高三数学天天练3 函数的概念及其表示

合集下载

高中高三数学函数知识点

高中高三数学函数知识点

高中高三数学函数知识点函数是高中数学中的重要内容,是数学研究中最为基础和有着广泛应用的数学概念之一。

在高三的数学学习中,函数的知识点非常重要,掌握好函数的概念、性质和应用,对于学习和应对高考都有着积极的影响。

下面将对高中高三数学函数的知识点进行详细介绍。

一、函数的概念和性质1. 函数的定义函数是一种特殊的关系,指的是每一个自变量(输入)对应唯一的因变量(输出)。

通常用f(x)来表示函数,其中x为自变量,f(x)为对应的因变量。

2. 定义域和值域函数的定义域是自变量所有可能取值的集合,值域是因变量所有可能取值的集合。

3. 函数的表示方法函数可以通过方程、图像、表格或文字描述等多种方式表示。

4. 奇偶性函数的奇偶性是指当自变量变为-x时,函数值的对应关系。

若有f(-x)=-f(x),则函数为奇函数;若有f(-x)=f(x),则函数为偶函数;若既不满足奇函数的条件,也不满足偶函数的条件,则为既非奇函数也非偶函数。

二、常见函数类型1. 一次函数一次函数的表达式为y=ax+b(a≠0),是一种呈直线形状的函数。

其中a代表直线的斜率,b是函数的常数项。

2. 二次函数二次函数的表达式为y=ax²+bx+c(a≠0),是一种呈抛物线形状的函数。

其中a代表抛物线开口的方向和开口度,b是抛物线与y轴的交点,c是抛物线与x轴的交点。

3. 幂函数幂函数的表达式为y=ax^b(a≠0, b为有理数),是一种以指数为变量的函数。

其中a和b都是常数。

4. 指数函数指数函数的表达式为y=a^x(a>0, a ≠ 1),是幂函数的一种特殊形式。

其中a为常数,x为指数变量。

5. 对数函数对数函数的表达式为y=loga(x)(a>0, a ≠ 1),是指数函数的反函数。

其中a为底数,x为对数变量。

6. 三角函数三角函数包括正弦函数、余弦函数和正切函数等。

它们的表达式分别为y=sin(x)、y=cos(x)和y=tan(x)。

高中数学 第三章 函数概念与性质 3.1 函数的概念及其表示 3.1.2 第2课时 分段函数精品练习

高中数学 第三章 函数概念与性质 3.1 函数的概念及其表示 3.1.2 第2课时 分段函数精品练习

第2课时 分段函数必备知识基础练知识点一分段函数求值1.设函数f (x )=⎩⎨⎧x -1,x ≥1,1,x <1,则f {f [f (2)]}=( )A .0B .1C .2 D. 22.已知函数f (x )=⎩⎪⎨⎪⎧1x,x >0,x -1,x <-1,则函数f (x )的定义域是( )A .(0,+∞) B.(-∞,-1)C .(-1,0)D .(-∞,-1)∪(0,+∞)3.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤1,1-x 2,x >1,若f (x )=-3,则x =________.知识点二分段函数的图象4.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0],x 2+1,x ∈0,1],则函数f (x )的图象是( )5.下列图形是函数y =x |x |的图象的是( )6.已知函数f (x )的图象如图所示,则f (x )的解析式是________.知识点三 分段函数的实际应用7.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水量不超过10立方米的,按每立方米m 元收费;用水量超过10立方米的,超过部分按每立方米2m 元收费.某职工某月缴水费16m 元,则该职工这个月实际用水量为( )A .13立方米B .14立方米C .18立方米D .26立方米8.电讯资费调整后,市话费标准为:通话时间不超过3分钟收费0.2元;超过3分钟后,每增加1分钟收费0.1元,不足1分钟按1分钟计费.通话收费S (元)与通话时间t (分钟)的函数图象可表示为下图中的( )关键能力综合练 一、选择题1.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f [f (-7)]的值为( )A .100B .10C .-10D .-1002.若函数f (x )=⎩⎪⎨⎪⎧2,x >0,x 2,x ≤0,则满足f (a )=1的实数a 的值为( )A .-1B .1C .-2D .23.一列货运火车从某站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一站停车,装完货以后,火车又匀加速行驶,一段时间后再次匀速行驶,下列图象可以近似地刻画出这列火车的速度变化情况的是( )4.