一般解应用题的方法,步骤(精)
《小学奥数》小学五年级奥数讲义之精讲精练第9讲 一般应用题(三)含答案

第9讲一般应用题(三)一、知识要点解答一般应用题时,可以按下面的步骤进行:1.弄清题意,找出已知条件和所求问题;2.分析已知条件和所求问题之间的关系,找出解题的途径;3.拟定解答计划,列出算式,算出得数;4,检验解答方法是否合理,结果是否正确,最后写出答案。
二、精讲精练【例题1】甲、乙两工人生产同样的零件,原计划每天共生产700个。
由于改进技术,甲每天多生产100个,乙的日产量提高了1倍,这样二人一天共生产1020个。
甲、乙原计划每天各生产多少个零件?练习1:1.工厂里有2个锅炉,原来每月烧煤5.6吨。
进行技术改造后,1号锅炉每月节约1吨煤,2号锅炉每月烧煤量减少了一半,现在每月共烧煤3.5吨。
原来两个锅炉每月各烧煤多少吨?2.甲、乙两人生产同样的零件,原计划每天共生产80个。
由于更换了机器,甲每天多做40个,乙每天生产的是原来的4倍,这样二人一天共生产零件300个。
甲、乙原计划每天各生产多少个零件?【例题2】把一根竹竿插入水底,竹竿湿了40厘米,然后将竹竿倒转过来插入水底,这时,竹竿湿的部分比它的一半长13厘米。
求竹竿的长。
练习2:1.有一根铁丝,截去一半多10厘米,剩下的部分正好做一个长8厘米,宽6厘米的长方形框架。
这根铁丝原来长多少厘米?2.有一根竹竿,两头各截去20厘米,剩下部分的长度比截去的4倍少10厘米。
这根竹竿原来长多少厘米?【例题3】将一根电线截成15段。
一部分每段长8米,另一部分每段长5米。
长8米的总长度比长5米的总长度多3米。
这根铁丝全长多少米?练习3:1.某人过一个小山坡共用了20分钟,他上坡每分钟走80米,下坡每分钟走102米。
上坡路比下坡路少220米。
这段小坡路全长多少米?2.食堂里买来15袋大米和面粉,每袋大米25千克,每袋面粉10千克。
已知买回的大米比面粉多165千克,求买回大米、面粉各多少千克?【例题4】甲、乙两名工人加工一批零件,甲先花去2.5小时改装机器,因此前4小时甲比乙少做400个零件。
列方程解应用题的一般步骤是什么(精)

经检验x=300为原方程的根
答:利息为300元。
练一练
练习: 1、一组学生乘汽车去春游,预计
共需车费120元,后来人数增加了 用仍不变,这样每人少摊3元,原来这组 学生的人数是多少个?
1 ,费 4
2、解一组方程,先用小计算器解20 分钟,再改用大计算器解25分钟可解完, 如果大计算器的运算速度是小计算器的4 倍,求单用大计算器解这组方程需多少时 间?
王明同学准备在课外活动时间组织部分 同学参加电脑网络培训,按原定的人数估计 共需费用300元。后因人数增加到原定人数 的2倍,费用享受了优惠,一共只需480元, 参加活动的每个同学平均分摊的费用比原计 划少4元。原定人数是多少?
3、(03苏州)为了绿化江山,某村计划在荒 山上种植1200棵树,原计划每天种x棵,由于邻村 的支援,每天比原计划多种了40棵,结果提前了5 天完成了任务,则可以列出方程为( )
列方程解应用题的 步骤是怎样的呢?
归纳概括
列分式方程解应用题的一般步骤: (1)审清题意; (2)设未知数(要有单位); (3)根据题目中的数量关系列出式子,找 出相等关系,列出方程; (4)解方程,并验根,还要看方程的解是 否符合题意; (5)写出答案(要有单位)。
练习:求解本章导图中的 问题.
三、例题讲解与练习
A,B两地相距135千米,两辆汽车从A开往B,大 汽车比小汽车早出发5小时,大汽车又比小汽车 早到30分钟,已知小汽车与大汽车的速度之比 为5:2,求两车的速度。 分析: 已知两边的速度之比为5:2,所以 设大车的速度为2x千米/时,小说车的速度为5x千 米/时,而A、B两地相距135千米,则大车行驶时 135 135 间 2 x 小时,小车行驶时间 5 x 小时,由题意可知大 车早出发5小时,又比小车早到30分钟,实际大车 行驶时间比小车行驶时间多4.5小时,由此可得等 量关系
小学五年级奥数第9讲 一般应用题(三)(含答案分析)

