Matrix3-2矩阵的奇异值分解

合集下载

矩阵的奇异值分解

矩阵的奇异值分解

矩阵的奇异值分解(Singular Value Decomposition,SVD)是一种重要的矩阵分解方法,可以将一个复杂的矩阵分解为三个简单的矩阵相乘的形式。

SVD 可以应用于各种领域,如图像处理、语音识别、推荐系统等。

SVD 分解将一个m × n 的矩阵 M 分解为U × Σ × V^T 的形式,其中 U 是一个m × m 的酉矩阵(unitary matrix),Σ 是一个m × n 的矩阵,只有对角线上的元素大于等于 0,V^T 是一个n × n 的酉矩阵。

通常情况下,SVD 可以通过奇异值分解定理进行求解。

首先,我们需要计算矩阵M × M^T 和M^T × M 的特征向量和特征值。

设 M 是一个m × n 的矩阵,M^T 是它的转置矩阵,那么M × M^T 是一个m × m 的矩阵,M^T × M 是一个n × n 的矩阵。

我们可以通过特征值分解方法求解这两个矩阵的特征向量和特征值。

然后,我们可以将M × M^T 和M^T × M 的特征向量和特征值组成两个酉矩阵 U 和 V。

特征值的平方根构成了Σ 矩阵的对角线元素。

我们可以将 U 和V 按照特征值降序排列,以保证U × Σ × V^T 是一个矩阵。

最后,我们可以利用奇异值分解定理,将 M 分解为U × Σ × V^T 的形式。

这样的分解可以帮助我们理解原始矩阵的结构和特征,提取重要信息,并进行维度降低等操作。

在某些情况下,SVD 还可以作为矩阵的伪逆(pseudo-inverse),帮助我们解决线性方程组等问题。

SVD 分解在各个领域都有广泛的应用。

在图像处理中,SVD 可以用于图像压缩和降噪等操作。

在语音识别中,SVD 可以用于语音特征提取和模式匹配。

矩阵的奇异值分解

矩阵的奇异值分解

非对称矩阵分解
非对称矩阵的特征值分解
对于非对称矩阵,其特征值可能是复数,因此不能直接进行实数域上的特征值分 解。但是,可以通过引入复数域上的特征向量和特征值,将非对称矩阵分解为复 数域上的特征向量矩阵和特征值矩阵的乘积。
非对称矩阵的奇异值分解
对于任意实非对称矩阵,都可以进行奇异值分解,即$A = USigma V^T$,其中 $U$和$V$是正交矩阵,$Sigma$是对角矩阵,对角线上的元素是$A$的奇异值。 非对称矩阵的奇异值分解在数据降维、图像处理等领域有广泛应用。
通信信道均衡策略
信道均衡原理
在通信系统中,信道均衡是一种用于补偿信道失真、提高通信质量的技术。奇异值分解可用于信道均衡中的信道 矩阵分解,从而实现对信道特性的准确估计和补偿。
基于奇异值分解的信道均衡算法
利用奇异值分解对信道矩阵进行分解,根据得到的奇异值和左右奇异向量设计均衡器,实现对信道失真的有效补 偿。
3
个性化推荐
结合用户历史行为数据和相似度计算结果,为用 户推荐与其兴趣相似的物品或服务。
05 奇异值分解在信号处理和 通信中应用
信号降噪与重构技术
基于奇异值分解的信号降噪
利用奇异值分解能够将信号分解为多个独立成分的特点,对含噪信号进行降噪处理,提高信号质量。
信号重构技术
通过保留奇异值分解得到的主要成分,对信号进行重构,实现信号的压缩和恢复。
特殊类型矩阵分解
正定矩阵的Cholesky分解
对于正定矩阵,可以进行Cholesky分解,即$A = LL^T$,其中$L$是下三角 矩阵。Cholesky分解在求解线性方程组、最优化问题等场景中具有重要作用。
稀疏矩阵的分解
对于稀疏矩阵,可以采用特定的分解方法,如LU分解、QR分解等,以便更有效 地进行存储和计算。这些分解方法在数值计算、科学计算等领域有广泛应用。

矩阵奇异值分解具体计算过程_解释说明以及概述

矩阵奇异值分解具体计算过程_解释说明以及概述

矩阵奇异值分解具体计算过程解释说明以及概述1. 引言1.1 概述矩阵奇异值分解(Singular Value Decomposition,简称SVD)是一种重要的矩阵分解方法,广泛应用于数据降维、图像处理、推荐系统和信号处理等领域。

