数列高考常见题型分类汇总情况

数列高考常见题型分类汇总情况
数列高考常见题型分类汇总情况

数列通项与求和

一、数列的通项

方法总结:

对于数列的通项的变形,除了常见的求通项的方法,还有一些是需要找规律的,算周期或者根据图形进行推理。其余形式我们一般遵循以下几个原则: ①对于同时出现n a ,n ,n S 的式子,首先要对等式进行化简。常用的化简方法是因式分解,或者同除一个式子,同加,同减,取倒数等,如果出现分式,将分式化简成整式;

②利用1--=n n n S S a 关系消掉n S (或者n a ),得到关于n a 和n 的等式,然后用传统的求通项方法求出通项;

③根据问题在等式中构造相应的形式,使其变为我们熟悉的等差数列或等比数列;

④对于出现2n a 或2

n S (或更高次时)应考虑因式分解,最常见的为二次函数十字相乘法,提取公因式法;遇到1+?n n a a 时还会两边同除1+?n n a a .

1. 规律性形式求通项 1-1.数列{a n }满足a n+1=,若a 1=,则a 2016的值是( )

A .

B .

C .

D .

1-2.分形几何学是美籍法国数学家伯努瓦?B ?曼德尔布罗特(Benoit B .Mandelbrot )在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路.下图按照的分形规律生长成一个树形图,则第12行的实心圆点的个数是( )

A .55

B .89

C .144

D .233

1-3.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为(n ≥2),每个数是它下一行左右相邻两数的和,如,,

,…,则第10行第4个数(从左往右数)为( )

A .

B .

C .

D .

2.出现n a ,n ,n S 的式子

1-4.正项数列{a n }的前项和{a n }满足:222(1)()0n n s n n s n n -+--+=

(1)求数列{a n }的通项公式a n ;

(2)令()2221n n a n n b ++=

,数列{b n }的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T <.

1-5.设数列{}n a 的前n 项和为n S .已知11a =,

2121233

n n S a n n n +=---,*n ∈N . (1) 求2a 的值;

(2) 求数列{}n a 的通项公式.

1-6.已知首项都是1的两个数列{}n a ,{}),0(*N n b b n n ∈≠满足02111=+-+--n n n n n n b b b a b a .

(1)令n

n n b a c =,求数列{}n c 的通项公式; (2)若13-=n n b ,求数列{}n a 的前n 项和n S .

牛刀小试:

1.已知数列{n a }的前n 项和为Sn ,1a =1,且122(1)(1)(*)n n nS n S n n n N +-+=+∈,数列{n b }满足2120(*)n n n b b b n N ++-+=∈,53=b ,其前9项和为63.

(1)求数列数列{n a }和{n b }的通项公式;

2.已知数列{}n a 的前n 项和为n S ,且1111,.22n n n a a a n ++=

= (1)求{}n a 的通项公式;

(2)设(){}**2,,n n n b n S n N M n b n N λ=-∈=≥∈,若集合恰有4个元素,求实数λ的取值范围.

3.需构造的(证明题)

1-7.已知数列{}n a 的前n 项和为n S ,且满足021=?++n n n S S a ()2≥n ,211=

a . (1) 求证:?

?????n S 1是等差数列; (2)求n a 表达式;

1-8.设数列{a n }的前n 项和为S n ,且首项a 1≠3,a n+1=S n +3n (n ∈N *).

(1)求证:{S n ﹣3n }是等比数列;

(2)若{a n }为递增数列,求a 1的取值范围.

牛刀小试

1.已知数列{n a }中,=

1a 32,=+1n a )(12*∈+N n a a n n . (1)证明:数列?????

?-11n a 是等比数列; (2)求数列?

?????n a n 的前n 项和为n S .

2.数列{n a }中,=1a 1,=+1n a )(1

22411*∈-=-N n a b a n n n ,. (1)求证:数列{n b }是等差数列;

二、数列求和与放缩

数列求和的考察无外乎错位相减、裂项相消或者是分组求和等,但有一些通项公式需要化简才可以应用传统的方法进行求和。对于通项公式是分式形式的一般我们尝试把“大”分式分解成次数(分母的次数)相等的“小”分式,然后应用裂项相消的方法进项求和。放缩,怎么去放缩是重点,一般我们不可求和的放缩为可求和的,分式形式,分母是主要化简对象。

2-1. 数列{}n a 满足)(2212,2111*++∈+??? ?

