中考数学复习视图与投影

合集下载

2022年中考数学真题分项汇编(全国通用) :视图与投影、尺规作图、命题与定理(解析版)

2022年中考数学真题分项汇编(全国通用) :视图与投影、尺规作图、命题与定理(解析版)

专题16 视图与投影、尺规作图、命题与定理一.选择题1.(2022·山东临沂)如图所示的三棱柱的展开图不可能...是()A.B.C.D.【答案】D【分析】三棱柱的表面展开图的特点,由三个长方形的侧面和上下两个三角形的底面组成.从而可得答案.【详解】解:选项A、B、C均可能是该三棱柱展开图,不符合题意,而选项D中的两个底面会重叠,不可能是它的表面展开图,符合题意,故选:D.【点睛】考查了几何体的展开图,动手折叠一下,有助于空间想象力的培养.2.(2022·江苏常州)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A.【点睛】本题考查垂线段最短,熟知垂线段最短是解答的关键.3.(2022·广西贵港)下列命题为真命题的是()A a=B.同位角相等C.三角形的内心到三边的距离相等D.正多边形都是中心对称图形【答案】C【分析】根据判断命题真假的方法即可求解.【详解】解:当0a<a-,故A为假命题,故A选项错误;当两直线平行时,同位角才相等,故B为假命题,故B选项错误;三角形的内心为三角形内切圆的圆心,故到三边的距离相等,故C为真命题,故C选项正确;三角形不是中心对称图形,故D为假命题,故D选项错误,故选:C.【点睛】本题考查了真假命题的判断,熟练掌握其判断方法是解题的关键.4.(2022·湖南邵阳)下列四个图形中,圆柱体的俯视图是()A.B.C.D.【答案】D【分析】根据俯视图是从上面看到的视图进而得出答案即可.【详解】解:竖直放置的圆柱体,从上面看是圆,所以俯视图是圆.故选∶D.【点睛】此题考查了简单几何体的三视图,解题的关键是熟练掌握圆柱体的三视图.5.(2022·湖北鄂州)如图所示的几何体是由5个完全相同的小正方体组成,它的主视图是()A.B.C.D.【答案】A【分析】根据从正面看到的图形是主视图,即可得.【详解】解:从前面看,第一层是两个小正方形,第二层左边一个小正方形,第三层左边1个小正方形,故选A.【点睛】本题考查了简单几何体的三视图,解题的关键是掌握从正面看到的图形是主视图.6.(2022·辽宁锦州)下列命题不正确...的是()A.经过直线外一点,有且只有一条直线与这条直线平行B.负数的立方根是负数C.对角线互相垂直的四边形是菱形D.五边形的外角和是360︒【答案】C【分析】由平行线公理、立方根的定义、菱形的判定定理、多边形的外角和,分别进行判断,即可得到答案.【详解】解:A、经过直线外一点,有且只有一条直线与这条直线平行;故A正确;B、负数的立方根是负数;故B正确;C、对角线互相垂直的平行四边形是菱形,故C错误;D、五边形的外角和是360︒,故D正确;故选:C【点睛】本题考查了判断命题的真假,以及考查了平行线公理、立方根的定义、菱形的判定定理、多边形的外角和,解题的关键是掌握所学的知识,正确的进行判断.7.(2022·内蒙古通辽)下列命题:①()3235m n m n⋅=;②数据1,3,3,5的方差为2;③因式分解()()3x x x x x-=+-;④平分弦的直径垂直于弦;则1 422x.其≥中假命题的个数是()A.1B.3C.2D.4【答案】C【分析】根据积的乘方,方差的计算,多项的因式分解,垂径定理的推论,二次根式有意义的条件,逐项判断即可求解.【详解】解:①()3362m n m n ⋅=,故原命题是假命题; ②数据1,3,3,5的平均数为()1133534+++= ,所以方差为()()()()222211333335324⎡⎤-+-+-+-=⎣⎦,是真命题; ③()()()324422x x x x x x x -=-=+-,是真命题;④平分弦(不是直径)的直径垂直于弦,故原命题是假命题;10x -≥,即1≥x ,是真命题;∴假命题的个数是2.故选:C【点睛】本题主要考查了积的乘方,方差的计算,多项的因式分解,垂径定理的推论,二次根式有意义的条件,熟练掌握相关知识点是解题的关键.8.(2022·山东威海)过直线l 外一点P 作直线l 的垂线PQ .下列尺规作图错误的是( )A .B .C .D .【答案】C【分析】根据线段垂直平分线的逆定理及两点确定一条直线一一判断即可.【详解】A 、如图,连接AP 、AQ 、BP 、BQ ,AP=BP,AQ=BQ,∴点P在线段AB的垂直平分线上,点Q在线段AB的垂直平分线上,∴直线PQ垂直平分线线段AB,即直线l垂直平分线线段PQ,本选项不符合题意;B、如图,连接AP、AQ、BP、BQ,AP= AQ,BP =BQ,∴点A在线段PQ的垂直平分线上,点B在线段PQ的垂直平分线上,∴直线AB垂直平分线线段PQ,即直线l垂直平分线线段PQ,本选项不符合题意;C、C项无法判定直线PQ垂直直线l,本选项符合题意;D、如图,连接AP、AQ、BP、BQ,AP= AQ,BP =BQ,∴点A在线段PQ的垂直平分线上,点B在线段PQ的垂直平分线上,∴直线AB垂直平分线线段PQ,即直线l垂直平分线线段PQ,本选项不符合题意;故选:C.【点睛】本题考查作图-复杂作图,线段垂直平分线的逆定理及两点确定一条直线等知识,读懂图像信息是解题的关键,属于中考常考题型.9.(2022·湖南长沙)如图,在ABC中,按以下步骤作图:①分别过点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交于P 、Q 两点; ②作直线PQ 交AB 于点D ;③以点D 为圆心,AD 长为半径画弧交PQ 于点M 、连接AM 、BM .若AB =AM 的长为( )A .4B .2 CD【答案】B 【分析】根据作图可知PM 垂直平分AB ,12DM AB =,ABM 是等腰直角三角形,据此即可求解.【详解】解:由作图可得PM 垂直平分AB ,12AD DM AB ===则ADM 是等腰直角三角形∴由勾股定理得:2AM =故选:B .【点睛】本题考查了作垂线,等腰直角三角形的性质,勾股定理,掌握基本作图理解题意是解题的关键.11.(2022·贵州毕节)在ABC 中,用尺规作图,分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N .作直线MN 交AC 于点D ,交BC 于点E ,连接AE .则下列结论不一定正确的是( )A .AB AE =B .AD CD =C .AE CE =D .ADE CDE ∠=∠【答案】A【分析】根据作图可知AM =CM ,AN =CN ,所以MN 是AC 的垂直平分线,根据垂直平分线的性质,线段垂直平分线上的点到线段两端的距离相等,且平分此点到线段两端构成的夹角,分别对各选项进行判断.【详解】由题意得,MN 垂直平分线段AC ,∴AD CD =,AE CE =,ADE CDE ∠=∠所以B 、C 、D 正确,因为点B 的位置不确定,所以不能确定AB =AE ,故选 A【点睛】本题考查了线段垂直平分线,熟练掌握线段垂直平分线的作图方法和性质是解题的关键. 10.(2022·四川广安)下列说法正确的是( )A .对角线相等的四边形是矩形.B .相似三角形的面积的比等于相似比.C .方差越大,数据的波动越大;方差越小,数据的波动越小.D .过一点有且只有一条直线与已知直线平行.【答案】C【分析】根据矩形的判定,相似三角形的性质,方差的意义,平行公理逐项分析判断即可求解.【详解】解:A. 对角线相等的平行四边形是矩形,故该选项不正确,不符合题意;B. 相似三角形的面积的比等于相似比的平方,故该选项不正确,不符合题意;C. 方差越大,数据的波动越大;方差越小,数据的波动越小,故该选项正确,符合题意;D. 同一平面内,过直线外一点有且只有一条直线与已知直线平行,故该选项不正确,不符合题意; 故选C【点睛】本题考查了矩形的判定,相似三角形的性质,方差的意义,平行公理,掌握相关知识是解题的关键.12.(2022·山东烟台)如图,是一个正方体截去一个角后得到的几何体,则该几何体的左视图是( )A .B .C .D .【答案】A【分析】根据左视图是从左面看到的图形判定则可.【详解】解:从左边看,可得如下图形:故选:A.【点睛】本题考查三视图、熟练掌握三视图的定义是解决问题的关键.13.(2022·山东聊城)如图,该几何图形是沿着圆锥体的轴切割后得到的“半个”圆锥体,它的左视图是()A.B.C.D.