通过将一个矩阵分解为三个独特的部分,即原始矩阵的奇异向量和奇异值,SVD 可以提供有关原始数据的宝贵信息。

本文旨在详细介绍矩阵奇异值分解的具体计算过程,并对其应用领域以及算法优化和改进方向进行探讨。

首先,我们将给出该方法的定义和基本原理,并描述其计算方法和数学推导。

接着,我们将深入探究矩阵奇异值分解在图像压缩与降维、推荐系统和数据挖掘以及信号处理和模式识别等方面的应用。

然后,我们将讨论近似求解算法、加速技术以及大规模矩阵奇异值分解算法的最新进展。

最后,我们还将探索结合其他矩阵分解技术发展方向。

1.2 文章结构本文共包含五个主要部分。

第一部分是引言,主要概述了本文的目的和结构。

第二部分将详细介绍矩阵奇异值分解的具体计算过程,包括定义、基本原理、计算方法和数学推导。

第三部分将解释说明矩阵奇异值分解在不同领域中的应用,如图像压缩与降维、推荐系统和数据挖掘以及信号处理和模式识别。

第四部分将讨论矩阵奇异值分解算法的优化和改进方向,包括近似求解算法、加速技术以及结合其他矩阵分解技术的发展方向。

最后一部分是结论,总结文章的主要内容和贡献,并对未来研究方向进行展望。

1.3 目的本文旨在通过详细讲解矩阵奇异值分解的具体计算过程,深入理解其原理和应用,并探讨其改进方向。

通过对该方法进行全面系统地介绍,希望能够增加读者对矩阵奇异值分解有关知识的了解,并为相关领域的研究者提供参考和启示。

同时,本文也为后续相关领域深入研究和应用提供了理论基础和开发方向。

2. 矩阵奇异值分解具体计算过程2.1 矩阵奇异值分解定义和基本原理矩阵奇异值分解(Singular Value Decomposition,简称SVD)是一种常用的矩阵分解方法。

矩阵奇异值分解定理的直观证明

矩阵奇异值分解定理的直观证明

矩阵奇异值分解定理的直观证明
矩阵奇异值分解(Singular Value Decomposition,SVD)是线性代数中的一个重要概念,它为各种机器学习和数据挖掘技术提供了基础。

其独特之处在于把一个矩阵分解为三个矩
阵的乘积,因此又被称为三角分解或者三因子分解。

它的定理被称为矩阵奇异值分解定理,是关于任意实矩阵M可以分解为三个矩阵乘积的一个重要结论。

矩阵奇异值分解定理的证明过程涉及到一些数字计算,它的证明可以分为多个步骤:
1)将M矩阵以特征值分解的形式写出:M=UΣV',其中U是特征向量矩阵,Σ是特征值所组成的对角矩阵,V'是转置矩阵。

2)首先,将M矩阵看作是U列空间和V行空间组成的两个子空间。

3)从U空间中选取最大特征值对应的特征向量u1,此向量与V空间中相关的特征向量v1
正交,故令v1与u1的点积为0,则u1'V=0。

4)又因为V剩下的特征向量组成的子空间可以被U剩下的特征向量组成的原子空间(超
平面)正交,可以得到U剩下的特征向量的线性相关,即U剩下的特征向量也可以写成U1的线性组合。

