推挽变压器工作原理
推挽变压器计算范文

推挽变压器计算范文引言:一、推挽变压器的基本原理推挽变压器是由两个互补工作的铁芯变压器组成的。
其中一个变压器是正相位变压器,将直流电压转换为交流电压;另一个变压器是负相位变压器,将交流电压转换为直流电压。
这种互补工作的设计能够实现高效的功率转换,并且可以克服传统变压器存在的问题。
二、推挽变压器的设计流程1.参数选取:首先确定需要的输入输出电压范围和功率等级。
根据实际需求和条件,选择合适的主要参数。
2.铁芯设计:根据设计参数,计算变压器的铁芯尺寸和截面积,选择合适的铁芯材料。
3.线圈绕组设计:根据铁芯尺寸和设计参数,计算绕组的匝数和截面积,选择合适的线径和绕组方式。
4.检验和验证:根据设计完成后,进行电流、电压和功率等方面的检验和验证,确保设计符合要求。
三、推挽变压器的计算方法在推挽变压器的设计过程中,需要进行多个参数的计算和选择,包括铁芯参数、线圈参数等。
1.铁芯参数的计算:根据设计参数,计算出变压器铁芯的尺寸和截面积。
主要考虑铁芯磁导率和交流损耗等因素。
2.线圈参数的计算:根据线圈的匝数和截面积,计算线圈的电流承载能力和绕组方式。
主要考虑线圈的电阻和电感等因素。
3.电压和功率的计算:根据输入输出电压和功率要求,计算变压器的变比和效率。
主要考虑变压器的损耗和效率等因素。
4.磁通密度和磁场分布的计算:根据变压器的铁芯参数和线圈参数,计算变压器的磁通密度和磁场分布。
主要考虑铁芯的饱和和线圈的耦合等因素。
结论:推挽变压器是一种重要的变压器类型,广泛应用于工业和电力系统中。
设计推挽变压器需要进行多个参数的计算和选择,包括铁芯参数、线圈参数等。
这些计算和选择需要考虑变压器的输入输出电压范围、功率等级和效率要求等因素。
通过合理的设计流程和计算方法,可以得到满足要求的推挽变压器。
推挽电路工作原理

推挽电路工作原理
推挽电路是一种常见的功率放大电路,它主要由NPN型和PNP 型的晶体管组成,能够实现高效率的功率放大。
在本文中,我们将详细介绍推挽电路的工作原理,以及其在电子领域中的应用。
推挽电路的工作原理基于NPN型和PNP型晶体管的工作特性。
在推挽电路中,NPN型和PNP型晶体管交替工作,实现了对输入信号的放大和输出信号的驱动。
当输入信号为正半周时,NPN型晶体管导通,将信号放大并输出;而当输入信号为负半周时,PNP型晶体管导通,同样将信号放大并输出。
这样,推挽电路能够实现对输入信号的完整放大和输出,同时还能有效地消除交叉失真。
推挽电路在电子领域中有着广泛的应用,其中最常见的就是在功率放大器中的应用。
由于推挽电路能够实现高效率的功率放大,因此在音响设备、功放设备以及各类电子设备中都能见到其身影。
此外,推挽电路还常常用于马达驱动电路中,能够实现对马达的高效驱动,提高了系统的整体效率和稳定性。
除了功率放大和马达驱动外,推挽电路还常常用于各类开关电路中。
由于其能够实现高效的信号放大和输出,因此在开关电源、
逆变器等领域都有着广泛的应用。
推挽电路不仅能够提高系统的工作效率,还能够减小系统的功耗,提高系统的稳定性和可靠性。
总的来说,推挽电路作为一种常见的功率放大电路,在电子领域中有着广泛的应用。
其工作原理基于NPN型和PNP型晶体管的工作特性,能够实现高效率的功率放大和信号输出。
在功率放大器、马达驱动器以及开关电路中都有着重要的作用,为电子设备的性能提升和系统的稳定性提供了有力支持。
推挽电路的应用前景广阔,相信在未来的电子领域中会有更多的创新应用涌现。
推挽式变压器开关电源原理