已知函数f (x )的图象是两条线段(如图所示,不含端点),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫13等于( ) A .-13 B.13 C .-23 D.235.函数f (x )=x +|x |x的图象是( )6.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f x +1,x ≤0,则f ⎝ ⎛⎭⎪⎫-43+f ⎝ ⎛⎭⎪⎫43等于( )A .-2B .4C .2D .-4 二、填空题7.函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,2-x ,-2≤x <0的值域是________.8.(易错题)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.9.函数f (x )=⎩⎪⎨⎪⎧x ,x ≤-2,x +1,-2<x <4,3x ,x ≥4,若f (a )<-3,则a 的取值X 围是________.三、解答题10.已知函数f (x )=⎩⎪⎨⎪⎧2x +2,x ∈[-1,0],-12x ,x ∈0,2,3,x ∈[2,+∞.(1)求f (-1),f ⎝ ⎛⎭⎪⎫32,f (4)的值; (2)求函数的定义域、值域.学科素养升级练1.(多选题)已知f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,2x ,x ≥2若f (x )=1,则x 的值是( )A .-1 B.12C .- 3D .12.(情境命题—生活情境)某商贸公司售卖某种水果.经市场调研可知:在未来20天内,这种水果每箱的销售利润r (单位:元)与时间t (1≤t ≤20,t ∈N ,单位:天)之间的函数关系式为r =14t +10,且日销售量y (单位:箱)与时间t 之间的函数关系式为y =120-2t①第4天的销售利润为________元;②在未来的这20天中,公司决定每销售1箱该水果就捐赠m (m ∈N *)元给“精准扶贫”对象.为保证销售积极性,要求捐赠之后每天的利润随时间t 的增大而增大,则m 的最小值是________.3.某市出租车的现行计价标准是:路程在2 km 以内(含2 km)按起步价8元收取,超过2 km 后的路程按1.9元/km 收取,但超过10 km 后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85元/km).(1)将某乘客搭乘一次出租车的费用f (x )(单位:元)表示为行程x (0<x ≤60,单位:km)的分段函数;(2)某乘客的行程为16 km,他准备先乘一辆出租车行驶8 km后,再换乘另一辆出租车完成余下行程,请问:他这样做是否比只乘一辆出租车完成全部行程更省钱?(现实中要计等待时间且最终付费取整数,本题在计算时都不予考虑)第2课时分段函数必备知识基础练1.解析:由题意,f(2)=2-1=1,f[f(2)]=f(1)=1-1=0,f{f[f(2)]}=f(0)=1,故选B.答案:B2.解析:分段函数的定义域是各段上“定义域”的并集,即(0,+∞)∪(-∞,-1),选D.答案:D3.解析:若x≤1,由x+1=-3得x=-4.若x>1,由1-x2=-3得x2=4,解得x=2或x=-2(舍去).综上可得,所求x的值为-4或2.答案:-4或24.解析:当x=-1时,y=0,即图象过点(-1,0),D错;当x=0时,y=1,即图象过点(0,1),C错;当x=1时,y=2,即图象过点(1,2),B错.故选A.答案:A5.解析:∵f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,分别画出y =x 2(取x ≥0部分)及y =-x 2(取x <0部分)即可.答案:D6.解析:由图可知,图象由两条线段(其中一条不含右端点)组成, 当-1≤x <0时,设f (x )=ax +b (a ≠0), 将(-1,0),(0,1)代入解析式,则⎩⎪⎨⎪⎧-a +b =0,b =1.∴⎩⎪⎨⎪⎧a =1,b =1.∴f (x )=x +1.当0≤x ≤1时,设f (x )=kx (k ≠0), 将(1,-1)代入,则k =-1.∴f (x )=-x .即f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-x ,0≤x ≤1.答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-x ,0≤x ≤17.解析:该单位职工每月应缴水费y 与实际用水量x 满足的关系式为y =⎩⎪⎨⎪⎧mx ,0≤x ≤10,2mx -10m ,x >10.