13蒸汽动力装置循环
工程热力学高教第三版课后习题第十一章答案

(2) p1 = 3MPa , t1 = 500 C , p2 = 6kPa ,由 h-s 图查得:
h1 = 3453kJ/kg 、 h2 = 2226kJ/kg 、 x2 = 0.859 t2 = 36 o C
取 h2′ ≈ cwt2' = 4.187kJ/(kg ⋅ K) × 36 C = 150.7kJ/kg
o
若不计水泵功,则
ηt =
h1 − h2 3453kJ/kg − 2226kJ/kg = = 37.16% h1 − h2′ 3453kJ/kg − 150.7kJ/kg
142
第十一章 蒸汽动力装置循环
d=
1 1 = = 8.15 × 10−7 kg/J 3 h1 − h2 (3453 − 2226) × 10 J/kg
热效率
ηt =
h1 − h2 − wp h1 − h2 − wp
=
(2996 − 2005 − 3)kJ/kg = 34.76% (2996 − 150.7 − 3)kJ/kg
若略去水泵功,则
ηt =
d=
h1 − h2 2996kJ/kg − 2005kJ/kg = = 34.83% h1 − h2′ 2996kJ/kg − 150.7kJ/kg 1 1 = = 1.009 × 10−6 kg/J 3 h1 − h2 (2996 − 2005) ×10 J/kg
143
第十一章 蒸汽动力装置循环
解: (1)由 p1 = 12.0MPa 、 t1 = 450 o C 及再热压力 pb = 2.4MPa ,由 h-s 图查得
h1 = 3212kJ/kg、s1 = 6.302kJ/(kg ⋅ K)、hb = 2819kJ/kg 、 ha = 3243kJ/kg 、 h2 = 2116kJ/kg 、 x 2 = 0.820 p2 = 0.004MPa 、 s1 = sc = sb = 6.302kJ/(kg ⋅ K) , sc ' = 0.4221kJ/(kg ⋅ K) 、 sc " = 8.4725kJ/(kg ⋅ K)
第十一章 蒸汽动力循环装置

第十一章蒸汽动力循环装置水蒸气是工业上最早使用来作为动力机的工质。
在蒸汽动力装置中水时而处于液态,时而处于气态。
因而蒸汽动力装置循环不同于气体动力循环。
此外,水和水蒸气不能燃烧,只能从外界吸收热量,所以蒸汽循环必须配备锅炉,因此装置设备也不同于气体动力装置。
由于燃烧产物不参与循环,故而蒸汽动力装置可利用各种燃料,如煤、渣油,甚至可燃垃圾。
§11-1简单蒸汽动力装置循环——朗肯循环1、工质为水蒸气的卡诺循环由第二定律可知,在相同温限内卡诺循环的热效率最高,而采用气体作工质的循环中,定温过程(加热及放热)难以实现,并且气体绝热线及等温线在p-v图上斜率接近,因此有w较小。
i在采用蒸汽做工质时,由于水的汽化和凝结,当压力不变时温度也不变,因而有了定温放热和定温吸热的可能。
又因为定温即是定压,其在p-v图上与绝热线斜率相差较大,因而可提高w,所以蒸汽机原则上可采用卡诺循环,如图中5-6-7-8-5所i示。
而实际的蒸汽动力装置中不采用上冻循环,其主要原因有以下几点:1)在压缩机中绝热压缩8-5过程难以实现;2)徨仅局限于饱和区,上限温度受临界温度的限制,故即使实现卡诺循环,其热效率也不高;3)膨胀末期,湿蒸汽干度过小,含水分甚多,不利于动力机安全。
所以,实际蒸汽动力循环均以朗肯循环为其基础。
2、朗肯(Rankine)循环朗肯循环是最简单也是最基本的蒸汽动力循环,它由锅炉、汽轮机、冷凝器和水泵4个基本的、也是主要的设备组成。
右图中为该装置的示意图。
水在锅炉中被加热汽化,直至成为过热蒸汽后,进入汽轮机膨胀作功,作功后的低压蒸汽进入冷凝器被冷凝成水,凝结后的水在水泵中被压缩升压后,再回到锅炉中,完成一个循环。