【答案】B【分析】根据左视图的定义及画法即可判定.【详解】解:从左边看该几何体是一个斜边在左侧的直角三角形,故选:B.【点睛】本题考查画简单几何的三视图,熟练掌握和运用简单几何三视图的画法是解决本题的关键.14.(2022·内蒙古赤峰)下面几何体的俯视图是()A.B.C.D.【答案】B【分析】俯视图是从物体的上面看得到的视图.【详解】圆台的俯视图是一个同心圆环.故选:B.【点睛】本题考查几何体的三视图,主要考查学生空间想象能力及对立体图形的认知能力.15.(2022·黑龙江)如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7B.8C.9D.10【答案】B【分析】这个几何体共有2层,由俯视图可得第一层小正方体的个数,由左视图可得第二层小正方体的最多个数,再相加即可.【详解】由俯视图可知最底层有5个小正方体,由左视图可知这个几何体有两层,其中第二层最多有3个,+=个.那么搭成这个几何体所需小正方体最多有538故选:B.【点睛】本题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.16.(2022·广西贵港)一个圆锥如右图所示放置,对于它的三视图,下列说法正确的是()A.主视图与俯视图相同B.主视图与左视图相同C.左视图与俯视图相同D.三个视图完全相同【答案】B【分析】根据三视图的定义即可求解.【详解】解:主视图为等腰三角形,左视图为等腰三角形,俯视图为有圆心的圆,故主视图和左视图相同,主视图俯视图和左视图与俯视图都不相同,故选:B.【点睛】本题考查了几何体的三视图,掌握三视图的定义,会看得出三视图是解题的关键.17.(2022·山东青岛)如图①.用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”.图②“堑堵”的俯视图是()A.B.C.D.【答案】C【分析】根据几何体的俯视图是从上面看进行判断解答即可.【详解】解:由图可知,该“堑堵”的俯视图是,故选:C.【点睛】本题考查几何体的俯视图,理解俯视图的概念是解答的关键.18.(2022·辽宁)如图所示的几何体是由4个完全相同的小正方体搭成的,它的主视图是()A.B.C.D.【答案】C【分析】根据几何体的三视图可直接进行排除选项.【详解】解:由题意得:该几何体的主视图为;故选C.【点睛】本题主要考查三视图,熟练掌握几何体的三视图是解题的关键.19.(2022·辽宁营口)如图是由五个相同的正方体搭成的几何体,这个几何体的左视图是()A.B.C.D.【答案】B【分析】左视图是从物体的左边观察得到的图形,结合选项进行判断即可.【详解】解:从左边看,有两列,从左到右第一列是两个正方形,第二列底层是一个正方形.故选:B.【点睛】本题考查了简单组合体的三视图,属于基础题,解答本题的关键是掌握左视图的定义.20.(2022·广西玉林)如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】根据几何体的三视图可进行求解.【详解】解:由题意可知该几何体的主视图为;故选B.【点睛】本题主要考查三视图,熟练掌握三视图是解题的关键.21.(2022·四川广安)如图所示,几何体的左视图是()A.B.C.D.【答案】B【分析】根据从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图形是俯视图判断即可.【详解】解:几何体的左视图是故选:B.【点睛】本题考查了几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图形是俯视图.掌握以上知识是解题的关键.22.(2022·内蒙古呼和浩特)图中几何体的三视图是()A.B.C.D.【答案】C【分析】根据图示确定几何体的三视图即可得到答案.【详解】由几何体可知,该几何体的三视图为故选C【点睛】本题考查了简单几何体的三视图,掌握三视图的视图方位及画法是解题的关键,注意实际存在又没有被其他棱所挡,在所在方向看不到的棱应用虚线表示.23.(2022·贵州遵义)如图是《九章算术》中“堑堵”的立体图形,它的左视图为()A.B.C.D.【答案】A【分析】根据左视图的意义和画法可以得出答案.【详解】解:∵该几何体为放倒的三棱柱,∴根据左视图的画法,从左往右看,看到的是一个直角在左边的直角三角形,故选:A.【点睛】本题考查简单几何体的三视图,熟练掌握简单几何体的三视图是解答本题的关键.从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图.24.(2022·黑龙江哈尔滨)六个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【答案】D【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看下面一层是两个小正方形,上面一层左边一个小正方形,故选:D.【点睛】本题主要考查左视图,掌握三视图是解题的关键.25.(2022·吉林)吉林松花石有“石中之宝”的美誉,用它制作的砚台叫松花砚,能与中国四大名砚媲美.下图是一款松花砚的示意图,其俯视图为()A.B.C.D.【答案】C【分析】根据俯视图的定义(从上面观察物体所得到的视图)即可得.【详解】解:其俯视图是由两个同心圆(不含圆心)组成,即为,故选:C.【点睛】本题考查了俯视图,熟记定义是解题关键.26.(2022·江苏泰州)如图为一个几何体的表面展开图,则该几何体是()A.三棱锥B.四棱锥C.四棱柱D.圆锥【答案】B【分析】底面为四边形,侧面为三角形可以折叠成四棱锥.【详解】解:由图可知,底面为四边形,侧面为三角形,∴该几何体是四棱锥,故选:B.【点睛】本题主要考查的是几何体的展开图,熟记常见立体图形的展开图特征是解题的关键.27.(2022·贵州贵阳)如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【答案】B【分析】根据圆锥体的立体图形判断即可.【详解】用平行底面的平面截圆锥体,截面是圆形,故选:B.【点睛】本题考查了截面图形的判断,具有一定的空间想象力是解答本题的关键.28.(2022·江苏常州)下列图形中,为圆柱的侧面展开图的是()A.B.C.D.【答案】D【分析】根据题意,注意其按圆柱的侧面沿它的一条母线剪开,分析得到图形的性质,易得答案.【详解】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是矩形.故选:D.【点睛】本题考查的是圆柱的展开图,解题的关键是需要对圆柱有充分的理解;难度不大.29.(2022·四川内江)如图是正方体的表面展开图,则与“话”字相对的字是()A.跟B.党C.走D.听【答案】C【分析】根据正方体表面展开图的特征进行判断即可.【详解】解:由正方体表面展开图的“相间、Z端是对面”可知,“话”与“走”是对面,故答案为:C.【点睛】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的前提.30.(2022·北京)下面几何体中,是圆锥的为()A.B.C.D.【答案】B【分析】观察所给几何体,可以直接得出答案.【详解】解:A选项为圆柱,不合题意;B选项为圆锥,符合题意;C选项为三棱柱,不合题意;D选项为球,不合题意;故选B.【点睛】本题考查常见几何体的识别,熟练掌握常见几何体的特征是解题的关键.圆锥面和一个截它的平面,组成的空间几何图形叫圆锥.31.(2022·广西)下列几何体中,主视图为矩形的是()A.B.C.D.【答案】C【分析】根据常见几何体的主视图,依次判断即可.【详解】A.该三棱锥的主视图为中间有条线段的三角形,故不符合题意;B.该圆锥的主视图为三角形,故不符合题意;C.该圆柱的主视图为矩形,故符合题意;D.该圆台的主视图为梯形,故不符合题意;故选:C.【点睛】本题考查常见几何体的三视图,掌握常见几何体的三视图是解答本题的关键.32.(2022·湖北恩施)下图是一个正方体纸盒的展开图,将其折叠成一个正方体后,有“振”字一面的相对面上的字是()A.“恩”B.“乡”C.“村”D.“兴”【答案】D【分析】根据正方体的平面展开图的特点即可得.【详解】解:由正方体的平面展开图的特点得:“恩”字与“乡”字在相对面上,“施”字与“村”字在相对面上,“振”字与“兴”字在相对面上,故选:D.