由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13.答案:A8.解析:结合题意,易知B 正确,故选B. 答案:B关键能力综合练1.解析:因为f (-7)=10,所以f [f (-7)]=f (10)=10×10=100,故选A. 答案:A2.解析:当a >0时,f (a )=2不符合,当a ≤0时,a 2=1, ∴a =-1,故选A. 答案:A3.解析:根据题意,知这列火车从静止开始匀加速行驶,所以排除A ,D ,然后匀速行驶一段时间后又停止了一段时间,排除C ,故选B.答案:B4.解析:由图可知,函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x -1,0<x <1,x +1,-1<x <0,∴f ⎝ ⎛⎭⎪⎫13=13-1=-23,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫13=f ⎝ ⎛⎭⎪⎫-23=-23+1=13.答案:B5.解析:f (x )=⎩⎪⎨⎪⎧x +1,x >0,x -1,x <0,故选C.答案:C6.解析:∵f (x )=⎩⎪⎨⎪⎧2x ,x >0,f x +1,x ≤0,∴f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-43+1=f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫-13+1=f ⎝ ⎛⎭⎪⎫23=23×2=43,f ⎝ ⎛⎭⎪⎫43=2×43=83,∴f ⎝ ⎛⎭⎪⎫-43+f ⎝ ⎛⎭⎪⎫43=43+83=4. 答案:B7.解析:当x ≥0时,f (x )≥1; 当-2≤x <0时,2<f (x )≤4. ∴值域为[1,+∞). 答案:[1,+∞)8.易错分析:题目中f (x )为分段函数,在求值时需要根据定义域取值X 围不同代入不同的解析式,本题极易误以为1-a <1+a 而忘记分类讨论导致结果错误.解析:当a >0时,1-a <1,1+a >1,由f (1-a )=f (1+a )可得2-2a +a =-1-a -2a ,解得a =-32,不符合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )可得-1+a -2a =2+2a +a ,解得a =-34,满足题意.答案:-349.解析:当a ≤-2时,f (a )=a <-3,此时不等式的解集是(-∞,-3);当-2<a <4时,f (a )=a +1<-3,此时不等式无解; 当a ≥4时,f (a )=3a <-3,此时不等式无解. 所以a 的取值X 围是(-∞,-3). 答案:(-∞,-3)10.解析:(1)易知f (-1)=0,f ⎝ ⎛⎭⎪⎫32=-12×32=-34,f (4)=3. (2)作出图象如图所示.利用“数形结合”,易知f (x )的定义域为[-1,+∞),值域为(-1,2]∪{3}.学科素养升级练1.解析:根据题意,f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,2x ,x ≥2若f (x )=1,分3种情况讨论:①当x ≤-1时,f (x )=x +2=1,解可得x =-1; ②当-1<x <2时,f (x )=x 2=1,解可得x =±1, 又由-1<x <2,则x =1;③当x ≥2时,f (x )=2x =1,解可得x =12,舍去.综合可得:x =1或-1; 故选AD. 答案:AD2.解析:①因为r (4)=14×4+10=11,y (4)=120-2×4=112,所以该天的销售利润为11×112=1 232;②设捐赠后的利润为W 元,则W =y (r -m )=(120-2t )⎝ ⎛⎭⎪⎫14t +10-m ,化简可得,W =-12t 2+(2m +10)t +1 200-120m .令W =f (t ),因为二次函数的开口向下,对称轴为t =2m +10,为满足题意, 所以⎩⎪⎨⎪⎧2m +10≥20,f 1>0,n ∈N *解得m ≥5,故答案为:①1232;②5. 答案:①1232 ②53.解析:(1)由题意得,车费f (x )关于路程x 的函数为: f (x )=⎩⎪⎨⎪⎧8,0<x ≤2,8+1.9x -2,2<x ≤10,8+1.9×8+2.85x -10,10<x ≤60=⎩⎪⎨⎪⎧8,0<x ≤2,4.2+1.9x ,2<x ≤10,2.85x -5.3,10<x ≤60.(2)只乘一辆车的车费为:f (16)=2.85×16-5.3=40.3(元);换乘2辆车的车费为:2f (8)=2×(4.2+1.9×8)=38.8(元).∵40.3>38.8,∴该乘客换乘比只乘一辆车更省钱.。