第9讲一般应用题(三)一、知识要点解答一般应用题时,可以按下面的步骤进行:1.弄清题意,找出已知条件和所求问题;2.分析已知条件和所求问题之间的关系,找出解题的途径;3.拟定解答计划,列出算式,算出得数;4,检验解答方法是否合理,结果是否正确,最后写出答案。
二、精讲精练【例题1】甲、乙两工人生产同样的零件,原计划每天共生产700个。
由于改进技术,甲每天多生产100个,乙的日产量提高了1倍,这样二人一天共生产1020个。
甲、乙原计划每天各生产多少个零件?练习1:1.工厂里有2个锅炉,原来每月烧煤5.6吨。
进行技术改造后,1号锅炉每月节约1吨煤,2号锅炉每月烧煤量减少了一半,现在每月共烧煤3.5吨。
原来两个锅炉每月各烧煤多少吨?2.甲、乙两人生产同样的零件,原计划每天共生产80个。
由于更换了机器,甲每天多做40个,乙每天生产的是原来的4倍,这样二人一天共生产零件300个。
甲、乙原计划每天各生产多少个零件?【例题2】把一根竹竿插入水底,竹竿湿了40厘米,然后将竹竿倒转过来插入水底,这时,竹竿湿的部分比它的一半长13厘米。
求竹竿的长。
练习2:1.有一根铁丝,截去一半多10厘米,剩下的部分正好做一个长8厘米,宽6厘米的长方形框架。
这根铁丝原来长多少厘米?2.有一根竹竿,两头各截去20厘米,剩下部分的长度比截去的4倍少10厘米。
这根竹竿原来长多少厘米?【例题3】将一根电线截成15段。
一部分每段长8米,另一部分每段长5米。
长8米的总长度比长5米的总长度多3米。
这根铁丝全长多少米?练习3:1.某人过一个小山坡共用了20分钟,他上坡每分钟走80米,下坡每分钟走102米。
上坡路比下坡路少220米。
这段小坡路全长多少米?2.食堂里买来15袋大米和面粉,每袋大米25千克,每袋面粉10千克。
已知买回的大米比面粉多165千克,求买回大米、面粉各多少千克?【例题4】甲、乙两名工人加工一批零件,甲先花去2.5小时改装机器,因此前4小时甲比乙少做400个零件。
精强烈推荐六类百分数应用题的解题方法及练习

【精】六类百分数应用题的解题方法及练习类型一 求一个数的百分之几是多少(用乘法)【例】六(1)班有40人,男生占全班的 65 % ,男生有多少人? 【方法】单位“1”× 对应分率 = 对应数量 【解析】40×65%=26(人) 【练习】1. 某食油批发店,上午卖出花生油96箱,下午卖出的是上午的125,下午卖出多少箱?2. 小红体重42千克,小方体重38千克,小明的体重相当于小红和小方体重总和的50%,小明体重多少千克?3. 一根钢管长8米,用去一部分,还剩下全长的20%,还剩下多少米?4. 海象的寿命大约是40年,海狮的寿命是海象的43,海豹的寿命是海狮的32。
海豹的寿命大约是多少年?5. 一本故事书有1000页,小明第一天读了这本书的51,第二天又读了这本书的41,两天共读了多少页? 还剩多少页没有读?类型二求甲数是/占/相当于乙数的百分之几(用除法)【例】实验小学现有男生500人,女生400人,男生是女生的百分之几?女生是男生的百分之几?【方法】对应数量÷单位“1”=对应分率【解析】①500÷400=125%②400÷500=80%【练习】1.100千克的花生,能榨出65千克的花生油,花生的出油率是多少?2.科技小组进行玉米种子发芽试验。
用500粒种子进行试验,有15粒没有发芽,求发芽率。
3.某村响应“植树造林”政策,计划种树250棵,实际种树200棵。
(1)计划种树的棵树是实际的百分之几?(2)实际种树的棵树是计划的百分之几?类型三 已知甲数的百分之几是多少,求甲数(用除法或方程解)【例】六(2)班男生有20人,男生是全班的40 %,全班有多少人? 【方法】对应数量÷对应分率=单位“1” 【解析】20÷40%=50(人) 【练习】1. 工地运来的水泥有24吨,运来的水泥是黄沙的5/6,运来的黄沙有多少吨?2. 一辆客车从甲地开往乙地,已行240千米,占全长的30%,甲乙两地相距多少千米?3. 一条公路,已经修了60 %,还剩下20千米,这条公路有多长?4. 一辆汽车从甲地开往乙地,已经行了全程的75,这是离乙地还有80千米。
小学五年级奥数第9讲 一般应用题(三)(含答案分析)