【点睛】本题考查了正方体的平面展开图,熟练掌握正方体的平面展开图的特点是解题关键.33.(2022·四川广元)如图是某几何体的展开图,该几何体是()A.长方体B.圆柱C.圆锥D.三棱柱【答案】B【分析】根据几何体的展开图可直接进行排除选项.【详解】解:由图形可得该几何体是圆柱;故选B.【点睛】本题主要考查几何体的展开图,熟练掌握几何体的展开图是解题的关键.34.(2022·湖北武汉)如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【答案】A【分析】根据从正面所看得到的图形为主视图,据此解答即可.【详解】解:从正面可发现有两层,底层三个正方形,上层的左边是一个正方形.故选:A.【点睛】本题主要考查了三视图的知识,掌握主视图是从物体的正面看得到的视图成为解答本题的关键.35.(2022·四川凉山)如图所示的几何体的主视图是()A.B.C.D.【分析】根据主视图的定义(从正面观察物体所得到的视图叫主视图)即可得.【详解】解:这个几何体的主视图是故选:C.【点睛】本题考查了主视图,熟记定义是解题关键.36.(2022·四川泸州)如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.【答案】C【分析】观察图中几何体中正方体摆放的位置,根据俯视图是从上面看到的图形即可判定.【详解】解:由俯视图的定义可知:从上往下观察发现∶故选C.【点睛】本题考查三视图,解题的关键是熟练掌握俯视图是从物体上面看所得到的图形.37.(2022·浙江湖州)如图是由四个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【答案】D【分析】主视图就是从主视方向看到的正面的图形,也可以理解为该物体的正投影,据此求解即可.【详解】解:观察该几何体发现:从正面看到的应该是三个正方形,上面左边1个,下面2个,【点睛】本题考查了简单组合体的三视图,解题的关键是了解主视图的定义,属于基础题,难度不大.38.(2022·四川眉山)下列立体图形中,俯视图是三角形的是()A.B.C.D.【答案】B【分析】俯视图是从物体上面看所得到的图形,据此判断得出物体的俯视图.【详解】解:A、圆锥体的俯视图是圆,故此选项不合题意;B、三棱柱的俯视图是三角形,故此选项符合题意;C、球的俯视图是圆,故此选项不合题意;D、圆柱体的俯视图是圆,故此选项不合题意;故选:B.【点睛】本题考查了几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.39.(2022·浙江台州)如图是由四个相同的正方体搭成的立体图形,其主视图是()A.B.C.D.【答案】A【分析】找到几何体的正面看所得到的图形即可.【详解】解:从几何体的正面看可得如下图形,故选:A.【点睛】此题主要考查了简单几何体的三视图,关键是掌握主视图是从正面所看到的图形.40.(2022·黑龙江绥化)下列命题中是假命题的是()A.三角形的中位线平行于三角形的第三边,并且等于第三边的一半B.如果两个角互为邻补角,那么这两个角一定相等C.从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角D.直角三角形斜边上的中线等于斜边的一半【答案】B【分析】利用三角形的中位线定理、邻补角性质、切线长定理以及直角三角形斜边上的中线的性质分别判断后即可确定正确的选项.【详解】解:A. 三角形的中位线平行于三角形的第三边,并且等于第三边的一半,是真命题,故此选项不符合题意;B. 如果两个角互为邻补角,那么这两个角不一定相等,故此选项是假命题,符合题意;C. 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角,是真命题,故此选项不符合题意;D. 直角三角形斜边上的中线等于斜边的一半,是真命题,故此选项不符合题意;故选:B【点睛】考查了命题与定理的知识,解题的关键是了解三角形的中位线定理、邻补角性质、切线长定理以及直角三角形斜边上的中线的性质.41.(2022·广西河池)下列几何体中,三视图的三个视图完全相同的几何体是()A.B.C.D.【答案】D【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【详解】解:A.三棱柱的俯视图与主视图和左视图都不同,故此选项错误;B.圆柱的俯视图与主视图和左视图不同,故此选项错误;C.圆锥的俯视图与主视图和左视图不同,故此选项错误;D.球的三视图完全相同,都是圆,故此选项正确.故选:D.【点睛】本题主要考查了三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.42.(2022·辽宁锦州)如图是某几何体的三视图,该几何体是( )A .B .C .D .【答案】C【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体是圆锥.故选:C .【点睛】本题考查了由三视图判断几何体,主视图和左视图的大致轮廓为三角形的几何体为锥体. 43.(2022·内蒙古呼和浩特)以下命题:①面包店某种面包售价a 元/个,因原材料涨价,面包价格上涨10%,会员优惠从打八五折调整为打九折,则会员购买一个面包比涨价前多花了0.14a 元;②等边三角形ABC 中,D 是BC 边上一点,E 是AC 边上一点,若AD AE =,则3∠=∠BAD EDC ;③两边及第三边上的中线对应相等的两个三角形全等;④一列自然数0,1,2,3,55,依次将该列数中的每一个数平方后除以100,得到一列新数,则原数与对应新数的差,随着原数的增大而增大.其中真命题的个数有( )A .1个B .2个C .3个D .4个【答案】C【分析】根据全等三角形的判定与性质、二次函数的性质等知识逐项判断即可,【详解】解:①项,会员原来购买一个面包需要0.85a 元,现在需要a ×(1+10%)×0.9=0.99a ,则会员购买一个面包比涨价前多花了0.99a -0.85a =0.14a 元,故①项正确;②项,如图,∵△ABC是等边三角形,∴∠B=∠C=60°,∵∠B+∠BAD=∠ADE+∠EDC,∠C+∠EDC=∠AED,又∵AD=AE,∴∠ADE=∠AED,∴∠B+∠BAD=∠ADE+∠EDC=∠C+∠EDC+∠EDC,∴∠BAD=∠EDC+∠EDC=2∠EDC,故②项错误;③项,如图,△ABC和△DEF,AB=DE,AC=DF,AM是△ABC的BC边上的中线,DN是△DEF的边EF上的中线,AM=DN,即有△ABC≌△DEF,理由如下:延长AM至G点,使得AM=GM,连接GC,延长DN至H点,使得DN=NH,连接HF,∵AM是中线,∴BM=MC,∵AM=MG,∠AMB=∠GMC,∴△AMB≌△GMC,∴AB=GC,同理可证DE=HF,∵AM=DN,∴AG=2AM=2DN=DH,∵AB =DE ,∴GC =HF ,∴结合AC =DF 可得△ACG ≌△DFH ,∴∠GAC =∠HDF ,同理可证∠GAB =∠HDE ,∴∠BAC =∠GAB +∠GAC =∠HDF +∠HDE =∠EDF ,∵AB =DE ,AC =DF ,∴△ABC ≌△DEF ,故③正确;④设原数为x ,则新数为21100x ,设原数与新数之差为y , 即21100y x x =-,变形为:21(50)25100y x =--+, 将x 等于0、1、2、3、55分别代入可知,y 随着x 的增大而增大,故④正确;即正确的有三个,故选:C ,【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、二次函数的应用等知识,掌握全等三角形的判定与性质是解答本题的关键.44.(2022·吉林长春)如图,在ABC 中,根据尺规作图痕迹,下列说法不一定正确的是( )A .AF BF =B .12AE AC = C .90DBF DFB ∠+∠=︒D .BAF EBC ∠=∠【答案】B 【分析】根据尺规作图痕迹,可得DF 垂直平分AB ,BE 是ABC ∠的角平分线,根据垂直平分线的性质和角平分线的定义,直角三角形两锐角互余,等边对等角的性质进行判断即可.【详解】根据尺规作图痕迹,可得DF 垂直平分AB ,BE 是ABC ∠的角平分线,,90,AF BF BDF ABF CBE ∴=∠=︒∠=∠,。