?+==N n a n a a a n n n n n . (1)设n n

n a b 2=,求数列

{}n b 的通项公式. (2)设()111++=n n a n n c ,数列{}n c 的前n 项和为n S ,不等式n S m m >-4

1412对一切*∈N n 成立,求m 的范围.

2-2.设数列{}n a 满足10a =且

111 1.11n n a a +-=-- (1)求{}n a 的通项公式;

(2

)设1, 1.n

n n k n k b b S ==

=<∑记S 证明:

2-3

2-4

2-5

牛刀小试:

1.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.

(1)求数列{a n }的通项公式;

(2)令b n =(-1)

n -14n a n a n +1,求数列{b n }的前n 项和T n .

三、数列与不等式问题

在这类题目中一般是要证明()或者一个常数n f a n <∑,

一般思路有两种:1.若{a n }可求和n S ,则可直接求出其和,再转化为 ()n f S n <,而后一般转化为函数,或单调性来比较大小;2.若{a n }不可求和,则利用放缩法转化为可求和数列,再重复1的过程。

1.应用放缩法证明,将不规则的数列变成规则的数列,将其放大或是缩小。但如果出界了怎么办(放的太大或缩的太小),一般情况下,我们从第二项开始再放缩,如果还大则在尝试从第三项开始放缩。

2.应用数列单调性求数列中的最大或最小项。我们一般将数列中的n 看做自变量,n a 看做因变量*∈=N n n f a n )(,用函数部分求最值方法来求数列的最值;或者可以利用做商比较大小(一般出现幂时采取这个方法);也可相减做差求单调性。

3-1.设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()223n n S n n S -+--()

230n n +=,n N *∈.

(1)求1a 的值;

(2)求数列{}n a 的通项公式;

(3)证明:对一切正整数n ,有()()()112211111113

n n a a a a a a +++<+++L .

3-2.记公差不为0的等差数列}{n a 的前n 项和为n S ,93=S ,853a a a ,,成等比数列.

(1) 求数列}{n a 的通项公式n a 及n S ;

(2) 若)2(2λ-?=n

n n a c ,n =1,2,3,…,问是否存在实数λ,使得数列}{n c 为单调递减数列?若存在,请求出λ的取值范围;若不存在,请说明理由.

牛刀小试:

1.数列{}n a 的前n 项和为n S ,已知112a =

,2(1)n n S n a n n =--(n ∈*N ). (1) 求23,a a ;

(2) 求数列{}n a 的通项;

(3)设+11n n n b S S =

,数列{}n b 的前n 项和为n T ,证明:52

n T <(*n ∈N ).

2.设数列{}n a 的前n 项和为n S .已知11a =,

2121233n n S a n n n +=---,*n ∈N . (1) 求2a 的值;

(2) 求数列{}n a 的通项公式;

(3) 证明:对一切正整数n ,有1211174

n a a a +++

3.

数列作业

1.设数列{}n a 的前n 项和为n S ,且442+-=n n S n , (1)求数列{}n a 的通项;

(2)设n

n n a b 2=

,数列{}n b 的前n 项和为n T ,求证:141<≤n T .

2.已知{}n a 是各项均为正数的等比数列,且12342,32.a a a a ?=?= (I)求数列{}n a 的通项公式;

(II)设数列{}n b 满足

)(11

2321*1321N n a n b b b b n n ∈-=-+++++Λ,求数列{}n b 的前n 项和。

3.已知数列{}n a 的各项均为正数,其前n 项和为n S

,且满足111,1n a a +==,n ∈N *

. (1)求2a 的值;

(2)求数列{}n a 的通项公式;

(3)是否存在正整数k , 使k a , 21k S -, 4k a 成等比数列? 若存在, 求k 的值; 若不存在, 请说明理由.

4.已知n S 为数列{}n a 的前n 项和,3(1)n n S na n n =--(*n N ∈),且211a =.