高三数学必修三函数知识点

高三数学必修三函数知识点

高三数学必修三函数知识点函数是数学中非常重要的概念,它被广泛应用在各个领域。

在高中数学的必修三课程中,我们学习了许多与函数相关的知识点,下面将对其中的几个重要概念进行介绍和总结。

一、函数的定义和性质函数是一种特殊的关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素。

一般来说,函数可以用公式、图像或者表格来表示。

函数的定义包括定义域、值域和对应关系。

其中,定义域是指函数的输入集合,值域是函数的输出集合。

函数的性质包括单调性、奇偶性和周期性等。

二、线性函数与二次函数线性函数是一种特殊的函数,它的图像是一条直线。

线性函数的一般形式为f(x)=kx+b,其中k和b为常数。

线性函数的图像是一条直线,斜率k决定了直线的斜率大小,截距b决定了直线与y轴的交点位置。

二次函数的一般形式为f(x)=ax²+bx+c,其中a、b、c为常数且a≠0。

二次函数的图像是一个开口向上或向下的抛物线,a决定了抛物线的开口方向,b决定了抛物线的平移,c决定了抛物线与y轴的交点位置。

三、指数函数与对数函数指数函数是形如f(x)=aˣ的函数,其中a为常数且a>0且a≠1。

指数函数的图像是一条递增或递减的曲线,a决定了曲线的变化速度。

对数函数是指数函数的逆运算,它可以表示为f(x)=logₐ(x),其中a为底数,x为正实数。

对数函数的图像是一条递增的曲线,底数a决定了曲线的陡峭程度。

四、三角函数与反三角函数三角函数包括正弦函数、余弦函数和正切函数等。

正弦函数的一般形式为f(x)=asin(bx+c)+d,其中a、b、c、d为常数。

正弦函数的图像是一条波动的曲线,振幅a决定了波动的大小,角频率b 决定了波动的周期,c决定了波动的相位,d决定了波动的垂直平移。

反三角函数是三角函数的逆运算,表示为sin⁻¹(x)、cos⁻¹(x)和tan⁻¹(x)等。

反三角函数的定义域和值域与原三角函数相反。

高三第三章函数参考答案

高三第三章函数参考答案

高三第三章函数参考答案高三第三章函数参考答案函数是高中数学中的重要概念,也是数学学习中的重要内容之一。

在高三的第三章函数中,我们学习了函数的定义、性质以及一些常见的函数类型。

下面将给出一些高三第三章函数的参考答案,希望能够帮助同学们更好地理解和掌握这一章的知识。

一、函数的定义和性质1. 函数的定义:函数是一种特殊的关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素。