5)通过这几个步骤,得出结论M可以分解成三个矩阵的乘积:M=UΣV',其中U和V分别
是M的左奇异矩阵和右奇异矩阵,Σ是M的特征值所组成的对角矩阵。

经过以上证明,矩阵奇异值分解定理得以证明,它提供了矩阵M可以分解成低秩矩阵的一
种方法。

SVD可以用来对矩阵进行降维,可以有效削减矩阵的维数,减少计算量,提高程
序的运行速度,广泛应用于机器学习和数据挖掘技术,是一种重要而有用的数学计算方法。

[整理]矩阵的奇异值分解

[整理]矩阵的奇异值分解

§2 矩阵的奇异值分解定义 设A 是秩为r 的m n ⨯复矩阵,T A A 的特征值为1210r r n λλλ>λλ+≥≥≥=== .则称i σ=(1,2,,)i n = 为A 的奇异值.易见,零矩阵的奇异值都是零,矩阵A 的奇异值的个数等于A 的列数,A 的非零奇异值的个数等于其秩.矩阵的奇异值具有如下性质:(1)A 为正规矩阵时,A 的奇异值是A 的特征值的模;(2)A 为半正定的Hermite 矩阵时,A 的奇异值是A 的特征值;(3)若存在酉矩阵,m m n n ⨯⨯∈∈U V C C ,矩阵m n ⨯∈B C ,使=UAV B ,则称A 和B 酉等价.酉等价的矩阵A 和B 有相同的奇异值.奇异值分解定理 设A 是秩为r (0)r >的m n ⨯复矩阵,则存在m 阶酉矩阵U 与n 阶酉矩阵V ,使得H⎡⎤==⎢⎥⎣⎦O U AV O O ∑∆. ①其中12diag(,,,)r σσσ= ∑,i σ(1,2,,)i r = 为矩阵A 的全部非零奇异值.证明 设Hermite 矩阵H A A 的n 个特征值按大小排列为1210r r n λλλ>λλ+≥≥≥=== .则存在n 阶酉矩阵V ,使得12H H()n λλ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦O V A A V OO ∑. ②将V 分块为 12()=V V V ,其中1V ,2V 分别是V 的前r 列与后n r -列.并改写②式为2H⎡⎤=⎢⎥⎣⎦O A AV V O O ∑.则有H 2H 112==A AV V A AV O , ∑. ③由③的第一式可得H H 2H 1111()()r ==V A AV AV AV E , 或者∑∑∑.由③的第二式可得H 222()() ==AV AV O AV O 或者.令111-=U AV ∑,则H 11r =U U E ,即1U 的r 个列是两两正交的单位向量.记作112(,,,)r =U u u u ,因此可将12,,,r u u u 扩充成m C 的标准正交基,记增添的向量为1,,r m +u u ,并构造矩阵21(,,)r m +=U u u ,则12121(,)(,,,,,,)r r m +==U U U u u u u u是m 阶酉矩阵,且有 H H1121 r ==U U E U U O ,.于是可得H HH1121H 2()()⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦O U U AV U AV AV U O O O U ,,∑∑.由①式可得H H HH 111222r r r σσσ⎡⎤==+++⎢⎥⎣⎦O A U V u v u v u v O O ∑. ④称④式为矩阵A 的奇异值分解.值得注意的是:在奇异值分解中121,,,,,,r r m +u u u u u 是H AA 的特征向量,而V 的列向量是H A A 的特征向量,并且H AA 与H A A 的非零特征值完全相同.但矩阵A 的奇异值分解不惟一.证明2 设Hermite 矩阵H A A 的n 个特征值按大小排列为1210r r n λλλ>λλ+≥≥≥=== .则存在n 阶酉矩阵V ,使得12H H()n λλ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦O V A A V OO ∑. ②将V 分块为12(,,,)n =V v v v ,它的n 个列12,,,n v v v 是对应于特征值12,,,n λλλ 的标准正交的特征向量.为了得到酉矩阵U ,首先考察m C 中的向量组12,,,r Av Av Av ,由于当i 不等于j 时有H H H H H (,)()()0i j j i j i j i i i j i λλ=====Av Av Av Av v A Av v v v v所以向量组12,,,r Av Av Av 是m C 中的正交向量组.又 2H H H 2||||i i i i i i iλσ===Av v A Av v v ,所以 ||||i i i σ=Av .令1i i i=u Av σ,1,2,,i r = ,则得到m C 中的标准正交向量组12,,,r u u u ,把它扩充成为m C 中的标准正交基11,,,,r r m +u u u u ,令11(,,,,)r r m +=U u u u u则U 是m 阶酉矩阵.由已知及前面的推导可得i i i σ=Av u ,1,2,,i r = ;i =Av 0,1,,i r n =+ ;从而 121(,,,)(,,,,,)n r ==AV A v v v Av Av 0011120(,,,,,)(,,,)0r m r σσσσ⎛⎫⎪ ⎪== ⎪ ⎪ ⎪⎝⎭O u u u u u O O 00 ⎛⎫= ⎪⎝⎭ΣO U O O故有=AV U Δ,即H =U AV Δ.例1 求矩阵120202⎡⎤=⎢⎥⎣⎦A 的奇异值分解.解 T52424044⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A A 的特征值为1239,4,0λλλ===, 对应的单位特征向量依次为T T T 1231,1),(2,1,2)3==-=-v v v .所以5052643⎡-⎢=⎥⎥-⎥⎣⎦V .于是可得()2r =A ,3002∑⎡⎤=⎢⎥⎣⎦.计算111221∑-⎡⎤==⎢⎥-⎣⎦U AV ,则A 的奇异值分解为T 300020⎡⎤=⎢⎥⎣⎦A U V .