(1)求1a 的值;

(2)求数列{}n a 的前n 项和n S ;

(3)设数列{}n b

满足n b =

,求证:12n b b b +++

5.设数列{}n a 的前n 项和为n S ,且1=+n n S a .

(1)求数列{}n a 的通项公式;

(2)设数列{}n b 满足:11+=n n a b ,又111--=n n n n b b a c ,且数列{}n c 的前n 项和为n T ,求证:3

2<

n T .

6.已知数列{b n }满足3(n +1)b n =nb n +1,且b 1=3.

(1)求数列{b n }的通项公式;

(2)已知a n b n =n +12n +3,求证:56≤1a 1+1a 2+…+1a n

<1. 7.已知数列{a n }的前n 项和为S n ,且S n =2a n -1;数列{b n }满足b n -1-b n =b n b n -1(n ≥2,n ∈N *),b 1=

1.

(1)求数列{a n },{b n }的通项公式;

(2)求数列??????

a n

b n 的前n 项和T n .

8.设等差数列{}n a 的前n 项和为n S ,且424S S =,221n n a a =+.

(1)求数列{}n a 的通项公式;

(2)设数列{}n b 前n 项和为n T ,且 12

n n n a T λ++

=(λ为常数).令2n n c b =*()n N ∈.求数列{}n c 的前n 项和n R .

2020年高考理科数学《数列》题型归纳与训练及参考答案

2020年高考理科数学《数列》题型归纳与训练 【题型归纳】 等差数列、等比数列的基本运算 题组一 等差数列基本量的计算 例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2?S n =36,则n = A .5 B .6 C .7 D .8 【答案】D 【解析】解法一:由题知()21(1) 2 1n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2?S n =36得,(n +2)2?n 2=4n +4=36,所以n =8. 解法二:S n +2?S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2?S n =36,解析为a n +2,发生错误。 题组二 等比数列基本量的计算 例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4 【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即42 20q q --=,解得q 2=2, ∴4 624a a q ==. 【易错点】忘了条件中的正数的等比数列. 【思维点拨】 等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路: (1)设基本量a 1和公差d (公比q ). (2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.

数列高考题型分类汇总

题型一 1.设{a n }是公比为正数的等比数列a 1 =2,a 3 =a 2 +4. (Ⅰ)求{a n }的通项公式; (Ⅱ)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n项和S n . 题型二 2.已知数列{a n }、{b n }、{c n }满足. (1)设c n =3n+6,{a n }是公差为3的等差数列.当b 1 =1时,求b 2 、b 3 的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n ≥b k ; (3)设,.当b 1=1时,求数列{b n }的通项公式. 题型三 3.已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m﹣1+a2n﹣1=2am+n ﹣1+2(m﹣n)2 (1)求a 3,a 5 ; (2)设b n =a 2n+1 ﹣a 2n﹣1 (n∈N*),证明:{b n }是等差数列; (3)设c n =(a n+1 ﹣a n )q n﹣1(q≠0,n∈N*),求数列{c n }的前n项和S n . 题型四 4.已知数列{an}满足,,n∈N×. (1)令b n =a n+1 ﹣a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. 5.设数列{an}的前n项和为Sn=2an﹣2n, (Ⅰ)求a 1,a 4 (Ⅱ)证明:{a n+1 ﹣2a n}是等比数列; (Ⅲ)求{a n }的通项公式. 6.在数列{a n }中,a 1 =1,.

(Ⅰ)求{a n }的通项公式; (Ⅱ)令 ,求数列{b n }的前n 项和S n ; (Ⅲ)求数列{a n }的前n 项和T n . 7.已知数列{a n }的首项, ,n=1,2,3,…. (Ⅰ)证明:数列是等比数列; (Ⅱ)求数列的前n 项和S n . 8.在数列{}n a 中,10a =,且对任意*k N ∈k N ∈,21221,,k k k a a a -+成等差数列, 其公差为k d 。 (Ⅰ)若k d =2k ,证明21222,,k k k a a a -+成等比数列(*k N ∈); (Ⅱ)若对任意*k N ∈,21222,,k k k a a a -+成等比数列,其公比为k q . 设1q ≠1.证明11k q ????-??是等差数列; 9.设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+ (I )设12n n n b a a +=-,证明数列{}n b 是等比数列 (II )求数列{}n a 的通项公式。 10. 设数列{}n a 的前n 项和为n S ,已知()21n n n ba b S -=- (Ⅰ)证明:当2b =时,{}12n n a n --?是等比数列; (Ⅱ)求{}n a 的通项公式

