可解答.【详解】解:根据题意知:第2行,第1第3行,第2第4行,第3第5行,第4…n-列的数为:故第n行,第()1当n当n故当n =101时,第101行第100【点睛】本题考查了数字类规律问题,根据题意找出规律是解决本题的关键.19.(1)3x =±;(2)54x =或34x =【分析】(1)先求出x 2,然后再运用直接开平方法解答即可;(2)先求出(x -1)2,再运用直接开平方法求得x -1,最后求得x 即可.【详解】解:(1)23126x -=2327x =29x =3x =±;(2)()21218x -=()21116x -=即114x -=±所以54x =或34x =.【点睛】本题主要考查了解一元二次方程,掌握运用直接开平方法解一元二次方程成为解答本题的关键.20.(1)49;(2)56±【分析】(1)根据一个正数的两个平方根互为相反数建立方程求解即可;(2)根据非负数的性质求出m 、n 的值,然后代值计算即可.【详解】解:(1)∵某正数的平方根为3a +和215a -,∴32150a a ++-=,∴4a =,∴这个数为()223749a +==;(2320n -=0320n ≥-≥,,320n =-=,∴210320m n +=-=,,∴1223m n =-=,∴222212523263m n ⎛⎫++ ⎪⎛⎫=-= ⎝⎪⎝⎭⎭,∴22m n +的平方根是56±.【点睛】本题主要考查了平方根,非负数的性质,熟知一个平方根的定义是解题的关键.21.2;(2)2+(3)4±【分析】(1)根据两点间的距离公式,直接右边的数减去距离即得左边的数;(2)代入m 求值即可;(3)根据非负数的性质,求得c,d 的值,代入即可求解.【详解】(1)解:(1)2m =,2;(2)解:()221m m +++=)22221+++=31=2,故答案为:2.(3)解:∵24c +∴|24|c +=0,∵24|0|c ≥+,∴|2|40c +=,∴24c d -=,=,∴()2382234816c d ++=⨯-+⨯+=,∴4=±.【点睛】本题考查的是两点间的距离公式、非负数的性质,关键是要会理解两点间的距离,最后求的平方根有两个.22.(12)<;(3)不能,理由见解析【分析】(1)根据勾股定理即可得到结论;(2)设圆的半径为r cm ,正方形的边长为a cm ,求得C 圆π,C 正,于是得到结论;(3)设长方形的长为3x cm ,宽为2x cm ,令3x •2x =12,得到x 求得长方形的长为,正方形的边长为4cm ,由于>4,于是得到结论.【详解】解:(1)∵小正方形的边长为1dm ,(dm ),(2)设圆的半径为r cm ,正方形的边长为a cm ,∵一个圆的面积与一个正方形的面积都是2πcm 2,∴r a∴C 圆,C 正,∵8π2<32π,∴C 圆<C 正,故答案为:<;(3)不能裁出,理由:设长方形的长为3x cm ,宽为2x cm ,令3x •2x =12,解得:x ∵x >0,∴x∴长方形的长为cm ,,∴正方形的边长为4cm ,∵4,∴不能裁出这样的长方形纸片.【点睛】本题考查了算术平方根的应用,圆的面积公式,正确地理解题意是解题的关键.23.(12=3=5=6=7=0=,对于任意实数a a =;(224=29=,225=236=249=,20=,对于任意非负实数a ,2a =.【分析】(1)直接计算各式进而得出一般规律;(2)直接计算各式进而得出一般规律.【详解】(12=,3=,5=,6=,7=,0=,对于任意实数a a ;(2)24=,29=,225=,236=,249=,20=,对于任意非负实数a ,2a =.【点评】本题主要考查了二次根式的性质与化简,正确得出变化规律是解题关键.24.(1)①1②3③6④10(2)12320212022+++++ (3)()()122n n ++(4)5050(5)41075【分析】(1)直接计算即可;(2)根据前4个式子的规律填空即可;(3)根据规律可得1+2+3+⋯+n +(n +1)=()()122n n ++;(4)根据(1)的计算可得原式=1+2+3+ (100)(5)根据规律可得原式=(13+23+33+⋯+193+203)-(13+23+33+⋯+93+103),再根据规律计算即可.(1=1=3=6=10;故答案为:①1②3③6④10(2)解:由规律可得:1+2+3+ (2022)()1202220222+⨯,故答案为:1+2+3+…+2022;(3)解:1+2+3+⋯+n +(n +1)=()()122n n ++.故答案为:()()122n n ++;(4)解:原式=1+2+3+…+100=()10011002+⨯=5050;(5)解:原式=(13+23+33+⋯+193+203)-(13+23+33+⋯+93+103)=)2-2=(1+2+…+20)2-(1+2+…+10)2=(21202⨯)2-(11102⨯)2=2102-552=41075.【点睛】本题考查规律型:数字的变化类,能够根据式子的变化得到规律是解题关键.。