在A 的奇异值分解中,酉矩阵V 的列向量称为A 的右奇异向量,V 的前r 列是H A A 的r 个非零特征值所对应的特征向量,将他们取为矩阵V 1,则12(,)=V V V .酉矩阵U 的列向量被称为A 的左奇异向量,将U 从前r 列处分块为12(,)=U U U ,由分块运算,有H H H H1111212H H H22122()⎡⎤⎛⎫⎡⎤=== ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭O U U AV U AV U AV AV AV O O U U AV U AV ,∑ 从而 211=A V A V U Σ,=0.正交基;(2)1U 的列向量组是矩阵A 的列空间(){}R =A Ax 的一组标准正交基;(1)1V 的列向量组是矩阵A 的零空间(){}N ==A x Ax 0正交补H ()R A 的一组标准正交基;(1)2U 的列向量组是矩阵A 的列空间(){}R =A Ax 正交补H ()N A 的一组标准正交基.在A 的奇异值分解中,酉矩阵U 和V 不是惟一的.A 的奇异值分解给出了矩阵A 的许多重要信息.更进一步,由于12(,,)m =U u u u ,12(,,,)n =V v v v ,可借助于奇异值分解,将A 表示为H 11H 212H 0(,,,)0m r n σσ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭v O v A u u u O O v H HH 111222r r r σσσ=+++u v u v u v归纳这一结果,有如下定理.定理 设m n ⨯∈A C ,A 的非零奇异值为12r σσσ≥≥≥ ,12,,ru u u 是应于奇异值的左奇异向量,12,,,r v v v 是应于奇异值的右奇异向量,则T TT 111222r r r σσσ=+++A u v u v u v .上式给出的形式被称为矩阵A 的奇异值展开式,对一个k r ≤,略去A 的一些小的奇异值对应的项,去矩阵k A 为T T T111222k k k kσσσ=+++A u v u v u v .则k A 是一个秩为k 的m ×n 矩阵.可以证明,k A 是在所有秩为k 的m ×n 矩阵中,从Frobenius 范数的意义下,与矩阵A 距离最近的一个矩阵.这在实际中应用广泛.例如,在图像数字化技术中,一副图片可以转换成一个m ×n 阶像素矩阵来储存,存储量m ×n 是个数.如果利用矩阵的奇异值展开式,则只要存储A 的奇异值i σ,奇异向量,i i u v 的分量,总计r (m +n +1)个数.取m =n =1000,r =100作一个比较, m ×n =1000000,r (m +n +1)=100(1000+1000+1)=200100.取A 的奇异值展开式,,存储量较A 的元素情形减少了80%.另外,可取k r <,用k A 逼近A ,能够达到既压缩图像的存储量,又保持图像不失真的目的.由矩阵A 的奇异值分解可得T TT 111222r r r σσσ=+++A u v u v u v可见,A 是矩阵T TT 1122,,,r r u v u v u v 的加权和,其中权系数按递减排列120r σσσ≥≥≥> .显然,权系数大的那些项对矩阵A 的贡献大,因此当舍去权系数小的一些项后,仍然能较好的“逼近”矩阵A ,这一点在数字图像处理方面非常有用.矩阵的秩k 逼近定义为T T T111222 1k k k k r σσσ=+++≤≤A u v u v u v秩r 逼近就精确等于A ,而秩1逼近的误差最大.矩阵的奇异值分解不但在线性方程组,矩阵范数,广义逆,最优化等方面有着广泛的应用.而且在数字计算,数字图像处理,信息检索,心里学等领域也有着极重要的应用.有兴趣的读者可参阅有关教科书,如Steven J.Leon 的《线性代数》.3 矩阵A的奇异值分解与线性变换T A设A 是一个秩为r 的m ×n 复矩阵,即m n⨯∈A C,rank()r =A ,则由()T ==A A βαα可以定义线性变换:n m T →A C C .设矩阵A 有奇异值分解H=A U ΣV ,则将矩阵n n⨯∈V C 的列向量组12,,,n v v v 取作空间nC 的标准正交基;则将矩阵m m⨯∈U C的列向量组12,,m u u u 取作空间mC的标准正交基,则在所取的基下,线性变换T A 对应的变换矩阵就是Σ.设n ∈C α,α在基12,,,n v v v 下坐标向量为T12(,,,)n x x x =x ,=Vx α.那么α在线性变换T A 下的像β具有形式:11H()()()00r r x x T σσ⎛⎫ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭A A U ΣV Vx U Σx U βαα.其中12,,,r σσσ 是A 的非零奇异值,所以,α的像()T =A βα在m C 中基12,,m u u u 下的坐标是T 11(00)r rx x σσ==y Σx .从中可以看出,当rank()r =A 时,在取定的基下,线性变换()T A α的作用是将原像坐标中的前r 个分量分别乘以A 的非零奇异值12,,,r σσσ ,后(n-r )分量化为零.如果原像坐标满足条件:222121n x x x +++= ,则像坐标满足条件:2221212()()()1rry y y σσσ+++≤ .在rank()r n ==A 时,等式成立.因此,有如下定理.定理 设H=A U ΣV 是m ×n 实矩阵A 的奇异值分解,rank()r =A ,则nR 中的单位圆球面在线性变换T A 下的像集合是:(1)若r n =,则像集合是mR 中的椭球面;(2)若r n <,则像集合是mR 中的椭球体.例2 设矩阵120202⎡⎤=⎢⎥⎣⎦A ,求3R 中的单位圆球面在线性变换:T A y =Ax 下的像的几何图形.解 由例1,矩阵A 有如下奇异值分解T5012300262102043⎛⎫⎡-⎪⎢⎛⎫⎡⎤⎡⎤⎪=⎥⎪⎢⎥⎢⎥-⎪⎣⎦⎣⎦⎥⎭⎪-⎥⎣⎦⎝⎭A. rank()23,n=<=A由定理,单位球面的像满足不等式221222132y y+≤.即单位球面的像是实心椭圆2212194y y+≤.。