高考理科数学《数列》题型归纳与训练

高考理科数学《数列》题型归纳与训练 【题型归纳】 等差数列、等比数列的基本运算 题组一 等差数列基本量的计算 例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2?S n =36,则n = A .5 B .6 C .7 D .8 【答案】D 【解析】解法一:由题知()21(1) 2 1n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2?S n =36得,(n +2)2?n 2=4n +4=36,所以n =8. 解法二:S n +2?S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2?S n =36,解析为a n +2,发生错误。 题组二 等比数列基本量的计算 例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4 【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即42 20q q --=,解得q 2=2, ∴4 624a a q ==. 【易错点】忘了条件中的正数的等比数列. 【思维点拨】 等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路: (1)设基本量a 1和公差d (公比q ). (2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.

数列高考常见题型分类汇总情况

数列通项与求和 一、数列的通项 方法总结: 对于数列的通项的变形,除了常见的求通项的方法,还有一些是需要找规律的,算周期或者根据图形进行推理。其余形式我们一般遵循以下几个原则: ①对于同时出现n a ,n ,n S 的式子,首先要对等式进行化简。常用的化简方法是因式分解,或者同除一个式子,同加,同减,取倒数等,如果出现分式,将分式化简成整式; ②利用1--=n n n S S a 关系消掉n S (或者n a ),得到关于n a 和n 的等式,然后用传统的求通项方法求出通项; ③根据问题在等式中构造相应的形式,使其变为我们熟悉的等差数列或等比数列; ④对于出现2n a 或2 n S (或更高次时)应考虑因式分解,最常见的为二次函数十字相乘法,提取公因式法;遇到1+?n n a a 时还会两边同除1+?n n a a . 1. 规律性形式求通项 1-1.数列{a n }满足a n+1=,若a 1=,则a 2016的值是( ) A . B . C . D . 1-2.分形几何学是美籍法国数学家伯努瓦?B ?曼德尔布罗特(Benoit B .Mandelbrot )在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路.下图按照的分形规律生长成一个树形图,则第12行的实心圆点的个数是( ) A .55 B .89 C .144 D .233 1-3.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为(n ≥2),每个数是它下一行左右相邻两数的和,如,,

,…,则第10行第4个数(从左往右数)为( ) A . B . C . D . 2.出现n a ,n ,n S 的式子 1-4.正项数列{a n }的前项和{a n }满足:222(1)()0n n s n n s n n -+--+= (1)求数列{a n }的通项公式a n ; (2)令()2221n n a n n b ++= ,数列{b n }的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T <. 1-5.设数列{}n a 的前n 项和为n S .已知11a =, 2121233 n n S a n n n +=---,*n ∈N . (1) 求2a 的值; (2) 求数列{}n a 的通项公式.