备战中考数学分点透练真题视图与投影(解析版)

备战中考数学分点透练真题视图与投影(解析版)

第二十四讲视图与投影命题点1 三视图的判断类型一常见几何体视图的判断1.(2021•苏州)如图,圆锥的主视图是()A.B.C.D.【答案】A【解答】解:圆锥的主视图是一个等腰三角形,故选:A.2.(2021•温州)直六棱柱如图所示,它的俯视图是()A.B.C.D.【答案】C【解答】解:从上面看这个几何体,看到的图形是一个正六边形,因此选项C中的图形符合题意,故选:C.3.(2021•湘潭)下列几何体中,三视图不含圆的是()A.B.C.D.【答案】C【解答】解:A、圆柱的俯视图是圆,故不符合题意;B、球的三视图都是圆,故不符合题意;C、正方体的三视图都是正方形,故符合题意;D、圆锥的俯视图是圆,故不符合答题,故选:C.类型二组合体不规则几何体视图的判断4.(2021•江西)如图,几何体的主视图是()A.B.C.D.【答案】C【解答】解:从正面看该组合体,长方体的主视图为长方形,圆柱体的主视图是长方形,因此选项C中的图形符合题意,故选:C.5.(2021•泰州)如图所示几何体的左视图是()A.B.C.D.【答案】C【解答】解:从左边看,是一列两个矩形.故选:C.6.(2021•聊城)如图所示的几何体,其上半部有一个圆孔,则该几何体的俯视图是()A.B.C.D.【答案】A【解答】解:从上面看该几何体,能看见的轮廓线用实线表示,看不见的轮廓线用虚线表示,因此所看到的图形与选项A中的图形相同,故选:A.7.(2021•本溪)如图,该几何体的左视图是()A.B.C.D.【答案】D【解答】解:从左面看该几何体所得到的图形是一个长方形,被挡住的棱用虚线表示,图形如下:故选:D.8.(2021•福建)如图所示的六角螺栓,其俯视图是()A.B.C.D.【答案】A【解答】解:从上边看,是一个正六边形,六边形内部是一个圆,故选:A.9.(2021•吉林)如图,粮仓可以近似地看作由圆锥和圆柱组成,其主视图是()A.B.C.D.【答案】A【解答】解:粮仓主视图上部视图为等腰三角形,下部视图为矩形.故选:A.类型四小正方体组合体视图的判断10.(2020•北碚区自主招生)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【答案】A【解答】解:从正面看有两层,底层两个正方形,上层左边一个正方形,左齐.故选:A.11.(2021•河南)如图是由8个相同的小正方体组成的几何体,其主视图是()A.B.C.D.【答案】A【解答】解:该几何体的主视图有三层,从上而下第一层主视图为一个正方形,第二层主视图为两个正方形,第三层主视图为三个正方形,且左边是对齐的.故选:A.12.(2021•随州)如图是由4个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同【答案】A【解答】解:如图所示:故该组合体的三视图中完全相同的是主视图和左视图,故选:A.13.(2021•泰安)如图是由若干个同样大小的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.【答案】B【解答】解:从左边看从左到右第一列是两个小正方形,第二列有4个小正方形,第三列有3个小正方形,故选:B.14.(2021•齐齐哈尔)由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体的个数最多为()A.7个B.8个C.9个D.10个【答案】A【解答】解:根据题意得:,则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故选:A.命题点2 三视图还原几何体及其相关计算15.(2021•安徽)几何体的三视图如图所示,这个几何体是()A.B.C.D.【答案】C【解答】解:根据该组合体的三视图发现该几何体为.故选:C.16.(2021•东营)已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为()A.214°B.215°C.216°D.217°【答案】C【解答】解:由三视图可知,该几何体为圆锥;由三视图数据知圆锥的底面圆的直径为6、半径为3,高为4,则母线长为=5,所以则该几何体的侧面展开图圆心角的度数为π×6÷(π×5)×180°=216°.故选:C.17.(2021•眉山)我国某型号运载火箭的整流罩的三视图如图所示,根据图中数据(单位:米)计算该整流罩的侧面积(单位:平方米)是()A.7.2πB.11.52πC.12πD.13.44π【答案】C【解答】解:观察图形可知:圆锥母线长为:=2(米),所以该整流罩的侧面积为:π×2.4×4+π×(2.4÷2)×2=12π(平方米).答:该整流罩的侧面积是12π平方米.故选:C.18.(2021•云南)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为.【答案】3π【解答】解:由三视图知几何体为圆柱,且底面圆的半径是1,高是3,∴这个几何体的体积为:π×12×3=3π.故答案为:3π.命题点3 立体图形的展开与折叠类型一常见几何体的展开图19.(2021•扬州)把如图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱【答案】A【解答】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选:A.20.(2021•金华)将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A.B.C.D.【答案】D【解答】解:选项A、B、C均可能是该直棱柱展开图,不符合题意,而选项D中的两个底面会重叠,不可能是它的表面展开图,符合题意,故选:D.类型二正方体的展开图21.(2021•自贡)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是()A.百B.党C.年D.喜【答案】B【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“迎”与“党”相对,面“建”与面“百”相对,“喜”与面“年”相对.故选:B.22.(2021•河北)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表【答案】A【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是3.故选:A.11。

中考数学专题复习《视图、投影与尺规作图》专项检测题 ( 含答案)

中考数学专题复习《视图、投影与尺规作图》专项检测题 ( 含答案)

视图、投影与尺规作图检测题一、三视图类型一三视图的判断1.如图所示的几何体的俯视图可能是()2.如图所示的三棱柱的主视图是()3.左下图为某几何体的示意图,则该几何体的主视图应为()4.如图所示的是三通管的立体图,则这个几何体的俯视图是()5.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()6.如图①放置的一个机器零件,若其主(正)视图如图②所示,则其俯视图是()第6题图7.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()8.如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()9.下列几何体中,正视图是矩形的是( )10.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是( )11.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()类型二由三视图还原几何体及相关计算1.一个几何体的三视图如图所示,这个几何体是()A. 棱柱B. 圆柱C. 圆锥D. 球第1题图第2题图2.如图,一个简单几何体的三视图的主视图与左视图都为正三角形,其俯视图为正方形,则这个几何体是( )A. 四棱锥B. 正方体C. 四棱柱D. 三棱锥3.下面是一个几何体的三视图,则这个几何体的形状是()第3题图A. 圆柱B. 圆锥C. 圆台D. 三棱柱4.一个几何体的三视图如图所示,那么这个几何体是()第4题图5.小颖同学到学校领来n盒粉笔,整齐地摞在讲桌上,其三视图如图所示,则n 的值是()第5题图A. 6B. 7C. 8D. 96.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有( )第6题图A. 8B. 9C. 10D. 117.由若干个边长为1 cm的正方体堆积成一个几何体,它的三视图如图,则这个几何体的表面积是( )A. 15 2cmcm D. 24 2cm C. 21 2cm B. 18 2第7题图第8题图8.某商品的外包装盒的三视图如图所示,则这个包装盒的体积是()A. 200π3cmcm B. 500π3C. 1000π3cmcm D. 2000π3命题点2 投影1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序排列正确的是()A. (3)(1)(4)(2)B. (3)(2)(1)(4)C. (3)(4)(1)(2)D. (2)(4)(1)(3)命题点3 立体图形的展开与折叠1.在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制作了一个正方体玩具,其展开图如图所示,原正方体与“文”字所在的面相对的面上标的字应是( )A. 全B. 明C. 城D. 国第1题图2.下列四个图形是正方体的平面展开图的是()3.把如图中的三棱柱展开,所得到的展开图是( )第3题图 第4题图4.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12 cm ,底面周长为10 cm ,在容器内壁离容器底部3 cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A. 13 cmB. 261 cmC. 61 cmD. 234 cm命题点4 尺规作图1.如图,在△ABC 中,∠C =90°,∠B =30以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上; ④S △DAC :S △ABC =1∶3.A. 1B. 2C. 3D. 4第1题图2.如图所示,已知线段AB .(1)用尺规作图的方法作出线段AB 的垂直平分线l (保留作图痕迹,不要求写出作法);(2)在(1)中所作的直线l 上任意取两点M 、N (线段AB 的上方),连接AM 、AN 、BM 、BN ,求证:∠MAN =∠MBN .第2题图参考答案命题点1三视图类型一三视图的判断1. C【解析】圆锥的主视图、左视图和俯视图分别为等腰三角形、等腰三角形和带圆心的圆.2. B 【解析】主视图是从几何体正面看得到的图形,该几何体从正面看,是两个具有公共边的长方形组成的图形,只有选项B符合题意.3. A【解析】从前往后看,可得到本题的主视图为五边形.4. A【解析】俯视图指的是从上向下看到的平面图形.圆柱体的俯视图是长方形,圆应该在长方形的中间.5. A【解析】A选项是主视图,B选项是左视图,C选项不是这个正六棱柱形密封罐的视图,D选项是俯视图.6. D【解析】长方体的俯视图是一个长方形,从上面看共有三列,所以这个组合体的俯视图是D.7. B【解析】俯视图即从上面看物体所得的平面图形.观察图形可得,从上往下看,该几何体的小正方体共有三行三列,第一行第二列有1个,第二行每列1个,第三行第一列1个,因此B选项正确.8. C【解析】俯视图是由上往下观察几何体所得到的图形.几何体上半部为正三棱柱,下半部为圆柱,所以其俯视图由圆和其内接等边三角形组成,故选C.9. B×××10. C视图都是圆,故选C.11. D【解析】从正面看共三列,第一列有三个小正方形,第二列有两个小正方形,第三列有三个小正方形,故选D.类型二由三视图还原几何体及相关计算1. B【解析】本题的几何体是常见几何体,从正面看到的是一个矩形,从左面看到的是一个矩形,从上面看到的是一个圆,所以这个几何体为圆柱.2. A【解析】由底面是有对角线的正方形,侧面是正三角形可以推断出它是四棱锥.3. B【解析】选项名称三视图(主视图,左视图,俯视图)正误A圆柱矩形,矩形,圆×B圆锥等腰三角形,等腰三角形,带圆心的圆√C圆台等腰梯形,等腰梯形,无圆心的同心圆×D三棱柱矩形,矩形,三角形×4. C【解析】选项逐项分析正误A 圆锥的主视图和左视图是等腰三角形,俯视图为带圆心的圆×B 这个几何体由圆锥和圆柱两部分构成,因此俯视图应该为带圆心的圆×C 主视图为中间有一条竖线的矩形,左视图为矩形,俯视图为三角形√D主视图、左视图、俯视图均为三角形×5. B【解析】由主视图可得这些粉盒共有3层,由俯视图可得最底层有4盒,由主视图和左视图可得第二层有2盒,第三层有1盒,共有7盒.6. B【解析】由三视图得第一层有4碗,第二层最少有3碗,第三层最少有2碗,所以至少有9碗.7. B【解析】由几何体的三视图得几何体如解图所示,这个几何体是由4个边长为1 cm的小正方体组成,且重叠部分的面积正好为一个小正方体的表面积,则这个几何体的表面积为6×3=18 cm2.第7题解图8. B【解析】由三视图可知该几何体是圆柱,且底面圆半径r=5 cm,高h =20 cm,所以v=πr2h=π×52×20=500πcm3.命题点2投影C【解析】从太阳“东升西落”入手.太阳光在物体上的投影随时间而变化,投影的方向是先朝西,再逐渐转向朝东,且影长的变化经历:长→短→长(中午时刻的影长最短),因此(3)表示的时刻最早,(2)表示的时刻最晚;由于地球绕着太阳运转,物体的投影应从西边开始顺时针向东旋转,所以(4)表示的时间比(1)表示的时间早.故按时间顺序应排列为(3)→(4)→(1)→(2).命题点3立体图形的展开与折叠1. C【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“全”与“明”是相对面;“国”与“市”是相对面;“文”与“城”是相对面.2. B【解析】选项逐项分析正误A折叠后有两个面重合,缺少一个底面×B可以折叠成一个正方体√C 是“凹”字格,故不能折叠成一个正方体×D 是“田”字格,故不能折叠成一个正方体×3. B【解析】根据“两个全等的三角形,在侧面三个长方形的两侧,这样的图形围成的是三棱柱”把图中的三棱柱展开,所得到的展开图是B.4. A【解析】将圆柱沿A所在的高剪开,展平如解图所示.则MM′=NN′=10,作A关于MM′的对称点A′,连接A′B,则线段A′B即蚂蚁走的最短路径.过B作BD⊥A′N于D,则BD=NE=5,A′D=MN+A′M-BE=12+3-3=12,在Rt△A′BD中,由勾股定理得A′B=A′D2+BD2=13.第4题解图命题点4尺规作图1. D【解析】由尺规作图的作法可知,AD是∠BAC的平分线,∴①正确;∵∠BAC=60°,AD又是∠BAC的平分线,则∠CAD=30°,又∵∠C=90°,则∠ADC=60°,∴②正确;∵∠DAB=30°,∠B=30°,则AD=BD,所以点D在AB的中垂线上,∴③正确;设BD=AD=a,因为∠CAD=30°,∠C=90°,则CD=a2,根据勾股定理得:AC=3a2,∴S△ADC=3a28;BC=3a2,S△ABC=33a28,则S△DAC :S△ABC=3a28:33a28=1∶3,∴④正确;正确的共有4个.2. (1)解:如解图:第2题解图①………………………………………………………………………(5分)【作法提示】分别以A、B两点为圆心,以大于12AB为半径画弧,与两弧分别有两个交点,两点确定的直线即为线段AB的垂直平分线l.(2)证明:如解图②,∵直线l是线段AB的垂直平分线,∴MA=MB,∴∠MAB=∠MBA,……………………(6分)同理:∠NAB=∠NBA,∴∠MAB-∠NAB=∠MBA-∠NBA,……………………(8分) 即:∠MAN=∠MBN. ……………………(9分)第2题解图②。