为了突出主要矛盾,分析主要参数对循环的影响,与前述循环一样,首先对实际循环进行简化和理想化,略去摩阻及温差传热等不可逆因素,理想化后的循环由右图(a )所示的热力过程组成,对应的T-s 图如图(b )所示。
化工热力学 蒸汽动力循环与制冷循环

31
(2) T-S图法
TH T2 T1
T 等H线 T1
P1 P2
T2
S (3) 利用经验公式估算
对于空气,当压力变化不太大时,不考虑温度的
影响,可直接按下式近似估算:
TH 0.29( p2
p1
)
273 T1
2
式中:压力单位为大气压atm,温度单位为热力学温度开尔文。
对于不同的流体,其表达式不同。
图读取ΔTS
T2
P1 P2
S 37
④ 用等焓节流效应计算
s
J
V Cp
Ts
p2
J dp
p1
V p2 dp
C p1 p
若Cp=const
1 p2
Ts
TH
Cp
V dp
p1
38
2.不可逆对外做功的绝热膨胀
对活塞式膨胀机
➢ 当t<30℃
ηs=0.65
➢ 当t>30℃ ηs=0.7~0.75
T 1
3
卡诺循环产功 很大,但难于实现, 问题在于:
(1)湿蒸汽对 汽轮机和水泵有浸蚀 作用,汽轮机带水量 不 得 超 过 10% , 水 泵 不能带入蒸汽进泵;
(2)绝热可逆 过程实际上难以实现 。
第一个具有 实际意义的蒸汽动力 循环是朗肯循环。
T-S图
T
T吸
4
T放
3
QH 1 Ws
2 QL
S
4
2. 郎肯循环
dH H dT H dP T P P T
dH 0
H
T P T
P H
H
T P
25
H T
P
Cp
第九章蒸汽动力循环装置

第九章 蒸汽动力循环装置工业上最早使用的动力机是用水蒸气做工质的蒸汽动力装置。
在蒸汽动力装置中水时而处于液态,时而处于气态,如在蒸汽锅炉中液态水汽化产生蒸汽,经汽轮机膨胀作功后,进入冷凝器又凝结成水再返回锅炉,而且在汽化和凝结时可维持定温,因而蒸汽动力装置循环不同于气体动力循环。
此外,水和水蒸气不能助燃,只能从外热源吸收热量,所以蒸汽循环必需配备锅炉,因此装置设备也不同于气体动力循环。
由于燃烧产物不参与循环,故而蒸汽动力装置可利用各种燃料,如煤、渣油,甚至可燃垃圾。
第一节简单蒸汽动力装置循环———朗肯循环一、 工质为水蒸气的卡诺循环热力学第二定律已证明,在相同温限内卡诺循环的热效率最高。
在采用气体作工质的循环中,因定温加热和放热难于进行,而且气体的定温线和绝热线在p-v图上的斜率相差不多,以致卡诺循环所作的功并不大,故在实际上难于采用。
在采用蒸汽作工质时,由于水的汽化和蒸汽的凝结,当压力不变时温度也不变,因而实际上也就有了定温加热和放热的可能。
更因这时定温过程亦即定压过程,在p-v图上其与绝热线之间的斜率相差亦大,故所作的功也较大。
所以,以蒸汽为工质时原则上可以采用卡诺循环,如图11-1中循环6-7-8-5-6所示。
然而在实际(b)(a)图9-1 水蒸气的朗肯循环的蒸汽动力装置中不采用卡诺循环,其主要原因是:首先,在压缩机中绝热压缩过程8-5难于实现,因状态8是水和蒸汽的混合物,压缩过程中压缩机工作不稳定,同时状态8的比体积比水的比体积大得多,需用比水泵大得多的压缩机;其次,循环局限于饱和区,上限温度受制于临界温度,故即使实现卡诺循环,其热效率也不高;再次,膨胀末期,湿蒸汽干度过小,即含水分甚多,不利于动力机安全。
实际蒸汽动力循环均以朗肯循环为其基础。
二、朗肯循环及其热效率简单蒸汽动力装置流程示意图如图9-2所示,其理想循环———朗肯循环图9-2简单蒸汽动力装置流程示意图的p-v图和T-s图见图9-1。
蒸汽动力循环

第十章 蒸汽动力循环蒸汽动力装置:是实现热能→机械能的动力装置之一。
工质 :水蒸汽。
用途 :电力生产、化工厂原材料、船舶、机车等动力上的应用。