数列题型及解题方法归纳总结

累加累积 归纳猜想证明 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了 典型 题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 ⑴递推式为a n+i =3+d 及a n+i =qa n (d ,q 为常数) 例1、 已知{a n }满足a n+i =a n +2,而且a i =1。求a n 。 例1、解 ■/ a n+i -a n =2为常数 ??? {a n }是首项为1,公差为2的等差数列 /? a n =1+2 (n-1 ) 即 a n =2n-1 1 例2、已知{a n }满足a n 1 a n ,而a 1 2,求a n =? 佥 1 2 解■/^ = +是常数 .■-傀}是以2为首顶,公比为扌的等比数 把n-1个等式累加得: .' ? an=2 ? 3n-1-1 ji i ? / ] — 3 ⑷ 递推式为a n+1=p a n +q n (p ,q 为常数) s 1 1 【例即己知何沖.衍二右札+ 吧求% 略解在如十冷)*的两边乘以丹得 2 严‘ *珞1 = ~〔2怙血)+1.令亠=2n 召 则也€%乜于是可得 2 2 n b n 1 n 1 n b n 1 b n (b n b n 1)由上题的解法,得:b n 3 2(—) ? a . n 3(—) 2(—) 3 3 2 2 3 ★说明对于递推式辺曲=+屮,可两边除以中叫得蹲= Q 計/斗引辅助财如(%=芒.徼十氣+护用 (5) 递推式为 a n 2 pa n 1 qa n 知识框架 数列 的概念 数列的分类 数列的通项公式 数列的递推关系 函数角度理解 (2)递推式为 a n+1=a n +f (n ) 1 2 例3、已知{a n }中 a 1 a n 1 a n 1 ,求 a n . 4n 2 1 等差数列的疋义 a n a n 1 d(n 2) 等差数列的通项公式 a n a 1 (n 1)d 等差数列 等差数列的求和公式 S n (a 1 a n ) na 1 n(n 1)d 2 2 等差数列的性质 a n a m a p a q (m n p q) 两个基 本数列 等比数列的定义 a n 1 q(n 2) 等比数列的通项公式 a n n 1 a 1q 数列 等比数列 a 1 a n q 3(1 q ) (q 1) 等比数列的求和公式 S n 1 q 1 q / n a 1(q 1) 等比数列的性质 S n S m a p a q (m n p q) 公式法 分组求和 错位相减求和 裂项求和 倒序相加求和 解:由已知可知a n 1 a n (2n 1)(2n 1)夕2n 1 2n 令n=1,2,…,(n-1 ),代入得(n-1 )个等式累加,即(a 2-a 1) + 1广 K z 1】、 =-[(1-" + J J 5 _■ 冷(一 Jr ★ 说明 只要和f ( 1) +f (2) 入,可得n-1个等式累加而求a n 。 ⑶ 递推式为a n+1=ps n +q (p , q 为常数) 1 a n a 1 (1 2 +?…+f 例 4、{a n }中,ai 1,对于 n > 1 (n € N) 有a n (a 3-a 2) + ? + (a n -a n-1) L )也 2n 1 4n 2 (n-1 )是可求的,就可以由 a n+1=a n +f (n )以n=1,2,…, 3a n 1 2 ,求 a n ? 数列 求和 解法一: 由已知递推式得 a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3 (a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为 a 2-a 1= (3X 1+2) -1=4 --a n+1 -a n =4 ? 3 - a n+1 =3a n +2 - - 3a n +2-a n =4 ? 3 即 a n =2 ? 3 -1 解法_ : 上法得{a n+1-a n }是公比为 3 的等比数列,于是有: a 2-a 1=4, a 3-a 2=4 ? 3, a 4-a 3=4 ? 3 ? 3 , 数列的应用 分期付款 其他

2017年高考试题分类汇编(数列)

2017年高考试题分类汇编(数列) 考点1 等差数列 1.(2017·全国卷Ⅰ理科)记n S 为等差数列{}n a 的前n 项和.若4524a a +=, 648S =,则{}n a 的公差为 C A .1 B .2 C .4 D .8 2.(2017·全国卷Ⅱ理科)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则 11n k k S ==∑ . 21n n + 3.(2017·浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是 “465+2S S S >”的 C A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 考点2等比数列 1.(2017·全国卷Ⅲ理科)设等比数列{}n a 满足121a a +=-,133a a -=-,则 4a =____.8- 2.(2017·江苏卷)等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知 374S = ,6634 S =,则8a = . 32 3.(2017·全国卷Ⅱ理科)我国古代数学名著《算法统宗》中有如下问题:“远 望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是: 一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍, 则塔的顶层共有灯 B A .1盏 B .3盏 C .5盏 D .9盏 考法3 等差数列与等比数列综合 1.(2017·全国卷Ⅲ理科)等差数列{}n a 的首项为1,公差不为0.若2a ,3a , 6a 成等比数列,则{}n a 前6项的和为 A A .24- B .3- C .3 D .8

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

高考文科必考题型训练11数列大题学

2013年高考文科必考题型训练11数列大题 1.【2012高考浙江文19】(本题满分14分)已知数列{a n }的前n 项和为S n ,且 S n =22n n +, n ∈N ﹡,数列{b n }满足a n =4log 2b n +3,n ∈N ﹡. (1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n . 2.【2012高考重庆文16】(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)) 已知{}n a 为等差数列,且13248,12,a a a a +=+=(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,若12,,k k a a S +成等比数列,求正整数k 的值。 3. (2011年高考福建卷文科17)(本小题满分12分) 已知等差数列{a n }中,a 1=1,a 3=-3. (I )求数列{a n }的通项公式;(II )若数列{a n }的前k 项和S k =-35,求k 的值.