第9讲一般应用题(三)一、知识要点解答一般应用题时,可以按下面的步骤进行:1.弄清题意,找出已知条件和所求问题;2.分析已知条件和所求问题之间的关系,找出解题的途径;3.拟定解答计划,列出算式,算出得数;4,检验解答方法是否合理,结果是否正确,最后写出答案。
二、精讲精练【例题1】甲、乙两工人生产同样的零件,原计划每天共生产700个。
由于改进技术,甲每天多生产100个,乙的日产量提高了1倍,这样二人一天共生产1020个。
甲、乙原计划每天各生产多少个零件?练习1:1.工厂里有2个锅炉,原来每月烧煤5.6吨。
进行技术改造后,1号锅炉每月节约1吨煤,2号锅炉每月烧煤量减少了一半,现在每月共烧煤3.5吨。
原来两个锅炉每月各烧煤多少吨?2.甲、乙两人生产同样的零件,原计划每天共生产80个。
由于更换了机器,甲每天多做40个,乙每天生产的是原来的4倍,这样二人一天共生产零件300个。
甲、乙原计划每天各生产多少个零件?【例题2】把一根竹竿插入水底,竹竿湿了40厘米,然后将竹竿倒转过来插入水底,这时,竹竿湿的部分比它的一半长13厘米。
求竹竿的长。
练习2:1.有一根铁丝,截去一半多10厘米,剩下的部分正好做一个长8厘米,宽6厘米的长方形框架。
这根铁丝原来长多少厘米?2.有一根竹竿,两头各截去20厘米,剩下部分的长度比截去的4倍少10厘米。
这根竹竿原来长多少厘米?【例题3】将一根电线截成15段。
一部分每段长8米,另一部分每段长5米。
长8米的总长度比长5米的总长度多3米。
这根铁丝全长多少米?练习3:1.某人过一个小山坡共用了20分钟,他上坡每分钟走80米,下坡每分钟走102米。
上坡路比下坡路少220米。
这段小坡路全长多少米?2.食堂里买来15袋大米和面粉,每袋大米25千克,每袋面粉10千克。
已知买回的大米比面粉多165千克,求买回大米、面粉各多少千克?【例题4】甲、乙两名工人加工一批零件,甲先花去2.5小时改装机器,因此前4小时甲比乙少做400个零件。
复习必看 - 一元一次方程9大题型解析!

复习必看 | 一元一次方程9大题型解析!一、列一元一次方程解应用题的一般步骤(1)审题:弄清题意(2)找出等量关系:找出能够表示本题含义的相等关系(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解方程:解所列的方程,求出未知数的值(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案二、一元一次方程解决应用题的分类1.市场经济、打折销售问题(一)知识点(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润/商品成品价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.(二)例题解析1.某高校共有5个大餐厅和2个小餐厅。
经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐。
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐。
(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由。
解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意得:2(1680-2y)+y=2280解得:y=360(名)所以1680-2y=960(名)(2)因为960×5+360×2=5520>5300 ,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐。
2.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等。
该工艺品每件的进价、标价分别是多少元?解:设该工艺品每件的进价是元,标价是(45+x)元。
依题意,得:8(45+x)×0.85-8x=(45+x-35)×12-12x解得:x=155(元)所以45+x=200(元)3.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦则超过部分按基本电价的70%收费。
六年级比的应用题解题技巧