2023年中考数学专题21 视图与投影(原卷版)

2023年中考数学专题21 视图与投影(原卷版)

专题21 视图与投影一、投影1.投影:在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光下形成的物体的投影叫做中心投影,点光叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光近的物体的影子短,离点光远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.二、视图1.视图:由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图:1)主视图:从正面看得到的视图叫做主视图.2)左视图:从左面看得到的视图叫做左视图.3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.三、几何体的展开与折叠1.常见几何体的展开图几何体立体图形表面展开图侧面展开图圆柱圆锥三棱柱2.正方体的展开图正方体有11种展开图,分为四类:第一类,中间四连方,两侧各有一个,共6种,如下图:第二类,中间三连方,两侧各有一、二个,共3种,如下图:第三类,中间二连方,两侧各有二个,只有1种,如图10;第四类,两排各有三个,也只有1种,如图11.考向一三视图1.下列立体图形中,主视图是三角形的是()A.B.C.D.2.如图所示的几何体从上面看到的形状图是()A.B.C.D.3.某立体图形如图,其从正面看所得到的图形是()A.B.C.D.4.如图的几何体由若干个棱长为1的正方体堆放而成,则这个几何体的俯视图面积.考向二几何体的还原5.下列几何体中,俯视图与主视图完全相同的几何体是()A.圆锥B.球C.三棱柱D.四棱锥6.如图是某几何体的三视图,这个几何体是()A.三棱柱B.三棱锥C.长方体D.正方体7.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A.3cm3B.14cm3C.5cm3D.7cm38.如图是由一些相同的小正方体构成的立体图形的三种视图,则构成这个立体图形的小正方体的个数是个.考向三组合正方体的最值问题9.如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5B.6C.7D.810.如图,是一个由若干个小正方体组成的几何体的主视图和左视图,则该几何体最多可由多少个小正方体组合而成?()A.12个B.13个C.14个D.15个11.如图是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则m+n=()A.14B.16C.17D.1812.如图,用小立方块搭一几何体,从正面看相从上面看得到的图形如图所示,这样的几何体至少要个立方块.考向四几何体的计算问题13.长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是()A.10cm2B.12cm2C.15cm2D.20cm214.如图所示的三棱柱,其俯视图的内角和为()A.180°B.360°C.540°D.720°15.如图,是一个几何体的三视图,则该几何体的表面积是()A.7πcm2B.(+2)πcm2C.6πcm2D.(+5)πcm2 16.某几何体从三个方向看到的图形分别如图,则该几何体的体积为.考向五立体图形的展开与折叠17.下面图形中是正方体的表面展开图的是()A.B.C.D.18.如图是一个几何体的展开图,则这个几何体是()A.B.C.D.19.从如图所示的7个小正方形中剪去一个小正方形,使剩余的6个小正方形折叠后能围成一个正方体,则应剪去标记为()的小正方形A.祝或考B.你或考C.好或绩D.祝或你或成20.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6的小正方形中不能剪去的是(填编号).考向六投影21.下列投影不是中心投影的是()A.B.C.D.22.在同一时刻,将两根长度不等的竹竿置于阳光之下,但它们的影长相等,那么这两根竹竿的相对位置是()A.两根竹竿都垂直于地面B.以两根竹竿平行斜插在地上C.两根竹竿不平行D.无法确定23.如图,晚上小明在路灯下沿路从A处径直走到B处,这一过程中他在地上的影子()A.一直都在变短B.先变短后变长C.一直都在变长D.先变长后变短24.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4m.则路灯的高度OP为m.一.选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.如图所示,圆柱的主视图是()A.B.C.D.3.下面四个几何体中,左视图为圆的是()A.B.C.D.4.如图,是一个几何体的三视图,则这个几何体是()A.B.C.D.5.如图是一个几何体的三视图,则该几何体的体积为()A.1B.2C.D.46.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体的小正方体的个数最少是()A.6B.5C.4D.3二.填空题7.一个几何体的三视图如图所示,则该几何体的表面积为.8.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是(结果保留π).9.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)10.如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面.(填字母,注意:字母只能在多面体外表面出现)11.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.12.如图是某物体的三视图,则此物体的体积为(结果保留π).三.解答题13.已知某几何体的三视图如图所示,其中俯视图为正六边形,求该几何体的表面积.14.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是(立方单位),表面积是(平方单位)(2)画出该几何体的主视图和左视图.15.一个正方体的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示.(1)A的对面是,B的对面是,C的对面是;(直接用字母表示)(2)若A=﹣2,B=|m﹣3|,C=m﹣3n﹣,E=(+n)2,且小正方体各对面上的两个数都互为相反数,请求出F所表示的数.16.用若干个棱长为1cm的小正方体搭成如图所示的几何体.(1)这个几何体的体积为cm3.(2)请在方格纸中用实线画出该几何体的主视图,左视图,俯视图.(3)这个几何体的表面积为cm2.。