4.(2011年高考全国新课标卷文科17)(本小题满分12分) 已知等比数列{}n a 中,3 1,311== q a , (1)n s 为数列{}n a 前n 项的和,证明:2 1n n a s -= (2)设n n a a a b 32313log log log +++= ,求数列{}n b 的通项公式; 5.(2011年高考重庆卷文科16)(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分) 设{}n a 是公比为正数的等比数列,12a =,324a a =+。 (Ⅰ)求{}n a 的通项公式; (Ⅱ)设{}n b 是首项为1,公差为2的等差数列,求数列{}n n a b +的前n 项和n s 。 6、(2010陕西文数)16.(本小题满分12分) 已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列. (Ⅰ)求数列{a n }的通项; (Ⅱ)求数列{2an }的前n 项和S n .

高考数学数列知识点及题型大总结

20XX 年高考数学数列知识点及题型大总结 等差数列 知识要点 1.递推关系与通项公式 m n a a d n a a d d n a a d m n a a d n a a d a a m n n n m n n n n --= --= --=-+=-+==-+1; )1()()1(1111变式:推广:通项公式:递推关系: 为常数) 即:特征:m k m kn n f a d a dn a n n ,(,)(), (1+==-+= ),为常数,(m k m kn a n +=是数列{}n a 成等差数列的充要条件。 2.等差中项: 若c b a ,,成等差数列,则b 称c a 与的等差中项,且2 c a b +=;c b a ,,成等差数列是c a b +=2的充要条件。 3.前n 项和公式 2 )(1n a a S n n += ; 2)1(1d n n na S n -+= ) ,()(,)2(22212为常数即特征:B A Bn An S Bn An n f S n d a n d S n n n +=+==-+= 是数列 {}n a 成等差数列的充要条件。 4.等差数列 {}n a 的基本性质),,,(*∈N q p n m 其中 ⑴q p n m a a a a q p n m +=++=+,则若反之,不成立。 ⑵d m n a a m n )(-=- ⑶m n m n n a a a +-+=2

⑷n n n n n S S S S S 232,,--仍成等差数列。 5.判断或证明一个数列是等差数列的方法: ①定义法: )常数)(*+∈=-N n d a a n n (1?{}n a 是等差数列 ②中项法: )22 1*++∈+=N n a a a n n n (?{}n a 是等差数列 ③通项公式法: ),(为常数b k b kn a n +=?{}n a 是等差数列 ④前n 项和公式法: ),(2为常数B A Bn An S n +=?{}n a 是等差数列 练习:1.等差数列 {}n a 中, ) (3 1 ,1201191210864C a a a a a a a 的值为则-=++++ A .14 B .15 C .16 D .17 165 1203232)(32) 2(3 1 318999119=?==-=+-=-a d a d a a a a 2.等差数列 {}n a 中,12910S S a =>,,则前10或11项的和最大。 解:0912129 =-=S S S S , 003011111121110>=∴=∴=++∴a a a a a a ,又,, ∴ {}n a 为递减等差数列∴1110S S =为最大。 3.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为-110 解:∵ ,,,,,1001102030102010S S S S S S S --- 成等差数列,公差为D 其首项为 10010=S ,前10项的和为10100=S 解

人教版高中数列知识点总结(知识点+例题)