函数通常用符号表示为y=f(x),其中x是自变量,y是因变量,f(x)表示自变量x经过函数f的变换后得到的值。

2. 函数的性质:(1) 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。

(2) 单调性:函数的单调性指函数在定义域内的增减性质。

如果对于任意的x1和x2,当x1<x2时,有f(x1)<f(x2),则函数为增函数;如果当x1<x2时,有f(x1)>f(x2),则函数为减函数。

(3) 奇偶性:函数的奇偶性指函数的对称性质。

如果对于任意的x,有f(-x)=-f(x),则函数为奇函数;如果对于任意的x,有f(-x)=f(x),则函数为偶函数。

二、常见的函数类型1. 线性函数:线性函数是最简单的函数类型之一,它的函数表达式为y=kx+b,其中k和b为常数。

线性函数的图像是一条直线,斜率k表示直线的倾斜程度,常数b表示直线与y轴的截距。

2. 幂函数:幂函数是形如y=x^n的函数,其中n为常数。

幂函数的图像随着n的不同而变化,当n>1时,函数图像呈现上升的曲线;当0<n<1时,函数图像呈现下降的曲线。

3. 指数函数:指数函数是形如y=a^x的函数,其中a为常数且a>0且a≠1。

指数函数的图像呈现递增或递减的曲线,斜率随着a的大小而变化,当a>1时,函数图像呈现上升的曲线;当0<a<1时,函数图像呈现下降的曲线。

4. 对数函数:对数函数是指数函数的逆运算,它的函数表达式为y=loga(x),其中a为底数,x为真数。

高三基础知识天天练3-3. 数学 数学doc人教版

高三基础知识天天练3-3. 数学 数学doc人教版

第3模块 第3节[知能演练]一、选择题1.函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的()解析:∵y =xsin x 是偶函数,排除A ,当x =2时,y =2sin2>2,排除D. 当x =π6时,y =π6sin π6=π3>1,排除B.答案:C2.函数f (x )=tan ωx (ω>0)图象的相邻的两支截直线y =π4所得线段长为π4,则f (π4)的值是( )A .0B .1C .-1D.π4解析:由题意知T =π4,由πω=π4得ω=4,∴f (x )=tan4x ,∴f (π4)=tan π=0.答案:A3.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A .[-π,-5π6]B .[-5π6,-π6]C .[-π3,0]D .[-π6,0]解析:f (x )=sin x -3cos x =2sin(x -π3)∵-π≤x ≤0,∴-4π3≤x -π3≤-π3当-π2≤x -π3≤-π3时,即-π6≤x ≤0时,f (x )递增.答案:D4.对于函数f (x )=sin x +1sin x(0<x <π),下列结论中正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值解析:f (x )=sin x +1sin x =1+1sin x ,∵0<x <π,∴0<sin x ≤1,∴1sin x ≥1,∴1+1sin x≥2.∴f (x )有最小值而无最大值. 答案:B 二、填空题 5.函数y =lgsin x + cos x -12的定义域为____________,函数y =12sin(π4-23x )的单调递增区间为________.解析:(1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0cos x ≥12,解得⎩⎪⎨⎪⎧2kπ<x <π+2kπ-π3+2kπ≤x ≤π3+2kπ(k ∈Z ), ∴2kπ<x ≤π3+2kπ,k ∈Z ,∴函数的定义域为{x |2kπ<x ≤π3+2kπ,k ∈Z }.