平方根专项练习60题(有答案)

平方根专项练习60题(有答案)

平方根专项练习60题(有答案)本文档包含了60道关于平方根的专项练题,每道题后附有答案供参考。

第一部分:基础练题1. 计算下列数的平方根:- 16- 25- 36- 49- 642. 下列数中,哪个数的平方根是8?- 64- 81- 100- 121- 1443. 判断下列等式是否正确:- √9 = 3- √16 = 4- √25 = 6- √36 = 6- √49 = 74. 计算下列数的平方根,并将结果四舍五入到最接近的整数:- 19- 37- 55- 73- 915. 计算下列平方根的值,并将结果保留两位小数:- √20- √32- √45- √58- √72第二部分:复杂练题1. 计算下列数的平方根,并将结果保留三位有效数字:- 1000----2. 判断下列等式是否成立:- (√4)^2 = 4- (√9)^2 = 9- (√16)^2 = 16- (√25)^2 = 25- (√36)^2 = 363. 解方程:√(x-7) = 54. 解方程:2√x = 105. 计算下列表达式的值:- √(64 + 36)- √(100 - 25)- √(144 - 9)- √(81 + 16)- √(121 + 25)以上为平方根的专项练题,答案请参考附后,希望对你的研究有所帮助。

答案:1.- √16 = 4- √25 = 5- √36 = 6- √49 = 7- √64 = 82. 643.- 正确- 正确- 错误(正确答案是5)- 正确- 正确4.- 19 ≈ 4- 37 ≈ 6- 55 ≈ 7- 73 ≈ 9- 91 ≈ 105.- √20 ≈ 4.47- √32 ≈ 5.66- √45 ≈ 6.71- √58 ≈ 7.62 - √72 ≈ 8.49。

初一下册数学平方根练习题(含答案)

初一下册数学平方根练习题(含答案)

平方根练习题姓名:_______________班级:_______________考号:_______________ 一、填空题1、已知m的平方根是2a-9和5a-12,则m的值是________.2、对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4= .3、实数a在数轴上的位置如图所示,化简:。

4、已知:,则x+y的算术平方根为_____________.二、选择题5、已知:是整数,则满足条件的最小正整数为()A.2 B.3 C.4 D.56、若,,且,则的值为( )A.-1或11 B.-1或-11 C . 1 D.117、点P,则点P所在象限为( ).A.第一象限B. 第二象限C. 第三象限 D第四象限.8、的平方根是A.9 B . C. D.39、一个正方形的面积是15,估计它的边长大小在()A.2与3之间 B.3与4之间 C.4与5之间D.5与6之间三、简答题10、已知的平方根是±3,的算术平方根是4,求的平方根11、如图,实数、在数轴上的位置,化简.12、如果一个正数m的两个平方根分别是2a-3和a-9,求2m-2的值.四、计算题13、已知与的小数部分分别是a、b,求ab的值.14、设都是实数,且满足,求式子的算术平方根.15、参考答案一、填空题1、92、1/23、14、5二、选择题5、D6、 D7、D8、C9、B三、简答题10、…2分…..4分……6分结果 .8分11、解:由图可知: ,,∴. 2分∴原式= 5分= 6分=. 7分12、∵一个正数的两个平方根分别是2a-3和a-9,∴(2a-3)+(a-9)=0,解得a= 4,∴这个正数为(2a-3) 2=52=25,∴2m-2=2×25-2= 48;四、计算题13、解:因为,所以的小数部分是,的小数部分是14、解:由题意得,,解得,所以,所以的算术平方根为.15、原式=+2+4﹣4=;。