推挽式变压器开关电源原理——陶显芳老师谈开关电源原理与设计-所谓双激式变压器开关电源,就是指在一个工作周期之内,变压器的初级线圈分别被直流电压正、反激励两次。
与单激式变压器开关电源不同,双激式变压器开关电源一般在整个工作周期之内,都向负载提供功率输出。
双激式变压器开关电源输出功率一般都很大,因此,双激式变压器开关电源在一些中、大型电子设备中应用很广泛。
这种大功率双激式变压器开关电源最大输出功率可以达300 瓦以上,甚至可以超过1000 瓦。
推挽式、半桥式、全桥式等变压器开关电源都属于双激式变压器开关电源。
本次先就其中的推挽式变压器开关电源进行讲解。
推挽式变压器开关电源的工作原理在双激式变压器开关电源中,推挽式变压器开关电源是最常用的开关电源。
由于推挽式变压器开关电源中的两个控制开关K1 和K2 轮流交替工作,其输出电压波形非常对称,并且开关电源在整个工作周期之内都向负载提供功率输出,因此,其输出电流瞬间响应速度很高,电压输出特性也很好。
推挽式变压器开关电源是所有开关电源中电压利用率最高的开关电源,它在输入电压很低的情况下,仍能维持很大的功率输出,所以推挽式变压器开关电源被广泛应用于DC/AC 逆变器,或DC/DC 转换器电路中。
1.交流输出推挽式变压器开关电源一般的DC/AC 逆变器,如交流不间断电源〔简称UPS〕,大多数都是采用推挽式变压器开关电源电路。
这种DC/AC 逆变器工作频率很高,所以体积可以做得非常小;由于这个特点,推挽式变压器开关电源也经常用于AC/AC 转换电路中,以减小电源变压器的体积。
图1-27 是交流输出纯电阻负载推挽式变压器开关电源的简单原理图。
图中,K1、K2 是两个控制开关,它们工作的时候,一个接通,另一个关断,两个开关轮流接通和关断,互相交替工作;T为开关变压器,N1、N2 为变压器的初级线圈,N3 为变压器的次级线圈;Ui 为直流输入电压,R为负载电阻;uo 为输出电压,io 为流过负载的电流。
推挽逆变器的原理分析

一推挽逆变器的原理分析主电路如图1所示:Q1,Q2理想的栅极(UG1,UG2)漏极(UD1,UD2)波形如图2所示:实际输出的漏极波形:从实际波形中可以看出,漏极波形和理想波形存在不同:在Q1,Q2两管同时截止的死区处都长了一个长长的尖峰,这个尖峰对逆变器/UPS性能的影响和开关管Q1,Q2的威胁是不言而喻的,这里就不多说了。
二Q1,Q2两管漏极产生尖峰的成因分析从图1中可以看出,主电路功率元件是开关管Q1,Q2和变压器T1。
Q1,Q2的漏极引脚到TI初级两边走线存在分布电感,T1初级存在漏感,当然T1存在漏感是主要的。
考虑到漏感这个因素我们画出推挽电路主电路等效的原理图如图4所示:从图4中可以看出L1,L2就等效于变压器初级两边的漏感,我们来分析一下Q1导通时的情形:当Q1的栅极加上足够的驱动电压后饱和导通,电池电压加到漏感L1和变压器T1初级上半部分,当然绝大部分是加到T1初级上半部分,因为L1比T1初级上半部分电感小得多。
此时Q2是截止的,主电路电流方向为从电池正极到T1初级上半部分到L1到Q1的DS再回到电池的负极;L1上电压的极性为左负右正,T1初级上半部分电压的极性为上负下正,如图5所示:当Q1栅极信号由高电平变为低电平时,此时Q2也还截止,即死区处Q1,Q2都不导通,T1初级上半部分由于和次级耦合的原因,能量仅在Q1导通时向次级传递能量,到Q1截止时T1初级上半部分上端的电位已恢复到电池电压,而L1可以看做是是一个独立的电感,它储存的能量耦合不到变压器T1的次级。
但是,随着Q1由导通转向截止,L1上的电流迅速减小,大家知道电感两端的电流是不能突变的,根据自感的原理L1必然要产生很高的反向感生电动势来阻碍它电流的减小,所以此时电感电压的极性和图5相反,T1初级上半部分的电压为0,两端点的电压都等于电池电压,此时Q1漏极的电压就等于L1两端的电压和电池电压之和,这就是Q1,Q2两管漏极产生尖峰的原因,如图6所示。
推挽变压器计算范文