本章重点:1、蒸汽动力装置的基本循环朗肯循环匀速回热循环2、蒸汽动力装置循环热效率分析 y T 的计算公式 y T 的影响因素分析 y T 的提高途径10-1 水蒸气作为工质的卡诺循环热力学第二定律通过卡诺定理证明了在相同的温度界限间,卡诺循环的热效率最高,但实际上存在种种困难和不利因素,使得实际循环(蒸汽动力循环)至今不能采用卡诺循环但卡诺循环在理论上具有很大的意义。
二、为什么不能采用卡诺循环若超过饱和区的范围而进入过热区则不易保证定温加热和定温放热,即不能按卡诺循环进行。
1-2 绝热膨胀(汽轮机) 2-C 定温放热(冷凝汽)可以实现 5-1 定温加热(锅炉)C-5 绝热压缩(压缩机) 难以实现原因:2-C 过程压缩的工质处于低干度的湿汽状态1、水与汽的混合物压缩有困难,压缩机工作不稳定,而且3点的湿蒸汽比容比水大的多'23νν>'232000νν≈需比水泵大得多的压缩机使得输出的净功大大p v减少,同时对压缩机不利。
2、循环仅限于饱和区,上限T1受临界温度的限制,即使是实现卡诺循环,其理论效率也不高。
3、膨胀末期,湿蒸汽所含的水分太多不利于动机为了改进上述的压缩过程人们将汽凝结成水,同时为了提高上限温这就需要对卡诺循环进行改进,温度采用过热蒸汽使T1高于临界温度,改进的结果就是下面要讨论的另一种循环—朗肯循环。
10-2 朗肯循环过程:从锅炉过热器与出来的过热蒸汽通过管道进入汽轮机T,蒸汽部分热能在T 中转换为机械带动发电机发电,作了功的低压乏汽排入C,对冷却水放出γ,凝结成水,凝结成的水由给水泵P送进省煤器D′进行预热,然后在锅炉内吸热汽化,饱和蒸汽进入S继续吸热成过热蒸汽,过程可理想化为两个定压过程,两个绝热过程—朗诺循环。
1-2 绝热膨胀过程,对外作功2-3 定温(定压)冷凝过程(放热过程)3-4 绝热压缩过程,消耗外界功4-1 定压吸热过程,(三个状态)4-1过程:水在锅炉和过热器中吸热由未饱和水变为过热蒸汽过程中工质与外界无技术功交换。
《热工基础》第六章

由于水的压缩性很小,水泵消耗的功与汽轮机 作出的功相比甚小,可忽略不计, h4 h3 0
t
(h1 h2 ) (h4 h1 h4
h3 )
h1 h1
h2 h4
h1 h2 h1 h3
汽耗率 :动力装置每输出1J功所消耗的蒸汽量
d 1 wnet
单位:kg/J
工程单位:kg/(kW·h)
汽油机:小型汽车,摩托
按燃料 柴油机: 中、大型汽车,火车,轮船, 移动电站
煤油机: 航空
按点燃方式: 点燃式、压燃式
按冲程数: 二冲程、四冲程
16
第六章小结
(1) 掌握朗肯循环的工作过程。 (2) 了解朗肯循环效率的影响因素及提高循 环效率的途径。
17
1 kW·h = 3600 kJ
P130 例题6-1 1 kg/J = 3600 kg/(kWh)
7
3.蒸汽参数对朗肯循环热效率的影响
t
h1 h2 h1 h4
h1 h2 h1 h3
朗肯循环的热效率 与新蒸汽的温度t1(初温)、
压力p1(初压)以及乏汽的压力p2(终压)有关。
将朗肯循环折合成熵变相
第六章 动力装置循环
本章将分别介绍典型动力装置—— 蒸 汽动力装置的工作原理,对相应的理想工 作循环进行分析,了解循环效率的影响因 素,掌握提高循环效率的方法。
1
热能动力装置 : 将热能转换为机械能的设备,也称为
热力发动机,简称热机。
动力装置循环(简称动力循环或热机循环):
蒸汽动力装置循环: 以蒸汽为工质的热机工作循环(如蒸
4-5-6-1:水与水蒸气在锅炉 中的可逆定压加热过程;
1-2 : 水 蒸 气 在 汽 轮 机 中 的 可逆绝热膨胀过程; 2-3 : 乏 汽 在 冷 凝 器 中 的 定 压放热过程。
第十章 蒸汽动力循环装置

热效率:
b
c
2
0