平方根专题训练

平方根专题训练

建华镇中学七年级平行方根章节训练1.√16的平方根是( )A. ±2B. 2C. -2D. 162.16的算术平方根是( )A. 4B. 16C. -4D. ±43.下列计算结果为负数的是 ( )A. -1+2B. |-1|C.D. 12--4.下列实数中,无理数是( )A. 2B. 3.333C. π-D.5.64的立方根为( )A. 4B. 4±C. 8D. 8± 6.在下列各数:3.14、、0.2、、、、、中无理数的个数是( )A. 2B. 3C. 4D. 57.与最接近的整数为( )A. 2B. 3C. 4D. 58.已知一个正数的两个平方根分别为25a -和1a -,则这个正数为( )A. 3B. 4C. 9D. 169.若a 2则a+b=( ) A. -5 B. -11 C. -5 或 -11 D. ±5或±1110.a 、b 在数轴上的位置如图,化简|a +b |的结果是( )A. ﹣a ﹣bB. a +bC. a ﹣bD. b ﹣a11.4的平方根为_____________.12.已知. x, 小数部分是y ,则x-y=_________ 13.0.3是 ______ 的立方根,的立方根是 ______ , 的平方根为 ______14.计算: .15.已知|x ﹣,则x 2﹣y 2的值为______.16.9的平方根是__________;9的立方根是__________.17.若|x +2|+(2y -x )2=0,则x =_________,y =_________.18,且x 是整数,则x =_______.19________.20.比较大小-621.若2m-1没有平方根,则m 的取值范围是 ______ .22.一个正数x 的两个平方根分别是a +2和a -4,则a =______23.一个正数x 的平方根是2a -3与5-a ,则a=_________;24.已已已已已已已已已已已已已已m+4已2m已16已已已已已已已已已已已_____________已25.若,则ab=________________.26.实数a , b __________.27.计算:(1)+|1-|-38-+(-)2(2)|2-3|+28.已知y =++,求的平方根.29.求x 的值: (1) ()22125x -=; (2)9x 2-16=030.计算(1(2)11-(3(4)-1 |31.若5a+1和a已19都是M的平方根,求M的值。

(完整版)七年级数学《平方根》典型例题及练习

(完整版)七年级数学《平方根》典型例题及练习

七年级数学《平方根》典型例题及练习【知识要点】1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),2、算术平方根:3、平方根的性质:(1)一个正数有 个平方根,它们 ;(2)0 平方根,它是 ;(3) 没有平方根.4、重要公式:(1)=2)(a (2){==a a 25、平方表:1.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________.2.一个正方体的棱长扩大3倍,则它的体积扩大_____________.3.若一个数的立方根等于数的算术平方根,则这个数是_____________.4. 0的立方根是___________.(-1)2005的立方根是______________.182726的立方根是________. 5. 312726-=____________. 【典型例题】例1、判断下列说法正确的个数为( )① -5是-25的算术平方根;② 6是()26-的算术平方根;③ 0的算术平方根是0;④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根.A .0 个B .1个C .2个D .3个例2、36的平方根是( )A 、6B 、6±C 、 6D 、 6±例3、下列各式中,哪些有意义?(1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .()1+aB .()1+±aC .12+aD .12+±a例5、求下列各式中的x :(1)0252=-x (2)4(x+1)2-169=0【巩固练习】一、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .812.下列计算正确的是( )A±2 B636=± D.992-=-3.下列说法中正确的是( )A .9的平方根是3 B24. 64的平方根是( )A .±8B .±4C .±2D 5. 4的平方的倒数的算术平方根是( )A .4B .18C .-14D .146.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 251625162=⎪⎪⎭⎫ ⎝⎛--7.以下语句及写成式子正确的是( )A 、7是49的算术平方根,即749±=B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=8.下列语句中正确的是( )A 、9-的平方根是3-B 、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是39.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( )A .3个B .2个C .1个D .4个10.下列语句中正确的是( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±12.下列叙述中正确的是( )A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数13.25的平方根是( )A 、5B 、5-C 、5±D 、5±14.36的平方根是( )A 、6B 、6±C 、 6D 、 6±15.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数 16.用数学式子表示“169的平方根是43±”应是( )A .43169±=B .43169±=±C .43169=D .43169-=-17.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0.如果一个数的平方根与立方根是同一个数,那么这个偶数是( )A. 8B. 4C. 0D. 1618.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0±19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 20.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0; (5)-a 2; (6)π; (7)-a 2-1A .3个B .4个C .5个D .6个 21.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根 23.下列命题正确的是( )A .49.0的平方根是0.7B .0.7是49.0的平方根C .0.7是49.0的算术平方根D .0.7是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( )A .aB .a -C .2a -D .3a26.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-27.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a a b ,则b a +的值为( ) (A) 1± (B) 4 (C) 3或5 (D) 529.若9,422==b a ,且0<ab ,则b a -的值为 ( )(A) 2- (B) 5± (C) 5 (D) 5-30.已知一个正方形的边长为a ,面积为S ,则( ) A.a S = B.S 的平方根是a C.a 是S 的算术平方根 D.S a ±=31. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a 32.22)4(+x 的算术平方根是( )A 、 42)4(+xB 、22)4(+xC 、42+xD 、42+x33.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±34.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-35.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±36.下列各组数中互为相反数的是( )A 、2)2(2--与B 、382--与C 、2)2(2-与D 、22与- 二、填空题:1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是4_______;9的平方根是_______.5的平方根是 ,25的平方根记作 ,结果是6.非负的平方根叫 平方根7.2)8(-= , 2)8(= 。