中考数学专题复习:投影与视图

中考数学专题复习:投影与视图

投影与试图典题探究例2 如图是由八个相同小正方体组合而成的几何体,则其左视图是( )A. B . C . D .例3 下面四个几何体中,俯视图不是圆的几何体的个数是( )A .1B .2C .3D .4例4 如图是由几个相同的小立方块组成的三视图,小立方块的个数是( )A .3个B .4个C .5个D .6个练习一 立体图形、视图和展开图A 组1.下列四个几何体中,三视图(主视图、左视图、俯视图)相同的几何体是( )2.一个几何体的三视图如右图所示,这个几何体是()A.圆锥 B.圆柱 C.三棱锥D.三棱柱3.已知一个几何体的三视图如图所示,则该几何体是()A棱柱 B圆柱 C圆锥 D球4.如图是一个几何体的三视图,则这个几何体的形状是()(A)圆柱(B)圆锥(C)圆台(D)长方体5.下列图形中,不是三棱柱的表面展开图的是()6.圆锥侧面展开图可能是下列图中的()7.右图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是()8.将左图中的正方体纸盒沿所示的粗线剪开,其平面展开图的示意图为9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()A.低B.碳C.生D.活10.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示。

如果记6的对面的数字为a,2的对面的数字为b,那么ba 的值为()A.3 B.7 C.8 D.1111.如图①放置的一个水管三叉接头,若其正视图如图②,则其俯视图是()12.左下图为主视图方向的几何体,它的俯视图是()13.如图1是一个几何体的实物图,则其主视图是DCBA14.如图所示,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图形是()B组15.右图是一个由4个相同的正方体组成的立体图形,它的三视图为()16.如图是由五个小正方体搭成的几何体,它的左视图是()17.如图所示的几何体的俯视图是().A B DC18.如图摆放的正六棱柱的俯视图是()19.沿圆柱体上底面直径截去一部分的物体如图所示,它的俯视图是( )20.下图所示几何体的主视图是()21.一个几何体的三视图如图所示,那么这个几何体是()22.下面四个图形中,是三棱柱的平面展开图的是()23.某物体的展开图如图所示,它的左视图为()练习二中心投影与平行投影A组1.下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是 ( )2.视点指的是()A.眼睛的大小 B.眼睛看到的位置C.眼睛的位置 D.眼睛没有看到的位置3.晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是()A.变长 B.变短C.先变短后变长 D.先变长后变短4.于视线的范围,下列叙述不正确的是()A.走上坡路比走平路的视线范围小B.走上坡路比走平路的视线范围大C.在船头比在船尾向前看到的范围大D.在轿车外比在轿车里看到的范围大5.如图所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)6.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()答案例2 考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可.解答:解:从左面可看到从左往右三列小正方形的个数为:2,3,1.故选B.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.例4 考点:由三视图判断几何体.分析:根据三视图的知识,可判断该几何体有两列两行,底面有3个正方形,第二层有1个.解答:解:综合三视图可看出,底面有3个小立方体,第二层应该有1个小立方体,因此小立方体的个数应该是3+1=4个.故选B.点评:本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.练习一立体图形、视图和展开图A组1.【答案】D ;2.【答案】D;3.【答案】B ;4.【答案】B ;5.【答案】D;6.【答案】D7.【答案】B;8.【答案】C;9.【答案】A ;10.【答案】B;11.【答案】A;12.【答案】D13.【答案】C ;14.【答案】AB组15.【答案】B;16.【答案】A;17.【答案】B ;18.【答案】D ;19.【答案】D20.【答案】A ;21.【答案】A;22.【答案】A ;23.【答案】B练习二中心投影与平行投影A组1.【答案】A ;2.【答案】C;3.【答案】C;4.【答案】B ;5.【答案】先连接伞兵的头和脚与对应的影子的直线,两直线的交点即为点P,过点P作过木桩顶端的直线与地面的交点即为F.6.【答案】A。