推挽变压器计算范文
一、推挽变压器原理
1.工作原理
推挽变压器由于左右两边的变压器在工作时正好相互补偿,所以在输入的一半周期内,一个变压器从零开始向正向工作,另一个变压器从零开始向反向工作,相当于两个变压器同频率、反相输出。
因此,推挽变压器的输出是交流信号,可以实现电压的升压和降压。
2.推挽变压器的构造
二、推挽变压器计算
1.推挽变压器的变比
2.推挽变压器的输入与输出
3.磁芯选择
为了减小磁耦合,推挽变压器通常采用铁芯或氧化铁芯。
磁芯的选择应根据应用需求和设计要求,包括频率、功率、损耗等因素。
4.容量计算
5.线圈匝数计算
三、推挽变压器设计注意事项
1.磁耦合
为了减小磁耦合,推挽变压器的两个次级绕组之间应选择适当的绕组距离,并采取合适的绝缘材料。
2.绝缘设计
3.功率匹配
4.可靠性设计
5.频率匹配
以上是推挽变压器的原理、计算方法以及一些注意事项的介绍。
推挽变压器在功率放大器等电子电路中应用广泛,设计时需要注意输入输出的电流和电压,合理选择磁芯和绕组匝数,以确保变压器的性能和可靠性。
推挽升压电路原理

推挽升压电路原理推挽升压电路是一种常用的电路设计,用于将输入电压提升到较高的输出电压。
它由两个互补工作的晶体管组成,通过交替开关来驱动一个变压器。
在这篇文章中,我们将详细解释推挽升压电路的基本原理,并探讨其工作原理和应用。
1. 基本概念推挽升压电路是一种非隔离型DC-DC转换器,其目的是将低电压转换为高电压。
该电路通常由一个输入直流电源、两个互补工作的晶体管和一个变压器组成。
其中,晶体管根据输入信号进行开关操作,而变压器则将输入电压转换为所需的输出电压。
2. 工作原理推挽升压电路的工作原理可以分为三个阶段:充能、放能和输出。
充能阶段:在充能阶段,输入信号引脚控制一个晶体管(通常称为Q1)打开,另一个晶体管(通常称为Q2)关闭。
当Q1打开时,它会将输入直流电源连接到变压器的一侧,导致电感储能。
放能阶段:在放能阶段,输入信号引脚控制Q1关闭,同时控制Q2打开。
当Q1关闭时,变压器的储能电感将试图保持其电流不变。
由于Q2打开,变压器的另一侧将与地连接,并形成一个回路,允许电感中的电流流动。
输出阶段:在输出阶段,输出负载通过输出引脚连接到变压器的二次侧。
当Q2打开时,储存在电感中的能量将通过变压器传递到负载上,从而产生所需的升压效果。
3. 优点和应用推挽升压电路具有以下几个优点:•高效率:由于推挽升压电路采用交替开关操作,因此其效率相对较高。
•低成本:推挽升压电路所需的元件相对较少,因此成本较低。
•稳定性好:推挽升压电路稳定性较好,并且可以满足大部分应用场景的要求。
推挽升压电路主要应用于以下领域:•扬声器驱动:推挽升压电路可用于驱动扬声器,将低电压信号转换为足够的电压以产生所需的音量。
•照明系统:推挽升压电路可用于驱动LED照明系统,将低电压转换为高电压以满足LED的工作要求。
•无线充电:推挽升压电路可用于无线充电系统,将低电压信号转换为高电压以提供足够的功率。
4. 推挽升压电路设计考虑因素在设计推挽升压电路时,需要考虑以下几个因素:•输入和输出电压:确定所需的输入和输出电压范围。
变压器推挽式功率变换电路

变压器推挽式功率变换电路是一种常见的电力电子变换器,它通过推挽式的变压器结构实现功率的转换。
以下是这种电路的基本工作原理和特点:
工作原理:
推挽式功率变换电路中,有两个功率开关器件(通常为晶体管或绝缘栅双极晶体管)交替导通,以实现正负脉冲的输出。
变压器则被配置为两个次级线圈,一个正向连接,另一个反向连接。
当一个功率开关器件导通时,相应的次级线圈产生正向电压;而当另一个功率开关器件导通时,相应的次级线圈产生反向电压。
这样,在变压器的输出端就可以得到一个完整的交流电压波形。
电路特点:
1. 推挽式变换器不需要进行磁复位,因为它的两个次级线圈是相互抵消的。
因此,这种变换器的结构相对简单,不需要额外的磁复位电路。
2. 由于变压器是双向工作的,所以它的磁芯利用率相对较高。
这也意味着在同样的功率条件下,推挽式变换器的体积较小。
3. 推挽式变换器的开关频率是单端正激或反激式变换器的两倍,所以其铁芯的磁化特性是双向的。
这使得变压器的设计相对于单端正
激或反激式变换器更为复杂。
4. 推挽式变换器的两个开关管是交替工作的,所以它们的电流应力是平均的。
这使得推挽式变换器在开关管的选择上具有更大的灵活性。
以上就是变压器推挽式功率变换电路的基本工作原理和特点。
在实际应用中,由于其结构简单、效率高、可靠性好等优点,这种电路广泛应用于各种电源供应器和电机控制系统中。
推挽式变换器电路解说