(2)由y =12sin(π4-23x )得y =-12sin(23x -π4),由π2+2kπ≤23x -π4≤32π+2kπ,得 98π+3kπ≤x ≤21π8+3kπ,k ∈Z ,故函数的单调递增区间为 [98π+3kπ,21π8+3kπ](k ∈Z ). 答案:{x |2kπ<x ≤π3+2kπ,k ∈Z }[98π+3kπ,21π8+3kπ](k ∈Z ) 6.对于函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+kπ(k ∈Z )时,该函数取得最小值-1; ③该函数的图象关于x =5π4+2kπ(k ∈Z )对称;④当且仅当2kπ<x <π2+2kπ(k ∈Z )时,0<f (x )≤22.其中正确命题的序号是________.(请将所有正确命题的序号都填上) 解析:画出f (x )在一个周期[0,2π]上的图象.由图象知,函数f (x )的最小正周期为2π,在x =π+2kπ(k ∈Z )和x =32π+2kπ(x ∈Z )时,该函数都取得最小值-1,故①②错误,由图象知,函数图象关于直线x =54π+2kπ(k ∈Z )对称,在2kπ<x <π2+2kπ(k ∈Z )时,0<f (x )≤22.故③④正确.答案:③④ 三、解答题7.已知函数y =f (x )=2sin x1+cos 2x -sin 2x.(1)求函数定义域;(2)用定义判断f (x )的奇偶性; (3)在[-π,π]上作出f (x )的图象; (4)写出f (x )的最小正周期及单调区间. 解:(1)∵f (x )=2sin x 2cos 2x=sin x|cos x |, ∴函数的定义域是{x |x ≠kπ+π2,k ∈Z }.(2)由(1)知f (-x )=sin(-x )|cos(-x )|=-sin x|cos x |=-f (x ),∴f (x )是奇函数. (3)f (x )=⎩⎨⎧tan x (-π2<x <π2)-tan x (-π≤x <-π2或π2<x ≤π),y =f (x )(x ∈[-π,π])的图象如图所示.(4)f (x )的最小正周期为2π,单调递增区间是(-π2+2kπ,π2+2kπ)(k ∈Z ),单调递减区间是(π2+2kπ,3π2+2kπ)(k ∈Z ).8.已知a >0,函数f (x )=-2a sin(2x +π6)+2a +b ,当x ∈[0,π2]时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f (x +π2)且lg[g (x )]>0,求g (x )的单调区间.解:(1)∵x ∈[0,π2],∴2x +π6∈[π6,7π6],∴sin(2x +π6)∈[-12,1],∴-2a sin(2x +π6)∈[-2a ,a ],∴f (x )∈[b,3a +b ],又-5≤f (x )≤1.∴⎩⎪⎨⎪⎧ b =-53a +b =1,解得⎩⎪⎨⎪⎧a =2b =-5. (2)f (x )=-4sin(2x +π6)-1,g (x )=f (x +π2)=-4sin(2x +7π6)-1=4sin(2x +π6)-1,又由lg[g (x )]>0,得g (x )>1, ∴4sin(2x +π6)-1>1,∴sin(2x +π6)>12,∴π6+2kπ<2x +π6<56π+2kπ,k ∈Z ,由π6+2kπ<2x +π6≤2kπ+π2,得 kπ<x ≤kπ+π6,k ∈Z .由π2+2kπ≤2x +π6<56π+2kπ得 π6+kπ≤x <π3+kπ,k ∈Z . ∴函数g (x )的单调递增区间为(kπ,π6+kπ](k ∈Z ),单调递减区间为[π6+kπ,π3+kπ)(k ∈Z ).[高考·模拟·预测]1.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为( )A .1B .2 C.3+1D.3+2解析:因为f (x )=(1+3tan x )cos x =cos x +3sin x =2cos(x -π3),当x =π3时,函数取得最大值为2.