平方根(基础篇)(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

平方根(基础篇)(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

专题6.2平方根(基础篇)(专项练习)一、单选题1.4的平方根是()A .2B .2-C .16D .2±2.)A .﹣2B .2C .﹣12D .123的值().A .在3到4之间B .在4到5之间C .在5到6之间D .在6到7之间4.下列计算正确的是()A2=B 5=±C .4D .7=±5.平方根是13±的数是()A .13B .16C .19D .19±6.若是169的算术平方根,是121的负的平方根,则(+)2的平方根为()A .2B .4C .±2D .±47.下列命题是真命题的是()A .25的平方根是5B .0.01的平方根是0.001±C .只有正数才有算术平方根D .平方根是其本身的数只有08.实数a ,b ,c 在数轴上的对应点如图所示,化简a b a -+-+的结果是()A .b c --B .c b -C .222a b c -+D .2a b c++9.将边长分别为1和2的长方形如图剪开,拼成一个与长方形面积相等的正方形,则该正方形的边长是()A B .2C .1.5D .110.有一个如图的数值转换器,当输出值是4时,输入的是()A .8B .16C .D .二、填空题11.如果0x <,0y >且24x =,29y =,则x y +=___________.12.若2y ,则yx =________.13a ,小数部分为b ,则=a _________,b =_________.14 3.873≈ 1.225≈≈___.151=,则2x +6的平方根是______.16.某正数的平方根是a 和5a -,则这个数为_________.17.()29-的四次方根是______.18.七巧板被西方人称为“东方魔术”,下面的两幅图是由同一个七巧板拼成的.已知七巧板拼成的正方形(如图1边长为a (cm ).若图2的“小狐狸”图案中阴影部分面积为162cm ,那么a 的值为__.三、解答题19.求下列各式中的x .(1)29250x -=;(2)24(2)90x --=.20.计算:(1)()()2202131---;(2)233--21.已知2a b +(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.22.(1=__________;(2=__________;(3)实数a 、b 、c 在数轴上的位置如图所示,请化简:a -23.定义:若A B m -=,则称A 与B 是关于m 的关联数.例如:若2A B -=,则称A 与B 是关于2的关联数.(1)若49与a 是关于2的关联数,则=a ________;(2)若21x -与53x -是关于2的关联数,求51x +的平方根;(3)若M 与N 是关于m 的关联数,53M mn n =++,N 的值与m 无关,求N 的值.24.发现:(1)面积为249cm 的正方形纸片,它的边长是______cm ;拓展:(2)面积为226cm 的长方形纸片,如果它的长是宽的2倍,则长和宽各是多少cm ?延伸:(3)在面积为249cm 的正方形纸片中能否沿着边的方向(如图所示)裁出一块面积为226cm 的长方形纸片,使它的长是宽的2倍?说明理由.参考答案1.D【分析】根据平方根的意义,一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.【详解】∵()22=4±∴4的平方根为2±.故选:D.【点拨】本题考查了平方根的定义,掌握一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根是解题的关键.2.C【分析】先化简,再计算倒数.【详解】解:=−2,-2的倒数是1 2-.故选:C.【点拨】本题考查了倒数,算术平方根,熟练掌握相关知识是解题的关键.3.C【分析】根据题意可直接进行求解.【详解】解:∵56<,5到6之间.故选C.【点拨】本题主要考查算术平方根,熟练掌握求一个算术平方根的整数部分与小数部分是解题的关键.4.D【分析】A、根据负数没有平方根即可判定;B、根据算术平方根的定义即可判定;C、根据算术平方根的定义即可判定;D、根据平方根的定义即可判定.【详解】解:AB5=,故选项错误;C、4==-,故选项错误;D、7=±,故选项正确.故选:D.