推挽式变换器電路解說1、电路拓扑图2、电路原理其变压器T1起隔离和传递能量的作用。
在开关管Q1开通时,变压器T1的Np1绕组工作并耦合到付边Ns1绕组,开关管Q关断时Np向Ns释放能量;反之亦然。
在输出端由续流电感器Lo和D1、D2付边整流电路。
开关管两端应加一RC组成的开关管关断时所产生的尖峰吸收电路。
此电路大概也可能称为正反激电路吧!我也不敢确定。
因为曾经有个同事与我说起Lambda 有一款电源PH300F(DC/DC 5V/60A 全砖)就采用了正反激电路,我也没见过此模块电源实物,他也没见过推挽电路图,根据他说的及当时所测的波形,与推挽工作相似。
所以我只是估猜,如有错误希各位同仁指出并斧正,免得诱导坏“小孩子”。
3、工作特点a、在任何工作条件下,调整管都承受的两倍的输入电压。
所以此电路多用于大功率等级的DC/DC电源中,这样才有利于选材料。
b、两个调整管都是相互交替打开的,所以两组驱动波形相位差要大于180°(一般书上说差等于180°,呵呵~~~您可以试一试),因为要存在一定死区时间。
c、此电路与半桥式变换器一样,也存在一定的磁偏问题。
不过我不知道我是否遇到,当时只是用20M带宽的模拟示波器又无存储功能,最主要的是我当时对这电路工作原理并未完全弄懂。
4、变压器计算步骤与前相同(省去)★计算匝伏比:N/V=Ton/(ΔB×Ae)★原边绕组匝数:Np=Vinmin×(N/V)★付边绕组匝数:N2=(Vo+Vd+Io×R)×(N/V)★其它的验证及导线选择参考《单端正激式》5、输出电感设计参考《单端正激式》。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
推挽变压器工作原理
推挽变压器是一种常见的电力变压器,常用于直流电源的转换和功率放大电路中。
它具有较高的效率和稳定性,广泛应用于各种电子设备和电力系统中。
推挽变压器由两个相同的互感器组成,分别称为驱动互感器和输出互感器。
驱动互感器接收输入信号并产生交流电压,输出互感器将交流电压转换为所需的输出信号。
推挽变压器的工作原理可以分为两个阶段:工作阶段和切换阶段。
在工作阶段,输入信号被驱动互感器接收,并通过磁耦合效应传递给输出互感器。
驱动互感器和输出互感器的绕组都由导线绕制成螺线管。
当输入信号通入驱动互感器时,驱动互感器的绕组中产生磁场。
这个磁场通过磁路传递给输出互感器的绕组,进而在输出互感器中产生电压。
在切换阶段,输出互感器的绕组中的磁场被切断,继而导致输出电压的变化。
这是通过一个切换器实现的,切换器通常由一个或多个开关管组成。
当切换器关闭时,输出互感器的磁场被切断,导致输出电压下降。
当切换器打开时,输出互感器的绕组中重新建立磁场,导致输出电压上升。
通过不断重复这个过程,输出电压可以以所需的频率和振幅进行切换。
推挽变压器的工作原理可以通过下面的步骤来总结:
输入信号通过驱动互感器的绕组,产生磁场。
磁场通过磁路传递给输出互感器的绕组,产生输出电压。
切换器切断输出互感器的磁场,导致输出电压下降。
切换器打开,重新建立输出互感器的磁场,导致输出电压上升。
通过不断重复切换过程,输出电压以所需的频率和振幅进行切换。
推挽变压器的优点是效率高、稳定性好、功率范围广等。
它可以实现高效率的电能转换和功率放大,广泛应用于各种电子设备和电力系统中。
总结起来,推挽变压器是一种通过驱动互感器和输出互感器之间的磁耦合效应实现电能转换和功率放大的设备。
它的工作原理基于输入信号通过驱动互感器产生磁场,磁场通过磁路传递给输出互感器的绕组,产生输出电压。
通过切换器的切断和打开,输出电压可以以所需的频率和振幅进行切换。
推挽变压器具有高效率、稳定性好等优点,是电子设备和电力系统中常用的电力变压器。