故选B.答案:B2.若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为( )A.16 B.14 C.13D.12解析:将函数y =tan(ωx +π4)的图象向右平移π6个单位后,得到的函数为y =tan[ω(x -π6)+π4]=tan(ωx -πω6+π4),这个函数的图象与函数y =tan(ωx +π6)的图象重合,根据正切函数的周期是kπ,故其充要条件是-πω6+π4=kπ+π6(k ∈Z ),即ω=-6k +12(k ∈Z ),当k =0时,ω的最小值为12,故选D.答案:D3.已知函数f (x )=sin(x -π2)(x ∈R ),下面结论中错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间[0,π2]上是增函数C .函数f (x )在图象关于直线x =0对称D .函数f (x )是奇函数解析:∵f (x )=-cos x ,∴f (x )为偶函数,故选D. 答案:D4.已知α∈(0,π4),a =(sin α)cos α,b =(sin α)sin α,c =(cos α)sin α,则a 、b 、c 的大小关系是________.解析:α∈(0,π4),1>cos α>sin α>0,y =(sin α)x 为减函数,∴a <b .而y =x sin α在(0,+∞)上为增函数,∴c >b .故c >b >a .答案:a <b <c5.已知函数f (x )=3(sin 2x -cos 2x )-2sin x cos x . (1)求f (x )的最小正周期;(2)设x ∈[-π3,π3],求f (x )的值域和单调递增区间.解:(1)∵f (x )=-3(cos 2x -sin 2x )-2sin x cos x =-3cos2x -sin2x =-2sin(2x +π3)∴f (x )的最小正周期为π.(2)∵x ∈[-π3,π3],∴-π3≤2x +π3≤π,∴-32≤sin(2x +π3)≤1. ∴f (x )的值域为[-2,3].∵当y =sin(2x +π3)递减时,f (x )递增,令2kπ+π2≤2x +π3≤2kπ+3π2,则kπ+π12≤x ≤kπ+7π12,k ∈Z ,又x ∈[-π3,π3],∴π12≤x ≤π3.故f (x )的递增区间为[π12,π3].[备选精题]6.设函数f (x )=sin(π4x -π6)-2cos 2π8x +1.(1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈[0,43]时y =g (x )的最大值.解:(1)f (x )=sin π4x cos π6-cos π4x sin π6-cos π4x =32sin π4x -32cos π4x =3sin(π4x -π3),故f (x )的最小正周期为T =2ππ4=8.(2)解法一:在y =g (x )的图象上任取一点(x ,g (x )),它关于x =1的对称点为(2-x ,g (x )).由题设条件,点(2-x ,g (x ))在y =f (x )的图象上,可知g (x )=f (2-x )=3sin[π4(2-x )-π3]=3sin(π2-π4x -π3)=3cos(π4x +π3).当0≤x ≤43时,π3≤π4x +π3≤2π3,因此y =g (x )在区间[0,43]上的最大值为g (x )max =3cos π3=32.解法二:因区间[0,43]关于x =1的对称区间为[23,2],且y =g (x )与y =f (x )的图象关于x=1对称,故y =g (x )在[0,43]上的最大值即为y =f (x )在[23,2]上的最大值.由(1)知f (x )=3sin(π4x -π3),当23≤x ≤2时,-π6≤π4x -π3≤π6. 因此y =g (x )在[0,43]上的最大值为g (x )max =3sin π6=32.。