图10-9 再热循环的T-s图
s
四、再热压力对循环热效率大小的影响
T
1
T1
1
1
T 1'
5
T1
T 1"
4
6
T2
3 2 2'
2
s
蒸汽再热循环的实践
再热压力 pb=pa0.2~0.3p1 p1<10MPa,一般不采用再热 10、12.5、20、30万机组,p1>13.5MPa,一次再热
目录
第十章 10-1 10-2 10-3
蒸汽动力循环装置
简单蒸汽动力装置循环(朗肯循环) 再热循环 回热循环
10-4* 热电合供循环
10-5* 几种与蒸汽有关的动力循环
•
教学目标:掌握蒸汽动力循环及其计算方法。
•
知识点:蒸汽动力基本循环;朗肯循环;回热循环与再热循
环;热电循环;蒸汽—燃气联合循环。
发 电 机
T
2
q2
P
3(2’)
图10-2 简单蒸汽动力装置流程示意图
实际的蒸汽动力循环都是以 朗肯循环为基础的。
1
四个主要装置: 锅炉 汽轮机 凝汽器 给水泵
q1
锅 炉
B
T
汽 轮 机
2
发 电 机
q2
凝汽器 给水泵
4 C
P
3(2’)
图10-2 简单蒸汽动力装置流程示意图
1—2:汽轮机中绝热膨胀
2—3:冷凝器中定压冷凝 3—4:给水泵中绝热压缩
10-3
回热循环
对于一级抽汽回热循环,每千克状态
为1的新蒸汽绝热膨胀到状态01(p01,t01),
蒸汽动力循环装置提高效率的方法

蒸汽动力循环装置提高效率的方法1. 使用多级蒸汽动力循环装置:通过增加多个蒸汽轮机和各个级别的回热器,可以充分利用热能,提高装置的效率。
每个级别都利用已经冷却的蒸汽,使其再次加热,并选择不同的压力点以充分利用能量。
2. 使用高效的燃烧系统:采用高效的燃烧系统,如流体化床燃烧器或气化燃烧器,可以更充分地燃烧燃料,并减少烟气中的污染物生成。
这不仅可以提高燃料利用效率,还可以减少对环境的负面影响。
3. 优化锅炉和回热器设计:通过优化锅炉和回热器的设计,增加燃料燃烧的热能传递,从而提高装置的热效率。
增加燃料燃烧的燃烧时间和温度,减少烟气温度和烟气中的热量损失。
4. 使用高效的蒸汽涡轮机:选择高效的蒸汽涡轮机,可以减少能量损失,提高装置的效率。
采用多级蒸汽涡轮机和温度叶片等先进技术,可以更好地利用蒸汽的能量。
5. 采用热能储存系统:通过采用热能储存系统,可以在低耗电负荷时存储部分热能,然后在高耗电负荷时释放。
这种方式可以平衡装置的能量供应,提高效率。
6. 优化循环过程:通过优化蒸汽动力循环装置的操作参数,如水蒸气的压力和温度,可以提高装置的性能。
选择合适的循环压力,以在蒸汽生成和排气过程中最大限度地提高效率。
7. 进行余热回收:通过在涡轮蒸汽排气过程中回收余热,可以充分利用热能,减少能量损失。
采用热交换器将排气蒸汽中的热量传递给进料水,从而提高装置的热效率。
8. 使用高效的冷凝器:选择高效的冷凝器,可以将涡轮蒸汽排气中的热量更充分地释放出来,并转化为有用的能源。
通过减少蒸汽在冷凝器中的压力损失,可以提高装置的效率。
9. 优化冷却水系统:通过优化蒸汽动力循环装置的冷却水系统,可以提高冷凝的效率。
使用高效的冷却塔或换热器,以便更好地冷却循环水,并减少冷却水的消耗。
10. 定期维护和清洁:定期进行设备维护和清洁,以确保蒸汽动力循环装置的正常运行。
清洁涡轮叶片和燃烧器,消除积碳和污垢,可以提高设备的性能和效率。
定期检查和更换老化的设备部件,也可以减少能量损失和系统故障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章蒸汽动力循环装置讲课时间:第十二周周四
2016-5-172
一、概述
蒸汽及蒸汽动力装置(steam power plant)
1)蒸汽是历史上最早广泛使用的工质,19世纪后期蒸汽动力装置的大量使用,促使生产力飞速发展,