奇异值分解定理

奇异值分解定理

奇异值分解定理奇异值分解(Singular Value Decomposition,简称SVD)是线性代数中一种重要的矩阵分解方法,常用于数据分析、信号处理、图像压缩等领域。

SVD的定理表明,任何矩阵都可以分解成三个矩阵的乘积,其中一个矩阵是正交矩阵,另外两个矩阵是对角矩阵,且对角线上的元素称为奇异值。

奇异值分解定理的数学概念比较复杂,需要一定的线性代数基础。

下面将对奇异值分解定理进行详细解释。

给定一个m行n列的实数矩阵A,假设rank(A)为r.那么存在两个实数方阵U(m×r)和V(n×r),使得:A = UΣV^T其中,U的每一列是A^TA的特征向量,V的每一列是AA^T的特征向量,Σ是一个对角矩阵,对角线上的元素称为奇异值。

奇异值分解定理的证明比较复杂,这里只给出一个简要的证明思路。

假设A的列向量为{a1, a2, ..., an},它们构成了一个n维向量空间的一组基。

我们可以将这组基转化为标准正交基,得到一组正交矩阵U和V。

然后我们可以通过对U和V进行一些数学操作,得到UΣV^T形式的矩阵。

最后,我们可以证明这个矩阵确实满足奇异值分解定理的要求。

奇异值分解定理在数据分析中有广泛的应用。

例如,在推荐系统中,我们可以通过SVD将用户对物品的评分矩阵分解,得到用户和物品的特征矩阵,从而进行个性化推荐。

在语音识别中,我们可以通过SVD将语音信号分解成一组基本声音的叠加,从而实现语音信号的降噪和特征提取。

在图像压缩中,我们可以通过SVD将图像分解成一组基本的图像模式,从而实现图像的降噪和压缩。

奇异值分解定理的应用不仅局限于上述领域,还可以应用于信号处理、图像处理、文本处理等其他领域。

通过奇异值分解,我们可以将复杂的问题转化为简单的线性代数运算,从而大大简化问题的求解过程。

然而,奇异值分解也有一些限制。

首先,奇异值分解是一种数值方法,对计算精度要求较高。

其次,奇异值分解的计算复杂度较高,对于大规模矩阵的分解可能会很耗时。

矩阵的奇异值分解

矩阵的奇异值分解

rankA rankA H A 1
O 5 0 O 0 0
λ1 2 Σ V H ( A H A)V O 成立的正交矩阵为 λ n
5, 2 0 ,
Σ ( 5 )11 ,且使得
则有Байду номын сангаас