【点拨】此题考查了平方根、算术平方根的定义.此题比较简单,注意熟记定义是解此题的关键.5.C【分析】根据平方根的定义求解即可.【详解】解:∵211 39⎛⎫±=⎪⎝⎭,∴平方根是13±的数是19.故选C.【点拨】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根.6.C【分析】求出m、n的值,求出m+n的值,再根据平方根定义求出即可.【详解】解:∵m是169的算术平方根,n是121的负的平方根,∴m=13,n=-11,∴m+n=2,∴(m+n)2的平方根是,故答案为C.【点拨】本题主要考查了平方根的定义和性质,以及根据平方根求被开方数;注意:一个正数有两个平方根,它们互为相反数.7.D【分析】根据平方根的概念判断即可.【详解】解:A、25的平方根是±5,故本选项命题是假命题;B、0.01的平方根是±0.1,故本选项命题是假命题;C、正数和0都有算术平方根,故本选项命题是假命题;D、平方根是其本身的数只有0,故本选项命题是真命题;故选:D.【点拨】本题考查的是平方根及算术平方根的概念,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.A【分析】先判断0b c a <<<,可得0b a -<,再结合算术平方根的含义可得0c <c =-,再化简绝对值即可.【详解】解:∵0b c a <<<,∴0b a -<,∴a b a -+-+()()a b a c =---+-a b a c=--+-b c =--.故选A .【点拨】本题考查的是算术平方根的含义,化简绝对值,整式的加减运算,掌握“算术平方根的含义与化简绝对值”是解本题的关键.9.A【分析】求出长方形的面积,即为正方形的面积,开方即可求出正方形边长.【详解】解:根据题意得:故选:A .【点拨】此题考查了算术平方根,弄清题意是解本题的关键.10.B【分析】设输入的数为x ,根据输出值是4即可求出答案.【详解】解:设输入的数为x ,∴4=,16x ∴=,故选:B .【点拨】本题考查的是算术平方根的概念和性质,解题的关键是掌握一个正数的正的平方根是这个数的算术平方根是解题的关键,注意有理数的概念.11.1【分析】24x =即x 是4的平方根,29y =即y 是9的平方根,因而根据0x <,0y >且24x =,29y =就可确定x ,y 的值,进而求解.【详解】解:∵24x =,29y =,∴2x =±,3=±y ,又∵0x <,0y >,∴2x =-,3y =,∴231x y +=-+=.故答案为:1.【点拨】本题考查平方根的意义,求代数式的值,有理数的加法运算.根据条件正确确定x ,y 的值是解题关键.12.94【分析】根据算术平方根的非负性求得,x y 的值,代入代数式即可求解.【详解】解:∵2y ,∴230,320x x -≥-≥,∴230x -=,解得32x =,∴2y =,∴23924yx ⎛⎫== ⎪⎝⎭,故答案为:94.【点拨】本题考查了算术平方根的非负性,掌握算术平方根的非负性是解题的关键.13.33【分析】根据34<首先确定a 的值,则小数部分即可确定.【详解】解:34<< ,3a ∴=,则3b =.故答案是:33.【点拨】本题主要考查了无理数的估算,解题的关键是确定无理数的整数部分即可解决问题.14.12.25【分析】根据算术平方根与被开方数的关系:“被开方数每向左或向右移动2个位数,则它的算术平方根就向左向右移动1个位数”可知答案.1.225≈,≈12.25故答案为:12.25【点拨】本题考查了求算术平方根,掌握规律是解题的关键.15.±21=,解得=1x -,继而计算264x +=,再根据平方根的定义解答.【详解】解:1=,21x ∴+=1x ∴=-264x ∴+=4的平方根是±2故答案为:±2.【点拨】本题考查平方根与算术平方根,是基础考点,掌握相关知识是解题关键.16.254【分析】根据正数的两个平方根互为相反数可得50a a +-=,解方程求出a ,然后根据平方根的意义求出这个正数.【详解】解: 某正数的平方根是a 和5a -,50a a ∴+-=.解得52a =.2525()24±= .∴这个数为254.故答案为:254.【点拨】本题考查了平方根的性质与意义,解题的关键是掌握一个正数有两个平方根,且它们互为相反数.17.3±【分析】计算出()2981-=,再找出四次方等于81的数即可.【详解】解:∵()2981-=,又∵()4381±=∴()29-的四次方根是3±,故答案为:3±.【点拨】本题考查平方根的推广,有理数的乘方.