中考数学真题分类汇编及解析(四十二)投影与视图

中考数学真题分类汇编及解析(四十二)投影与视图

(2022•玉林中考)如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【解析】选B.这个几何体的主视图如下:(2022·安徽中考)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.【解析】选A.从上面看,是一个矩形.(2022•江西中考)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A.B.C.D.【解析】选A.如图,它的俯视图为:(2022•云南中考)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥(2022•丽水中考)如图是运动会领奖台,它的主视图是()A.B.C.D.【解析】选A.从正面看,可得如下图形:(2022•绍兴中考)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.【解析】选B.由图可得,题目中图形的主视图是(2022•舟山中考)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A. B. C. D.【解析】选B.从正面看底层是三个正方形,上层左边是一个正方形.(2022•温州中考)某物体如图所示,它的主视图是()A.B.C.D.【解析】选D.某物体如图所示,它的主视图是:(2022•扬州中考)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱B.四棱锥C.三棱柱D.三棱锥【解析】选B.由于主视图与左视图是三角形,俯视图是正方形,故该几何体是四棱锥(2022•凉山州中考)如图所示的几何体的主视图是()A.B.C.D.【解析】选C.从正面看,底层是三个小正方形,上层的中间是一个小正方形(2022•泸州中考)如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.【解析】选C.从物体上面看,底层有一个正方形,上层有四个正方形(2022•湖州中考)如图是由四个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【解析】选B.观察该几何体发现:从正面看到的应该是三个正方形,上面1个左齐,下面2个(2022•宁波中考)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.【解析】选C.根据题意可得,球体的俯视图是一个圆,圆柱的俯视图也是一个圆,圆柱的底面圆的半径大于球体的半径,如图,,故C选项符合题意(2022•黄冈中考)某几何体的三视图如图所示,则该几何体是()A.圆锥 B.三棱锥 C.三棱柱 D.四棱柱【解析】选C.由三视图可知,这个几何体是直三棱柱.(2022•宜宾中考)如图是由5个相同的正方体搭成的几何体,从正面看,所看到的图形是()A.B.C.D.【解析】选D.从正面看,底层是三个相邻的小正方形,上层的右边是一个小正方形.(2022•十堰中考)下列几何体中,主视图与俯视图的形状不一样的几何体是()A. B. C. D.【解析】选C.A.正方体的主视图与俯视图都是正方形,故A不符合题意;B.圆柱的主视图与俯视图都是长方形,故B不符合题意;C.圆锥的主视图是等腰三角形,俯视图是一个圆和圆心,故C符合题意;D.球体的主视图与俯视图都是圆形,故D不符合题意.(2022•武汉中考)如图是由4个相同的小正方体组成的几何体,它的主视图是()A. B. C. D.【解析】选A.从正面看共有两层,底层三个正方形,上层左边是一个正方形.A.主视图和左视图 B.主视图和俯视图C.左视图和俯视图 D.三个视图均相同【解析】选A.该几何体的三视图中完全相同的是主视图和左视图,均为半圆;俯视图是一个实心圆. (2022•邵阳中考)下列四个图形中,圆柱体的俯视图是()A.B.C.D.【解析】选D.从圆柱体的上面看到是视图是圆,则圆柱体的俯视图是圆(2022•天津中考)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【解析】选A.从正面看底层是两个正方形,左边是三个正方形,则立体图形的主视图是A中的图形(2022•嘉兴中考)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【解析】选C.由图可知主视图为:(2022•衡阳中考)石鼓广场供游客休息的石板凳如图所示,它的主视图是()A.B.C.D.【解析】选A.从正面看,可得如下图形,(2022•湘潭中考)下列几何体中,主视图是三角形的是()A.B.C.D.【解析】选A.A、圆锥的主视图是三角形,故此选项符合题意;B、圆柱的主视图是长方形,故此选项不符合题意;C、球的主视图是圆,故此选项不符合题意;D、三棱柱的主视图是长方形,中间还有一条实线,故此选项不符合题意(2022•眉山中考)下列立体图形中,俯视图是三角形的是()A.B.C.D.【解析】选B.A、圆锥体的俯视图是圆,故此选项不合题意;B、三棱柱的俯视图是三角形,故此选项符合题意;C、球的俯视图是圆,故此选项不合题意;D、圆柱体的俯视图是圆,故此选项不合题意(2022•台州中考)如图是由四个相同的正方体搭成的立体图形,其主视图是()A.B.C.D.【解析】选A.根据题意知,几何体的主视图为:(2022•福建中考)如图所示的圆柱,其俯视图是()A.B.C.D.【解析】选A.根据题意可得,圆柱的俯视图如图,.大致形状是()A.B.C.D.【解析】选B.根据长鼓舞中使用的“长鼓”内腔挖空,两端相通,可知俯视图中空,两端鼓口为圆形可知俯视图是圆形.(2022•雅安中考)下列几何体的三种视图都是圆形的是()A.B.C.D.【解析】选B.A选项的主视图和左视图为长方形,A选项不符合题意;∵B选项的三种视图都是圆形,∴B选项符合题意;∵C选项的主视图和左视图为等腰三角形,∴C选项不符合题意;∵D选项主视图和左视图为等腰梯形,∴D选项不符合题意;综上,B选项的三种视图都是圆形.(2022•贺州中考)下面四个几何体中,主视图为矩形的是()A.B.C.D.【解析】选A.A.长方体的主视图是矩形,故本选项符合题意;B.三棱锥的主视图是三角形,故本选项不符合题意;C.圆锥的主视图是等腰三角形,故本选项不符合题意;D.圆台的主视图是等腰梯形,故本选项不符合题意.(2022•黔东南州中考)一个物体的三视图如图所示,则该物体的形状是()A.圆锥B.圆柱C.四棱柱D.四棱锥【解析】选B.根据主视图和左视图都是长方形,判定该几何体是个柱体,∵俯视图是个圆,∴判定该几何体是个圆柱.(2022•哈尔滨中考)六个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【解析】选D.由题意知,题中几何体的左视图为:(2022•齐齐哈尔中考)由一些大小相同的小正方体搭成的几何体的主视图、左视图和俯视图都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为()A.4个B.5个C.6个D.7个【解析】选C.由俯视图知最下面一层一定有四个小正方体,由主视图和左视图知上面一层至少有处在对角的位置上的两个小正方体,故搭成该几何体的小正方体的个数最少为6个.(2022•鄂州中考)如图所示的几何体是由5个完全相同的小正方体组成,它的主视图是()A.B.C.D.【解析】选A.该几何体的主视图为:一共有两列,左侧有三个正方形,右侧有一个正方形,所以A选项正确.(2022•仙桃中考)如图是一个立体图形的三视图,该立体图形是()A.长方体B.正方体C.三棱柱D.圆柱【解析】选A.根据三视图可知,该立体图形是长方体.(2022•威海中考)如图所示的几何体是由五个大小相同的小正方体搭成的.其俯视图是()A.B.C.D.【解析】选B.从上面看,底层左边是一个小正方形,上层是三个小正方形.(2022•梧州中考)在下列立体图形中,主视图为矩形的是()A.B.C.D.【解析】选A.A.圆柱的主视图是矩形,故本选项符合题意;B.球的主视图是圆,故本选项不符合题意;C.圆锥的主视图是等腰三角形,故本选项不符合题意;D.三棱锥形的主视图是三角形,故本选项不符合题意.(2022•龙东中考)如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7B.8C.9D.10【解析】选B.从俯视图课看出前后有三层,从左视图可看出最后面有2层高,中间最高是2层,要是最多就都是2层,最前面的最高是1层,所以最多的为:2+2×2+1×2=8.(2022•长沙中考)如图是由5个大小相同的正方体组成的几何体,该几何体的主视图是()A.B.C.D.【解析】选B.根据主视图的概念,可知选B.(2022•包头中考)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.9【解析】选B.由俯视图可以得出几何体的左视图为:则这个几何体的左视图的面积为4.(2022•赤峰中考)下面几何体的俯视图是()A.B.C.D.【解析】选B.几何体的俯视图是:(2022·遵义中考)如图是《九章算术》中“堑堵”的立体图形,它的左视图为()A.B.C.D.【解析】选A.这个“堑堵”的左视图如图:(2022•海南中考)如图是由5个完全相同的小正方体摆成的几何体,则这个几何体的主视图是()A.B.C.D.【解析】选C.这个组合体的主视图如图:(2022·牡丹江中考)如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A.B.C.D.【解析】选A.由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成,由主视图可知,一共有前后2排,第一排有3个正方体,第二排有2层位于第一排中间的后面.(2022•吉林中考)吉林松花石有“石中之宝”的美誉,用它制作的砚台叫松花砚,能与中国四大名砚媲美.如图是一款松花砚的示意图,其俯视图为()A.B.C.D.【解析】选C.俯视图是从物体的上面向下面投射所得的视图,由松花砚的示意图可得其俯视图为C.(2022•抚顺中考)如图是由6个完全相同的小正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.【解析】选B.从上面看,底层右边是一个小正方形,上层是三个小正方形.(2022•杭州中考)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=9.88m.【解析】∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.(2022•北部湾中考)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是134米.【解析】据相同时刻的物高与影长成比例,设金字塔的高度BO为x米,则可列比例为4268=2x,解得:x=134.答案:134.。

(江西人教)数学中考复习方案【第26课时】视图与投影(35页)

(江西人教)数学中考复习方案【第26课时】视图与投影(35页)

赣考解读
考点聚焦
赣考探究
第26课时
视图与投影
4 .手电筒、路灯和台灯的光线可以看成是从一点发出的
光线,由同一点(点光源)发出的光线形成的投影叫做________ 中心投影
. 5 .皮影和手影都是在灯光照射下形成的影子,它们是 ________ . 中心投影
赣考解读
考点聚焦
赣考探究
第26课时
考点2
称是( A )
A.圆柱体 B.三棱柱 C.球体 D.圆锥体 图26-3
赣考解读
考点聚焦
赣考探究
第26课时
视图与投影
【归纳总结】 1 .概念: (1) 一个物体在三个投影面内进行正投影,在 正面 内得到的由前向后观察物体的视图,叫做主视图,在 ________
________ 水平面 内得到的由上向下观察物体的视图,叫做俯视图,在 ________ 侧面 内得到的由左向右观察物体的视图,叫做左视图;(2)
探究二
视图与投影
立体图形的展开与折叠
A.平行的
C.不平行的
B.聚成一点的
D.向四面八方发散的
2 .在同一时刻,两根长度不等的竹竿置于阳光之下,但
它们的影长相等,那么这两根竹竿的相对位置是( C )
A.两根都垂直于地面
C.两根竹竿不平行
赣考解读 考点聚焦
B.两根平行斜插在地上
D.一根倒在地上
赣考探究
第26课时
视图与投影
3 .晚上,小华出去散步,在经过一盏路灯时,他发现自
赣考解读
考点聚焦
赣考探究
第26课时
视图与投影
图26-6
赣考解读
考点聚焦
赣考探究第26课时Fra bibliotek视图与投影

九年级数学上册第四章视图与投影

九年级数学上册第四章视图与投影

九年级数学上册第四章视图与投影『一』.知识归纳:●知识点1 三视图:主视图、俯视图和左视图三视图之间要保持长对正,高平齐,宽相等。

一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。

主视图:基本可认为从物体正面视得的图象.俯视图:基本可认为从物体上面视得的图象左视图:基本可认为从物体左面视得的图象.注:①视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上。

②在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体)。

③在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。

●知识点2 投影太阳光线可以看成平行的光线,像这样的光线所形成的投影称为平行投影。

探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影。

——区分平行投影和中心投影:①观察光源;②观察影子。

从正面、上面、侧面看到的图形就是常见的正投影,也就是视图,是当光线与投影垂直时的投影。

①点在一个平面上的投影仍是一个点;②线段在一个面上的投影可分为三种情况:1.线段垂直于投影面时,投影为一点;2.线段平行于投影面时,投影长度等于线段的实际长度;3.线段倾斜于投影面时,投影长度小于线段的实际长度。

③平面图形在某一平面上的投影可分为三种情况:1.平面图形和投影面平行的情况下,其投影为实际形状;2.平面图形和投影面垂直的情况下,其投影为一线段;3.平面图形和投影面倾斜的情况下,其投影小于实际的形状。