促使资本主义诞生。
2)目前世界约75%电力、国内78%电力来自火电厂,绝大部分来自蒸汽动力。
3)蒸汽动力装置可利用各种燃料。
4)蒸汽是无污染、价廉、易得的工质。
一、概述(续)
蒸汽动力循环与气体动力循环的区别
1)水时而处于液态,时而处于气态,在汽化、凝结时定压也定温;
2)水和水蒸气不能燃烧,只能从外界向它传热,需配备锅炉设备,与内燃机比较,这种装置可称为“外燃动力装置”;
3)蒸汽动力装置可利用各种燃料(核燃料、劣质煤、可燃垃圾、太阳能、地热能等)
13-1 简单蒸汽动力装置循环—朗肯循环
在相同温限内,卡诺循环的热效率最高
卡诺循环
1
2
34
汽轮机
冷凝器
水泵
过热器)
由(锅炉过热器)构成的加热器和冷凝器,实际上就是换热器,通过它们实现了工质与热源和冷源的热量交换。
加热器中,热源的热量通常来自于燃料的化学能,也可以是原子能、太阳能、地热能等。
冷凝器中的冷却介质通常为水,但在一些水资源匮乏的地区,有时也用空气作为冷却介质。
13-2考虑不可逆损失时的实际蒸
汽动力循环
膨胀前工质状态相同、压缩
3600−
h
4s
13-3 通过改变蒸汽参数提高朗肯循环的热效率
T 1 T 1
2 提高蒸汽压p 1
但x 2下降且p 太高造成强度问题
2
T 1
T 1
T 平均吸热温度提高,效率提高
但受制于环境温度,不能任意降低,同时,2
T 2T
13-4 再热循环
为什么选择再热循环
•为了提高蒸汽动力循环的热效率,一种方法是从改变循环特性参数入手,另一种方法是从改进循环入手。
•前一种方法在上一节进行了讨论,结果表明:朗肯循环中提高蒸汽的初压力可以提高循环热效率,但会引起乏汽干度减小,不利于汽轮机的安全运行。
如何能够克服此不利影响呢?
•一种方法是在提高蒸汽初压的同时提高初温,但此种方法会受到金属材料耐热性能的限制。
另一种方法是从改进循环入手,采用再热循环。
•再热次数越多,再热过程的平均温度越高,热效率相应提高(一次再热可使循环热效率提高2%~4%)
•次数多,系统复杂,投资增加,不利于管理
•实际再热次数很少超过两次。
超临界参数的机组一般才考虑二次再热。
•再热目的是为了提高乏汽的干度,若研发出或有条件使用具有更高耐热性能的材料,则没必要再热。
13-5 回热循环
①难以在汽轮机缸外设计回热水套来实现蒸汽和给水之间的换热
②乏汽的干度有可能变得过低而危害汽轮机经济安全运行
循环中工质从外部热源吸收的热量为
工质向外部冷源放出的热量为(5h =消耗的泵功
)w T 1w q q q −==−
在回热器的混合换热过程中,不涉及作功,若假设无热损失,根据稳定流动开口系统能量守恒方程式
2f ,1122j i h c m =+−+∑∑h α
无回热的蒸汽动力循环从外部热源的吸热段:
现代火力发电产中的蒸汽动力装置无一例外地都采用了回热循环
采用回热并不妨碍采用再热,大型机组既实行再热,也采用回热
相应的负面影响:
系统复杂性增加
初投资增加
13-6 热电合供循环
一、为什么选择“热电合供”?
用户所利用(满足能量守恒)
热力学第二定律:不可逆损失太大!
热用户(加热器)中定压凝结放热过程回水在给水泵中绝热压缩过程
系统简单
1、电负荷和热负荷互相影响,即当热能的供应量增加或减少时,电能的生产量也随着增加或减少;
2、它不能同时满足对热力参数有不
13-7 蒸汽-燃气联合循环
为什么选择蒸汽-燃气联合循环?•传统的蒸汽动力循环中液体吸热段的平均
温度较低,从而影响了循环的热效率。
•上一章提到,燃气轮机装置的排气温度较高,若直接排入环境,则损失较大。
•人们想到:利用燃气轮机装置排气的余热来加热蒸汽轮机装置的工质,则可充分利用燃气轮机装置排出的热量。
•这种循环称为蒸汽-燃气联合循环,简称联合循环
第十四次作业
•11-1
•11-7。