O V1 Σ 2 O

O

,
A AV1 V1 Σ V1H A H AV1 Σ 2

H
2 ,得

( AV1 Σ 1 ) H ( AV1 Σ 1 ) E r
,
其中.
1 Σ

1 r r
现在开始论述矩阵的奇异值分解。 定义2.21 设 A C r mn (r 0) ,A H A 的特征值为
1 2 r r 1 n 0
则称 i i (i 1,2,, n) 是A的奇异值;规定零矩阵0的奇异值 都是0. 定理2.9 设 A C mn (r 0), 则存在m阶酉矩阵U和n阶酉 r
B B (U AV ) (U AV ) V A (U ) U AV
T T T T
1
1
1 T
1
V ( A A)V V ( AA)V
T T
1
上式表明 AT A 与 B T B 相似,而相似矩阵有相同的特征值, 所以A与B有相同的奇异值.证毕
直接验证可知, 正交相抵具有自反性、对称性和传递性,因
,求它的奇异值分解.
解 经过计算,矩阵
1 0 1 H A A 0 1 1 1 1 2
的特征值为 1 3, 2 1, 3 0 ,对应的特征向量分别是 ,

矩阵分解

矩阵分解

矩阵分解奇异值分解法SVD分解作者:XIAOFU 发表时间:九月- 13 - 2009 | 人气: 2,451 VIEWS |矩阵分解(decomposition, factorization), 顾名思义, 就是将矩阵进行适当的分解, 使得进一步的处理更加便利。

矩阵分解多数情况下是将一个矩阵分解成数个三角阵(triangular matrix)。

依使用目的的不同,一般有三种矩阵分解方法:1)三角分解法(Triangular decomposition),2)QR 分解法(QR decomposition),3)奇异值分解法(Singular Value Decompostion)。

1) 三角分解法(Triangular decomposition)三角分解法是将方阵(square matrix)分解成一个上三角矩阵﹝或是排列(permuted) 的上三角矩阵﹞和一个下三角矩阵,该方法又被称为LU分解法。

例如, 矩阵X=[1 2 3;4 5 6;7 8 9], 运用该分解方法可以得到:上三角矩阵L=[0.1429 1.0000 00.5714 0.5000 1.00001.0000 0 0]和下三角矩阵U=[7.0000 8.0000 9.00000 0.8571 1.71430 0 0.0000]不难验证L* U = X.该分解方法的用途主要在简化大矩阵的行列式值的计算,矩阵求逆运算和求解联立方程组。

需要注意的是, 这种分解方法所得到的上下三角形矩阵不是唯一的,我们还可找到若干对不同的上下三角矩阵对,它们的乘积也会得到原矩阵。

对应MATLAB命令: lu2) QR分解法QR分解法是将矩阵分解成一个单位正交矩阵(自身与其转置乘积为单位阵I)和一个上三角矩阵。

对应MATLAB命令: qr3) 奇异值分解法(SVD)奇异值分解(sigular value decomposition,SVD) 是另一种正交矩阵分解法;SVD是最可靠的分解法,但是它比QR 分解法要花上近十倍的计算时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

左奇异向量
V=[v 1,v2,…,vr ,… ,v n] =[V1 V2]∈C n×n的列向 量是空间C 的标准正交基。 量是空间C n的标准正交基。 U=[u 1,u2,…,ur ,… ,u m] =[U1 U2]∈C m×m的列 向量是空间C 的标准正交基。 向量是空间C m的标准正交基。
U1 的列向量是R(A)的标准正交基。 的列向量是R(A)的标准正交基 的标准正交基。 U2的列向量是R ⊥ (A)的标准正交基。 的列向量是R (A)的标准正交基 的标准正交基。 右奇异向量 V2的列向量是空间N(A)的标准正交基。 的列向量是空间N(A)的标准正交基 的标准正交基。 V1的列向量是空间 N ⊥ (A) 的标准正交基。 的标准正交基。
2. 奇异值的定义:(P.197) 奇异值的定义: A∈C m×n,秩(A)=r,设AHA的特征值λ1 ≥ λ2 ≥… ≥ )=r, 的特征值λ λr > 0,λr+1= λr+2 =…=λ n =0.,则矩阵的奇异值 =0.
σi = λi , i =1,2,...,r.
3. 特殊矩阵的奇异值: 特殊矩阵的奇异值:
σr
0
0