人教版高中数列知识点总结(知识点+例题) Lesson6 数列 知识点1:等差数列及其前n 项 1.等差数列的定义 2.等差数列的通项公式 如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式a n =a 1+(n -1) d . 3.等差中项 a +b 如果 A =2 ,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:a n =a m +(n-m )d ,(n ,m ∈N *) . (2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *) ,则 (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为. (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *) 是公差为的等差数列. 5.等差数列的前n 项和公式 n (a 1+a n )n (n -1) 设等差数列{a n }的公差d ,其前n 项和S n 或S n =na 1+22. 6.等差数列的前n 项和公式与函数的关系 d d 2? S n 2+ a 1-2n . 数列{a n }是等差数列?S n =An 2+Bn ,(A 、B 为常数) . ?? 7.等差数列的最值 在等差数列{a n }中,a 1>0,d 0,则S n 存在最小值. [难点正本疑点清源] 1.等差数列的判定 (1)定义法:a n -a n -1=d (n ≥2) ; (2)等差中项法:2a n +1=a n +a n +2.

高考数学题型全归纳:数列要点讲解(含答案)

数 列 一、高考要求 1. 理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列 的前n 项. 2. 理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n 项和的公式. 并能运 用这些知识来解决一些实际问题. 3. 了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明”这一思 想方法. 二、热点分析 1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n 项和公式、极限的四则运算法则、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目. 2.有关数列题的命题趋势 (1)数列是特殊的函数,而不等式则是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点 (2)数列推理题是新出现的命题热点.以往高考常使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。(3)加强了数列与极限的综合考查题 3.熟练掌握、灵活运用等差、等比数列的性质。等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如243546225a a a a a a ++=,可以利用等比数列的性质进行转化:从而有 223355225a a a a ++=,即235()25a a +=. 4.对客观题,应注意寻求简捷方法 解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下: ①借助特殊数列. ②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法 5.在数列的学习中加强能力训练 数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,

高考数学 题型全归纳:数列在生活中的应用(含答案)

数列在生活中的应用 在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。与此同时,数列在艺术创作上也有突出的作用! 数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活关系的精彩描述。 首先, 我重点分析等差数列、等比数列在实际生活和经济活动中的应用。 (一)按揭货款中的数列问题 随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。 众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息。这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这一问题的解决办法。 若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, ...... an+1=an(1+p)-a,.........................(*) 将(*)变形,得(an+1-a/p)/(an-a/p)=1+p. 由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数列。日常生活中一切有关按揭货款的问题,均可根据此式计算。 (二)有关数列的其他经济应用问题 数列知识除在个人投资理财方面有较为广泛的应用外,在企业经营管理上也是不可或缺的。一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题,但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。因此,解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。 (三)数列在艺术中的广泛应用

全国各地高考数学试题数列分类汇编

2018年全国各地高考数学试题及解答分类汇编大全 1.(2018全国新课标Ⅰ理)记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则=5a ( ) A .12- B .10- C .10 D .12 答案:B 解答: 11111132433(3)24996732022 a d a d a d a d a d a d ??+?=+++??+=+?+=6203d d ?+=?=-, ∴51424(3)10a a d =+=+?-=-. 2.(2018北京理)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________. 【答案】63n a n =- 【解析】13a =Q ,33436d d ∴+++=,6d ∴=,()36163n a n n ∴=+-=-. 3.(2017全国新课标Ⅰ理)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4 D .8 【答案】C 【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,61165 6615482 S a d a d ?=+=+=,联立112724 ,61548 a d a d +=?? +=?解得4d =,故选C. 秒杀解析:因为166346() 3()482 a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=, 即5328a a d -==,解得4d =,故选C. 4.(2017全国新课标Ⅱ理)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏 【答案】B 5.(2017全国新课标Ⅲ理)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为( ) A .24- B .3- C .3 D .8 【答案】A 【解析】∵{}n a 为等差数列,且236,,a a a 成等比数列,设公差为d . 则2 3 26a a a =?,即()()()2 11125a d a d a d +=++ 又∵11a =,代入上式可得220d d += 又∵0d ≠,则2d =- ∴()616565 61622422 S a d ??=+=?+?-=-,故选A. 6.(2017全国新课标Ⅰ理)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{} n a 的公差为 A .1 B .2 C .4 D .8 【答案】C 【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,61165 6615482 S a d a d ?=+=+=,联立112724 ,61548 a d a d +=?? +=?解得4d =,故选C.