六年级比的应用题解题技巧
解决六年级比的应用题可以遵循以下步骤和技巧:
1. 了解比的概念:比是用来比较两个或多个不同数量的关系的工具。
了解比的定义和基本性质,例如,比的大小可以通过比较其中一项与另一项的比值得出。
2. 阅读题目并理解:仔细阅读题目,确保理解题目所给的信息和要求。
3. 确定参照物:根据题目给出的条件,确定比较中的基准物或参照物。
参照物通常是1或100,可以帮助你进行比较。
4. 进行比较:根据题目所给的条件和参照物,确定比较中的其他物体的数量。
如果没有给出直接的数量,可以通过计算或推理来确定。
5. 应用比的原理:根据题目的要求,利用比的计算方式来解决问题。
比的计算方式包括比的增加、减少、相等、倍数等。
6. 注意单位和精度:在进行比较时,注意物体的单位和数值的精度。
确保在比较过程中保持一致的单位和正确的精度。
7. 检查答案:在完成解题过程后,仔细检查答案是否符合题目的要求和逻辑。
检查计算过程和结果,确保没有错误。
以上是解决六年级比的应用题的一般步骤和技巧,希望能对你有所帮助。
记住,多做练习可以提高解题能力和掌握技巧。
一元一次方程运用题精讲

一元一次方程应用题1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h=r2h②长方体的体积 V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题利润=每个期数内的利息本金×100% 利息=本金×利率×期数一元一次方程应用题分类专题练习列方程解应用题,是初中数学的重要内容之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般解应用题的方法、步骤
教学内容:课本第45-46页。
教学要求:使学生掌握解答应用题的一般步骤,能用综合算式解答用小数计算的一般应用题,培养学生分析问题和解决问题的能力。
教学过程:
一、复习。
1.根据问题找条件。
(1)已经做了多少套?
(2)剩下多少套?
(3)平均每天做多少套?
(4)剩下的平均每天做多少套?
2.根据条件,补充问题。
(1)第一单元测验×××同学得了60分,×××同学得了96分,?
(2)×××同学骑自行车上学用了0.25小时,如果他每小时行12千米,?
(3)小明第一单元测验目标取90分,实际上她取得了96.5的好成绩,?
二、新授。
1.引入新课:刚才我们补充了几道应用题,并且解答了。
下面我们就来归纳一个解答一般应用题的方法。
(板书:解答应用题的方法)
2.引题:
为了提高计算能力,老师原计划要求同学们一周内做120道口算题,已经做了4天,平均每天做20道,剩下的现在要2天内完成,平均每天做多少道?
要求学生:说一说你是怎样想的?先算什么,再算什么?
3.教学例1:
一个服装厂计划做660套衣服,已经做了5天,平均每天做75套。
剩下的要3天做完,平均每天要做多少套?
(1)学生读题,找出已知什么?问题是什么?
(2)根据已知条件,教师指导画出线段图帮助学生理解题意:
图上计划做660套,用一条线段表示,看计划做660套分成几个部分?图上哪一段指5天做的?剩下3天要做的在哪一段上?
(3)分析数量关系:
〖1〗从线段图可以看出,要求后3天平均每做多少套,就必须要知道什么?(3天还要做多少套)
〖2〗要求3天还要做多少套?又必须要知道什么?(一共做了多少套和已做了多少套)〖3〗要求已做了多少套必须知道什么?(做了5天,每天做75套)而这两个条件都是已知的。
〖4〗从以上分析,我们知道,这道应用题先算什么,再算什么?最后算什么?
(4)确定每一步该怎样算,列式计算。
〖1〗已经做了多少套?75×5=375(套)
〖2〗后3天还要做多少套?660-375=285(套)
〖3〗平均每天要做多少套?285÷3=95(套)
〖4〗列综合算式:
(660-75×5)÷3=95(套)
(5)进行检查或验算后,写出答案。
验算:75×5+95×3=660(套)
或(660-95×3)÷5=75(套)
教师指出:验算方法就是把求出问题看作已知条件代入应用题,把原题中一个条件看作问题,列式计算检查是否符合原题要求。
小结:从这道题我们可以看出,在解题时,可先找出已知条件和问题,通过画线段图分析数量关系,后从问题出发,找出解答这问题的条件,直到两个条件都是已知为止。
课本是利用这种方法分析的。
(指导看书)
解答应用题我们还可以用另种方法分析数量关系,即从条件出发进行思考,直到得到解答为止,这种思路是顺推的方法,实际就是我们刚才写的解题步骤,所以分析应用题时也要学会这种思路。
在解答应用题时只要列出分步式可综合算式,再写出答案。
画线段图,分析过程,验算过程可不写来。
三、巩固练习。
1、把例题改为:
一个服装厂计划做660套衣服,已经做了5天,平均每天做75套。
剩下的如果平均每天做95套,还要做多少天?
学生试做
2、练习十二第1题。
练习十二第2题。
要求学生先试画线段图说一说分析过程。
四、作业。
练习十二第3、4题。