O
σr
证明思想: 证明思想: 2 ∆ ,⇒酉矩阵V。 AHA正规,VHAHAV= 正规, 酉矩阵V 0
• 令 ui =
Avi
σi
,i=1,2,…,r,得U1=[u1,u2, … ,ur] =1, 扩充为标准正交基 ⇒酉矩阵U。 酉矩阵U
二、矩阵的奇异值分解
1. 定理3.14 定理3 14(P.201)
任何矩阵A 任何矩阵A∈C m×n,秩(A)=r,则存在酉矩阵 (A)=r, U∈C m×m,V∈C n×n,使得 σ1 σ1 σ σ2 H 0 2 A =U V ∆ = O

3 2 5 2
3 2 − 1 2
1 2 3 2
σ 1 x1 σ x 2 2 M σ r xr 0
变换T 在单位球上的象: 变换TA在单位球上的象: 定理3 定理3.16 (P.88)
四、矩阵的极分解(Polar Decomposition) 矩阵的极分解(Polar
方阵的极分解
设矩阵A 设矩阵A∈C n×n ,则矩阵A的奇异值分解: 则矩阵A的奇异值分解: A=UΣ A=UΣVH=U Σ(UH U)VH = (U Σ UH)UVH=PQ P是半正定的Hermite 矩阵,P相似于Σ 。 是半正定的Hermite 矩阵, 相似于Σ Q是酉矩阵
σ1 σ2 ∆= O σr
0 0 m×n
奇异值分解基本适用于内积空间 奇异值分解基本适用于内积空间中与矩阵秩相关 内积空间中与矩阵秩相关 的问题 A的奇异值分解依赖于正规矩阵A HA 的酉相似分 的奇异值分解依赖于正规矩阵A 解。
一、矩阵A的奇异值及其性质 矩阵A
§3.3 矩阵的奇异值分解
Singular value decomposition (SVD)
§3.3 矩阵的奇异值分解
概述: 概述
矩阵的奇异值分解是酉等价型的分解: 矩阵的奇异值分解是酉等价型的分解: A∈C m×n, 酉等价型的分解 酉矩阵U V∈ 使得A=U ∃酉矩阵U∈C m×m, V∈C n×n , 使得A=U ΣVH。 矩阵A等价于Σ 矩阵A等价于Σ= ∆ 0
1. 矩阵AHA和AAH的性质: 矩阵A 的性质:
A∈C m×n ⇒ Hermite矩阵: AHA∈C n×n, Hermite矩阵 矩阵: AAH∈Cm×m , 定理3 12 定理3.12(P.197)
1. 秩(A)=秩(AHA)=秩(AAH)。 (A)= A)=秩 2. AHA 和AAH 的非零特征值相等。 的非零特征值相等。 3. AHA和AAH 是半正定矩阵。 是半正定矩阵。 AHA和AAH 的特征值是非负实数:λ1 ≥ λ2 ≥… ≥ λn 的特征值是非负实数:
方阵极分解的意义和应用
描述变换Y=AX的拉伸和扭曲 描述变换Y=AX的拉伸和扭曲
3 2 例题1 求矩阵A= 的极分解, 例题1 求矩阵A= 的极分解, 0 3
依此讨论变换Y=AX的几何特性。 依此讨论变换Y=AX的几何特性。 的几何特性
解:
5 A = PQ = 2 3 2
3. 奇异值分解的展开形式及其应用
H H H A =σ1u1v1 +σ2u2v2 +L σrurvr +
例题:图像的数字化技术与矩阵的奇异值分解 例题 图像的数字化技术与矩阵的奇异值分解