数列题型及解题方法归纳总结99067

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a = (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,12141 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…

数列高考题型分类汇总

(Ⅰ)求{a n }的通项公式; (Ⅱ)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n项和S n . 题型二 2.已知数列{a n }、{b n }、{c n }满足. (1)设c n =3n+6,{a n }是公差为3的等差数列.当b 1 =1时,求b 2 、b 3 的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n ≥b k ; (3)设,.当b 1=1时,求数列{b n }的通项公式. 题型三 3.已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m﹣1+a2n﹣1=2am+n ﹣1+2(m﹣n)2 (1)求a 3,a 5 ; (2)设b n =a 2n+1 ﹣a 2n﹣1 (n∈N*),证明:{b n }是等差数列; (3)设c n =(a n+1 ﹣a n )q n﹣1(q≠0,n∈N*),求数列{c n }的前n项和S n . 题型四 4.已知数列{an}满足,,n∈N×. (1)令b n =a n+1 ﹣a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. 5.设数列{an}的前n项和为Sn=2an﹣2n, (Ⅰ)求a 1,a 4 (Ⅱ)证明:{a n+1 ﹣2a n}是等比数列; (Ⅲ)求{a n }的通项公式. 6.在数列{a n }中,a 1 =1,. (Ⅰ)求{a n }的通项公式;

(Ⅱ)令,求数列{b n }的前n 项和S n ; (Ⅲ)求数列{a n }的前n 项和T n . 7.已知数列{a n }的首项, ,n=1,2,3,…. (Ⅰ)证明:数列是等比数列; (Ⅱ)求数列的前n 项和S n . 8.在数列{}n a 中,10a =,且对任意*k N ∈k N ∈,21221,,k k k a a a -+成等差数列, 其公差为k d 。 (Ⅰ)若k d =2k ,证明21222,,k k k a a a -+成等比数列(*k N ∈); (Ⅱ)若对任意*k N ∈,21222,,k k k a a a -+成等比数列,其公比为k q . 设1q ≠1.证明11k q ????-??是等差数列; 9.设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+ (I )设12n n n b a a +=-,证明数列{}n b 是等比数列 (II )求数列{}n a 的通项公式。 10. 设数列{}n a 的前n 项和为n S ,已知()21n n n ba b S -=- (Ⅰ)证明:当2b =时,{}12n n a n --?是等比数列; (Ⅱ)求{}n a 的通项公式

数列题型与解题方法归纳总结

.下载可编辑. 知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ????????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可 能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,12141 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+… +(a n -a n-1)

高考数列经典题型全面解析

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列 {}n a 满足211=a ,n n a a n n ++ =+211 ,求n a 。 解:由条件知:1 1 1)1(1121+-=+=+=-+n n n n n n a a n n 分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之,即 )()()()(1342312--+??????+-+-+-n n a a a a a a a a )111()4131()3121()211(n n --+??????+-+-+-= 所以n a a n 1 11- =- 211= a ,n n a n 1231121-=-+=∴ 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列 {}n a 满足321=a ,n n a n n a 1 1+= +,求n a 。 解:由条件知1 1+= +n n a a n n ,分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累乘之,即 1342312-??????????n n a a a a a a a a n n 1433221-??????????=n a a n 1 1=?又321=a , n a n 32 = ∴ 例:已知31 =a ,n n a n n a 2 31 31+-= + )1(≥n ,求n a 。 1 2 3132231232)2(31)2(32)1(31)1(3a n n n n a n +-?+?-??????+---?+---=

高中数学最全数列总结及题型精选

高中数学:数列及最全总结和题型精选 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫 这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211,,,,… 说明: ①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈?+=? ; ③不是每个数列都有通项公式。例如,1,,,,…… (3)数列的函数特征与图象表示: 从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始 依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:递增数列、递减数列、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列 (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:1 1(1)(2)n n n S n a S S n -=?=? -?≥ 二、等差数列 (一)、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为1n n -或1(1)n n a a d n +-=≥ 例:等差数列12-=n a n ,=--1n n a a (二)、等差数列的通项公式:1(1)n a a n d =+-; 说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,124971 16a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64 2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670 3.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”) (三)、等差中项的概念: 定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。其中2 a b A +=

相关文档
最新文档