『二』典型例题解析【视图类】★例题解析1 如图所示的几何体的俯视图是( B ).A B C D★例题解析2 上图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( D )★例题解析 3 下图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是 BA.5 B.6 C.7 D.8★例题解析 4 如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为.★例题解析 5 在如图所示的正方体的三个面上,分别画了填充不同的圆,下面的4个图中,是这个正方体展开图的有( A ).★例题解析6 如图是正方体的展开图,则原正方体相对两个面上的数字和最小的是( C ).A. 4B. 6C. 7D.8【投影类】★例题解析7 比例求高“投影”类题如图1,小华为了测量所住楼房的高度,他请来同学帮忙,在阳光下测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为____48____米.变化1 如果物体的投影一部分落在平地上,另一部分落在坡面上:如图2,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( )(A)24m (B)22m (C)20 m (D)18 m1 42 5 36第7题图图2变化2 如果物体的投影一部分落在平地上,另一部分落在台阶上:兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图3,若此时落在地面上的影长为4.4米,则树高为()(A)11.5米(B)11.75米(C)11.8米(D)12.25米变化3 如果将上题中的DE改为斜坡,再改变部分已知条件:梅华中学九年级数学课外学习小组某下午实践活动课时,测量朝西教学楼前的旗杆AB的高度.如图4,当阳光从正西方向照射过来时,旗杆AB的顶端A的影子落在教学楼前的坪地C处,测得影长CE=2 m,α=o.在同一DE=4m ,BD=20m,DE与地面的夹角30时刻,测得一根长为1m的直立竹竿的影长恰为4m.根据这些数据求旗杆AB的高度.(结果保留两个有效数字)★例题解析8 三角函数求高“投影”类题如图5,当太阳光与地面成55°角时,直立于地面的玲玲测得自己的影长为 1.16m,则玲玲的身高约为m.(精确到0.01m)变化1如果将太阳光改为照明灯,再适当改变已知条件和问题的形式:如图6所示,点P表示广场上的一盏照明灯.若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米).★例题解析9 相似三角形求高“投影”类题如图7,为了测量学校旗杆的高度,小东用长为3.2 m的竹竿做测量工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页/共83页
考点一 生活中的立体图形 1.生活中常见的立体图形:球体、柱体、锥体, 它们之间的关系可以用下面的示意图表示.
第2页/共83页
球体
圆柱
柱体
三四棱棱柱柱
棱柱五…棱…柱
立体图形
圆锥
锥体
三四棱棱锥锥
棱锥 五棱锥
……
第3页/共83页
2.多面体 由若干个平面多边形围成的几何体叫做多面体.
【点拨】由礼盒摆放的位置和视线的方向可知, 该礼盒的主视图是一个矩形,且包装线偏右.故选A.
【答案】 A
第20页/共83页
考点二 由三视图确定几何体 例 2(2014·潍坊)一个几何体的三视图如图所示,则 该几何体是( )
第21页/共83页
【点拨】观察四个选项中的几何体,只有D中几 何体的俯视图是两个同心圆.故选D.
【答案】 A
第30页/共83页
第31页/共83页
1.由两块大小不同的正方体搭成如图所示的几 何体,它的主视图是( )
第32页/共83页
解析:上下两个正方体的主视图都为正方形,上 面的正方体与大正方体的右侧对齐,故主视图中,小 正方形与大正方形的右侧对齐.故选C.
答案: C
第33页/共83页
2. 如 图 是 某 几 何 体 的 三 视 图 , 则 这 个 几 何 体 是 ()
第4页/共83页
考点二
立体图形的三视图
1.在正面内得到的由前向后观察物体的视图,叫
做主视图;在水平面内得到的由上向下观察物体的视
图,叫做俯视图;在侧面内得到的由左向右观察物体
的视图,叫做左视图.
第5页/共83页
2.常见几何体的三视图 几何体 主视图 左视图 俯视图
第6页/共83页
几何体 主视图 左视图 俯视图
第36页/共83页
4.如图所示是一个由相同的小正方体搭成的几 何体的俯视图,小正方形中的数字表示该位置上小正 方体的个数,那么该几何体的主视图为( C )
第37页/共83页
5.如图,是一个几何体的三视图,根据图中标注的数 据可求得这个几何体的体积为( )
A.12π
B.24π
C.36π
第38页/共83页
A.圆柱 B.正方体 C.圆锥 D.球
第34页/共83页
解析:主视图和左视图都是三角形,则该几何体 是锥体,而俯视图是带圆心的圆,则该几何体是圆 锥.故选 C.
答案: C
第35页/共83页
3.如图所示,左面水杯的杯口与投影面平行,投 影线的方向如箭头所示,它的正投影图是( D )
解析:从上向下看茶杯,圆柱形茶杯的正投影是 圆,而杯把的正投影是线段,故选 D.
第26页/共83页
考点四 立体图形的展开与折叠 例 4(2014·长春)下列图形中,是正方体表面展开图 的是( )
第27页/共83页
【点拨】由正方体展开图的规律可知,“田” “凹”“7”字型都不能围成正方体,故是正方体展开图 的是 C.
【答案】 C
第28页/共83页
考点五 投 影
例 5(2013·南宁)小乐用一块长方形硬纸板在阳光
下做投影实验,通过观察,发现这块长方形硬纸板在
平整的地面上不可能出现的投影是( )
A.三角形
B.线段
C.矩形
D.正方形
第29页/共83页
【点拨】将长方形硬纸板立起与地面垂直放置时, 形成的影子为线段;将长方形硬纸板与地面平行放置 时,形成的影子为矩形;将长方形硬纸板倾斜放置形 成的影子为平行四边形或正方形;由物体同一时刻物 高与影长成比例,且长方形对边相等,故得到的投影 不可能是三角形.故选 A.
第24页/共83页
【点拨】由三视图可知,该几何体是圆锥,且圆 锥的高是 4cm,底面圆的直径为 6 cm,由勾股定理可 得圆锥的母线为 5 cm,故圆锥的侧面积为 π×3×5= 15π(cm2).故选 B.
【答案】 B
第25页/共83页
方法总结: 主视图反映几何体的长和高,左视图反映几何体 的宽和高,俯视图反映几何体的长和宽.
第7页/共83页
3.画三视图的原则 (1)位置:俯视图在主视图的下面,左视图在主视 图的右边. (2)尺寸:主视图与俯视图的长相等,主视图与左 视图的高相等,左视图与俯视图的宽相等.
第8页/共83页
温馨提示: 画三视图时,看得见部分的轮廓线通常画成实线; 看不见部分的轮廓线通常画成虚线.
第9页/共83页
【答案】 D
第22页/共83页
方法总结: 由主视图分清物体的上下左右,由左视图分清物 体的上下前后,由俯视图分清物体的左右前后.
第23页/共83页
考点三 根据三视图进行有关的计算 例 3(2014·杭州)已知某几何体的三视图(单位: cm),则该几何体的侧面积等于( ) A.12π cm2 B.15π cm2 C.24π cm2 D.30π cm2
展开图
图形示例 (选其一种)
两个圆和一 个矩形
第11页/共83页
一个圆和一 个扇形
两个全等的 三角形和三
个矩形
第12页/共83页
2.正方体侧展开图的类型 (1)一四一型
第13页/共83页
(2)二三一型 (3)三三型
第14页/共83页
(4)二二二型
第15页/共83页
考点四 投 影 1.用光线照射物体,在某个平面上得到的影子 叫做物体的投影.照射光线叫做投影线,投影所在的 平面叫做投影面. 2.平行投影:由平行光线形成的投影. 3.中心投影:由同一个点发出的光线形成的投 影.
D.48π
解析:由几何体的三视图可知该几何体为圆柱,且高 为 6,底面圆的直径为 4,∴该几何体的体积为 π×(4÷2)2×6 =24π.故选 B.
第16页/共83页
4.不同时刻,同一个物体在太阳光照射下的影子是 不同的;在同一时刻,不同物体的高度与影长成正比.
第17页/共83页
第18页/共83页
考点一 识别几何体的三视图 例 1(2014·咸宁)6 月 15 日“父亲节”,小明送给 父亲一个礼盒(如图所示),该礼盒的主视图是( )
第19页/共83页
4.由三视图确定几何体 由三视图描述几何体,一般先根据各视图想象从 各个方向看到的几何体的形状,然后综合起来确定几 何体的形状,再根据“长对正、高平齐、宽相等”的 关系,确定轮廓线的位置以及各个面的尺寸,最后画 出几何体.
第10页/共83页
考点三
立体图形的展开与折叠
1.常见几何体的展开图
常见几何体
相关文档
最新文档