解题的关键是正确找出四次方等于81的数.18.8【分析】设阴影小正方形的边长为x cm ,根据阴影部分的面积列出方程,求出x 的值,进而得出大正方形的对角线的长度是4x cm ,最后求出边长a 即可.【详解】设“小狐狸”脸部小正方形的边长为x cm ,由题意得:21(24)162x x x x +⨯-=,解得:x =x =-∴小正方形的边长为,∴大正方形的对角线为:,∴大正方形的边长为8(cm)=,8a ∴=.故答案为:8.【点拨】本题主要考查七巧板的知识,熟练掌握七巧板各边的关系是解题的关键.19.(1)1255,33x x ==-(2)1271,22x x ==【分析】(1)先移项,然后利用平方根求解方程即可;(2)先移项,然后利用平方根求解方程即可.【详解】(1)解:29250x -=移项得:2925x =,∴2259x =,∴53x =±,∴1255,33x x ==-(2)24(2)90x --=24(2)9x -=,∴29(2)4x -=∴32=2x -±∴1271,22x x ==.【点拨】题目主要考查利用平方根解方程,熟练掌握解方程方法是解题关键.20.(1)5;(2)8--【分析】(1)先化简各式,然后再进行计算即可;(2)先化简各式,然后再进行计算即可.【详解】(1)解:22021(3)(1)--93(1)=-+-6(1)=+-5=;(2)解:233|-+932=-+8=-【点拨】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(1)23a b -的平方根为4±;(2)3x =±.【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:02a b ++=由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x =解得3x =±.【点拨】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.22.(1)5;5;(2)()0(0)a a a a ⎧≥⎨-<⎩;(3)b a -【分析】(1)根据算术平方根求解即可;(2)结合(1)中结果求解即可;(3)根据数轴得出0c a b <<<,且a b <,然后将各式化简合并同类项求解即可.【详解】解:(15=5==;故答案为:5;5;(2)当0a ≥a =;当0a <a =-;()0(0)a a a a ⎧≥=⎨-<⎩,故答案为:()0(0)a a a a ⎧≥⎨-<⎩;(3)由数轴得:0c ab <<<,且a b <,∴a +∴a -()()a abc c a =-++-+-a a b c c a=-++-+-b a =-.【点拨】题目主要考查算术平方根的化简及根据数轴判断式子的正负,整式的加减法等,理解题意,熟练掌握各个运算法则是解题关键.23.(1)47;(2)3±;(3)165.【分析】(1)根据关联数的含义,列方程求解即可;(2)根据关联数的含义,列方程求得x 的值,即可求解;(3)根据关联数的含义,可得M N m -=,可得N M m =-,根据题意,求解即可.【详解】(1)解:由题意可得:492a -=解得47a =,故答案为:47;(2)由题意可得:21(53)2x x ---=解得:85x =,519x +=9的平方根为3±(3)由题意可得:M N m -=,则53(51)3N M mn n m n m n m ++--==+=+-,∵N 的值与m 无关∴510n -=,解得15n =则116355N =+=【点拨】本题考查了新型定义题型,解一元一次方程、整式的值与字母无关,解题的关键是准确理解题干,列出方程,进行解答.24.(1)7;(2,长为;(3)不能,理由见解析【分析】(1)根据正方形的面积公式和正方形的面积即可求出正方形的边长;26cm列出方程求解即可;(2)设长方形的宽为x cm,则长为2x cm,根据长方形的面积为2(3)根据题意比较正方形的边长和长方形的长即可判断.49cm,【详解】解:(1)∵正方形的面积为2∴边长7==cm.(2)设长方形的宽为x cm,则长为2x cm,根据题意得x·2x=26,x2=13,解得x=∵x∴x∴长为2x=,,长为,(3)不能.理由:因为7,即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片.【点拨】此题考查了正方形和长方形面积公式,算数平方根的性质,解题的关键是根据题意求出正方形的边长和长方形的长和宽.。