计算机处理图像技术的第一步是图像的数字化 存储技术,即将图像转换成矩阵来存储。 存储技术,即将图像转换成矩阵来存储。 转换的原理是将图形分解成象素(pixels)的一个 转换的原理是将图形分解成象素(pixels)的一个 矩形的数阵, 矩形的数阵,其中的信息就可以用一个矩阵 A=(a A=(a ij)m×n来存储。矩阵A的元素a ij是一个正的 来存储。矩阵A的元素a 它相应于象素的灰度水平(gray 数,它相应于象素的灰度水平(gray level) 的度 量值。 量值。 由于一般来讲, 由于一般来讲,相邻的象素会产生相近的灰度 水平值, 水平值,因此有可能在满足图像清晰度要求的 条件下,将存储一个m 条件下,将存储一个m×n阶矩阵需要存储的 m×n个数减少到n+m+1的一个倍数。 个数减少到n+m+1的一个倍数 的一个倍数。
H r r r
压缩矩阵A的方法是取一个秩为k (k≤r)的矩阵 压缩矩阵A的方法是取一个秩为k (k≤r)的矩阵Ak来 的矩阵A 矩阵A 逼近 矩阵A。 Ak按如下方法选取: 按如下方法选取:
A =σ u v +σ u v +L+σ u v k
H 1 1 1 H 2 2 2
H k k k
有在秩为k (k≤n)的所有矩阵中 矩阵A 有在秩为k (k≤n)的所有矩阵中,矩阵Ak所对应的图象和矩 的所有矩阵中, 所对应的图象最相近。一般的, 越大图象就越清晰。 阵A所对应的图象最相近。一般的,k越大图象就越清晰。经 典的方法是选取接近k 的存储量比A 典的方法是选取接近 k, 使 Ak 的存储量比 A 的存储量减少 20% 20%。
矩阵的奇异值分解和线性变换T 三、矩阵的奇异值分解和线性变换TA
矩阵A 矩阵A∈C m×n可以定义线性变换 TA : C n →C m 设矩阵的奇异值分解A=U 则将U 设矩阵的奇异值分解A=U ΣVH ,则将U和V的列分 别取做空间C 的基,则变换T 的矩阵为Σ 别取做空间C m 、C n的基,则变换TA的矩阵为Σ: ∀α=VX ∀α=VX ∈C m ,则TAX=(U ΣVH)VX=U(ΣX)=U X=(U VX=U(Σ
正规矩阵A的奇异值等于A的特征值的模长。 正规矩阵A的奇异值等于A的特征值的模长。 正定的Hermite矩阵 的奇异值就是A的特征值。 矩阵A 正定的Hermite矩阵A的奇异值就是A的特征值。 酉等价矩阵的奇异值相等。 酉等价矩阵的奇异值相等。
A和B酉等价,则AHA和BHB酉相似。 酉等价, 酉相似。 奇异值是酉等价的不变性质。(P.198, 例1) 奇异值是酉等价的不变性质。
压缩数字化图形存储量的方法主要是应用矩阵的 奇异值分解和矩阵范数下的逼近。 奇异值分解和矩阵范数下的逼近。如果图象的数 字矩阵A的奇异值分解为:A=UΣ 其展开式: 字矩阵 A的奇异值分解为 : A=UΣVT, 其展开式:
A =σ u v +σ u v +L+σ u v
H 1 1 1 H 2 2 2
存储矩阵A 只需要存储k个奇异值, 存储矩阵Ak只需要存储k个奇异值,k个m维向 维向量v 的所有分量,共计k(m+n+1)个 量ui和n维向量vj的所有分量,共计k(m+n+1)个 元素。 元素。 如果m=n=1000,存储原矩阵A 如果m=n=1000,存储原矩阵A需要存储 1000×1000个元素 1000×1000个元素。取k=100时,图象已经非 个元素。 k=100时 常清晰了, 常清晰了,这时的存储量是 100(2000+1)=200100个数 100(2000+1)=200100个数。 个数。 和矩阵A比较,存储量减少了80%。 和矩阵较,存储量减少了80%。
例题1 例题1 (P.202,例3) 求矩阵A的奇异值分解, 求矩阵A的奇异值分解,
1 1 A= 0 0 。 −1 −1
T
1 0 1 0 1 1 求矩阵A的奇异值分解, 求矩阵A的奇异值分解,A= 0 0 0
例题2 例题2
2. 矩阵U,V的空间性质 矩阵U 的空间性质:
相关文档
最新文档