平方根计算题50道题

平方根计算题50道题

平方根计算题50道题一、简单整数的平方根计算(1 - 10题)1. √(4)- 解析:因为2^2 = 4,所以√(4)=2。

2. √(9)- 解析:3^2 = 9,所以√(9)=3。

3. √(16)- 解析:4^2 = 16,所以√(16)=4。

4. √(25)- 解析:5^2 = 25,所以√(25)=5。

5. √(36)- 解析:6^2 = 36,所以√(36)=6。

6. √(49)- 解析:7^2 = 49,所以√(49)=7。

7. √(64)- 解析:8^2 = 64,所以√(64)=8。

8. √(81)- 解析:9^2 = 81,所以√(81)=9。

9. √(100)- 解析:10^2 = 100,所以√(100)=10。

10. √(121)- 解析:11^2 = 121,所以√(121)=11。

二、含小数的平方根计算(11 - 20题)11. √(0.04)- 解析:因为0.2^2 = 0.04,所以√(0.04)=0.2。

12. √(0.09)- 解析:0.3^2 = 0.09,所以√(0.09)=0.3。

13. √(0.16)- 解析:0.4^2 = 0.16,所以√(0.16)=0.4。

14. √(0.25)- 解析:0.5^2 = 0.25,所以√(0.25)=0.5。

15. √(0.36)- 解析:0.6^2 = 0.36,所以√(0.36)=0.6。

16. √(0.49)- 解析:0.7^2 = 0.49,所以√(0.49)=0.7。

17. √(0.64)- 解析:0.8^2 = 0.64,所以√(0.64)=0.8。

18. √(0.81)- 解析:0.9^2 = 0.81,所以√(0.81)=0.9。

19. √(1.21)- 解析:1.1^2 = 1.21,所以√(1.21)=1.1。

20. √(1.44)- 解析:1.2^2 = 1.44,所以√(1.44)=1.2。

平方根经典题型10道

平方根经典题型10道

平方根经典题型10道一、基础概念理解题1. 什么数的平方根是它本身?- 这就像在找一个超级特别的数呢。

我们知道正数有两个平方根,一正一负,0的平方根就只有一个,就是0本身。

所以这个数就是0呀,它是独一无二的,平方根就是自己,就像照镜子,镜子里还是自己一样有趣。

2. 若x^2=16,求x的值。

- 这就相当于在问,哪个数的平方等于16呢?我们知道4×4 = 16,但是别忘了,( - 4)×( - 4)=16。

所以x = 4或者x=-4,就像一个数有两个“分身”,一个正的一个负的,都满足这个平方的关系。

二、计算求值题3. 计算√(25)的值。

- 这就好比在找一个数,这个数自己乘以自己等于25。

那我们一下子就能想到5啦,因为5的平方就是25。

不过要注意哦,平方根有正负两个,这里求的是算术平方根,所以√(25)=5,就像找到了那个正数的代表。

4. 计算√(121)。

- 这题就是要找到一个数,它的平方等于121。

我们可以从1开始试,试到11的时候就发现11×11 = 121,所以√(121)=11,就像解开了一个小密码一样。

5. 计算√(0.09)。

- 想一下,哪个数自己乘以自己等于0.09呢?我们知道0.3×0.3 = 0.09,所以√(0.09)=0.3,虽然这个数是个小数,但平方根的规则还是一样的哦。

三、化简题6. 化简√(18)。

- 这就有点像给√(18)“减肥”啦。

我们先把18分解因数,18 = 2×9,而9 = 3×3,所以√(18)=√(2×9)=√(2)×√(9)=3√(2),就像把一个复杂的东西拆分成简单的部分再组合起来。

7. 化简√(75)。

- 对于√(75),我们把75分解因数,75 = 3×25,25 = 5×5。

那么√(75)=√(3×25)=√(3)×√(25)=5√(3),就像把一个大包裹拆成小包裹一样,让它看起来更简洁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学——平方根专项练习6
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.当a 2=b 2时,下列等式中成立的是( )
A .a=b
B .
C .a 3=b 3
D . 2.若x -5能开偶次方,则x 的取值范围是( )
A .x≥0
B .x>5
C .x≥5
D .x≤5 3.下列说法正确的是 ( )
A a =-,则0a <
B a =,则0a >
C 24a b =
D ±3
4.已知2m ﹣4与3m ﹣1是同一个正数的两个平方根,则m 的值是( ) A .0 B .1 C .2 D .3
5.方程()
22150m x mx -+-=是关于x 的一元二次方程,m 满足的条件是( ) A .1m ≠ B .0m ≠ C .1m ≠ D .1m = 6.已知8.622=73.96,若x 2=0.7396,则x 的值等于( )
A .86. 2
B .862
C .±0.862
D .±862
7.在以下说法中:①实数分为正有理数、0、负有理数.
①实数和数轴上的点一一对应. ①过直线外一点有且只有一条直线和已知直线垂直.①过一点有且只有一条直线和已知直线 平行.①假命题不是命题.①如果两条直线都和第三条直线平行,那么这两条直线也互相平 行.①若一个数的立方根和平方根相同,那么这个数只能是0. 其中说法正确的个数是( )
A .3
B .4
C .5
D .6 8.已知一个正数的两个平方根分别为3a -5和7-a ,则这个数的立方根是( ) A .-1 B .2 C .-2 D .4
9. 4.858 1.536 )
A .﹣485.8
B .﹣48.58
C .﹣153.6
D .﹣1536 10.下列各式中,计算不正确的是( )
A .23=
B 3=-
C .2(3=
D .3-
二、填空题 11.已知正实数x 的两个平方根是m 和m+b .当b =8时,m 的值是_____;若m 2x+(m+b )2x =4,则x =_____.
12.如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影拼成一个正方形,那么新正方形的边长是_____.
13.若某一个正数的平方根是2m 3+和m 1+,则m 的值是______.
14.一个正数的两个平方根分别是215-3a a -和,则这个正数是_____.
15.若|x x=________.
16.若一个正数的两个平方根是25a -与2a +,则这个数是__________.
三、解答题 17.如图,长方形内有两个相邻的正方形,面积分别为9和6,
(1)小正方形边长的值在哪两个连续的整数之间?与哪个整数较接近?(直接写结果) (2)求图中阴影部分的面积.
(3)若小正方形边长的值的整数部分为x ,小数部分为y ,求(y )x 的值.
18.已知|27|a -与22(36)b -互为相反数,求
的平方根.
19.已知a+7的立方根是2,一个正数b 的平方根分别是5x ﹣2和4﹣6x ,求3b+4a 的平方根.
20.若一个正数的两个平方根分别为2a +与31a -,求a 的值.
21.(1)如图,在菱形ABCD 中,对角线AC BD 、相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E .证明:四边形ACDE 是平行四边形:
(2)一个底面为4030cm cm ⨯的长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10cm 的长方体铁桶中,当铁桶装满水时,容器中的水面下降了20,cm 铁桶的底面边长是多少厘米?
22.已知2a -1的平方根是±3,已知2a -1的平方根是±3,3a +b -9的立方根是2,c
a +
b +
c 的平方根.
23.已知某正数的两个平方根为3a +和215a -,求这个数是多少?
24.已知3b +与26b -是正数a 的平方根,求a 的值.
25.(1)已知三角形的三边分别为a ,b ,c ,且a =m ﹣1,b =c =m +1(m >1).请判断这个三角形的形状.
(2)已知某正数的两个平方根分别是a ﹣3和2a +15,b 的立方根是﹣2.求﹣2a ﹣b 的算术平方根.
参考答案:1.B
2.C
3.C
4.B
5.C
6.C
7.A
8.D
9.A
10.B
11.-4
12
13.
4 3 -
14.49
15
16.9
17.(1)小正方形的边长在2和3之间;与整数2比较接近;(2
)6;(3)4
18
.的平方根为±3.19.14
±.
20.
1 -4
21.(1)详见解析;(2

22.±3
23.49
24.144或16
25.(1)这个三角形一定是直角三角形;(2)4
答案第1页,共1页。

相关文档
最新文档