狂刷03 函数的概念及其表示-学易试题君之小题狂刷2020年高考数学(理)(解析版)

狂刷03 函数的概念及其表示-学易试题君之小题狂刷2020年高考数学(理)(解析版)

专题二 函数狂刷03 函数的概念及其表示1.函数02lg(2)(1)12x y x x x -=+-+-的定义域是A .{|31}x x -<<B .{|32x x -<<且1}x ≠C .{|02}x x <<D .{|12}x x <<【答案】B【解析】由题意得:22012010x x x x ->⎧⎪+->⎨⎪-≠⎩2341x x x <⎧⎪⇒-<<⎨⎪≠⎩32x ⇒-<<且1x ≠,∴函数的定义域为:{32x x -<<且}1x ≠.本题正确选项为B.【名师点睛】本题考查具体函数定义域的求解问题,属于基础题.根据定义域的基本要求得到不等式组,解不等式组求得结果.2.若函数()y f x =的定义域为{|385}x x x -≤≤≠,,值域为{|120}y y y -≤≤≠,,则()y f x =的图象可能是A .B .C .D .【答案】B【解析】对于A 中,当5x =时,函数有意义,不满足函数的定义域为{|385}x x x -≤≤≠,,所以不正确;对于B 中,函数的定义域和值域都满足条件,所以是正确的;对于C 中,当5x =时,函数有意义,不满足函数的定义域为{|385}x x x -≤≤≠,,所以不正确; 对于D 中,当5x =时,函数有意义,不满足函数的定义域为{|385}x x x -≤≤≠,,所以不正确. 故选B.【名师点睛】本题主要考查了函数的定义域、值域,以及函数的表示方法,其中解答中熟记函数的定义域、值域,以及函数的表示方法,逐项进行判定是解答的关键,着重考查了推理与运算能力,属于基础题.3.下列函数中,值域为[)0,+∞的是 A .2xy = B .12y x = C .tan y x =D .cos y x =【答案】B【解析】A 选项:2xy =的值域为()0,+∞,不符合题意;B 选项:12y x =的值域为[)0,+∞,符合题意; C 选项:tan y x =的值域为R ,不符合题意; D 选项:cos y x =的值域为[]1,1-,不符合题意. 本题正确选项为B.【名师点睛】本题考查初等函数的值域问题,属于基础题.求解时,依次判断各个函数的值域,从而得到结果.4.设函数()()2log 1,04,0xx x f x x ⎧-<=⎨≥⎩,则()()23log 3f f -+=A .9B .11C .13D .15【答案】B【解析】∵函数2log (1),0()4,0xx x f x x -<⎧=⎨≥⎩,∴()2l 23og 2(3)log 3log 44f f -+=+=2+9=11.故选B .【名师点睛】本题考查函数值的求法,考查指对函数的运算性质,是基础题.根据自变量所在的范围代入相应的解析式计算即可得到答案. 5.下列函数中,不满足()()22f x f x =的是 A .()f x x =B .()f x x x =-C .()1f x x =+D .()f x x =-【答案】C【解析】本题考查代入法求函数的解析式.选项C 中因为()1f x x =+,所以()221f x x =+,而()()22122f x x x =+=+.所以()()22f x f x ≠.故选C .6.已知函数f (x )=10xx x a x -≤⎧⎨>⎩,,,若f (1)=f (-1),则实数a 的值等于 A .1 B .2 C .3D .4【答案】B【解析】根据题意,由f (1)=f (-1)可得a =1-(-1)=2,故选B . 7.已知函数()22xaf x -=,()134f=,则()2f -= A .1 B .18-C .12D .18【答案】D 【解析】依题意()3213224a f --===,故32a -=-,解得5a =.故()252x f x -=, 所以()25312228f ---===.故选D.【名师点睛】本小题主要考查函数解析式的求法——待定系数法,考查函数求值,属于基础题.求解时,利用()134f=求得a 的值,即求得函数()f x 的解析式,由此来求()2f -的值. 8.若函数f (x )=()()lg 2212x x f x x -<⎧⎪⎨--≥⎪⎩,,,则f (f (8))=A.lg 2 B.0C.lg 3 D.lg 4【答案】A【解析】由题意知f(8)=f(-8)-1=lg[2-(-8)]-1=0,故f(f(8))=f(0)=lg 2.故选A.【名师点睛】本题综合考查了分段函数、对数函数及复合函数的知识,以分段函数为载体进行考查是高考命题者的惯用手段,望引起重视.对于复合函数的计算问题,一般遵循从内算到外的原则.9.已知集合M={x|y=2x-},N={x|y=ln x},则M∩N=A.{x|x≤2}B.{x|0<x≤2}C.{x|0<x<2} D.{x|0≤x≤2}【答案】B【解析】集合M={x|x≤2},集合N={x|x>0},故M∩N={x|0<x≤2}.故选B.【名师点睛】本题考查函数的定义域、交集的运算等知识.解决本题的关键是求出两个函数的定义域.10.函数,若,则的值为__________.【答案】0或1【解析】,,当时,;当时,,或,解得或,故答案为或.【名师点睛】本题主要考查分段函数的解析式、分段函数求参数,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.11.函数2221xyx+=+的值域为_______________.【答案】(1,2]【解析】因为22221111xyx x+==+++,x2+1≥1,所以21011x<≤+,所以211+121x<≤+,所以函数2221x y x +=+的值域为(1,2].故填(1,2].12.已知函数()f x 的定义域是[1,1]-,则函数(21)()ln(1)f xg x x -=-的定义域是A .[0,1]B .(0,1)C .[0,1)D .(0,1]【答案】B【解析】由题意,函数()f x 的定义域为[1,1]-,即11x -≤≤, 令1211x -≤-≤,解得01x ≤≤,又由()f x 满足10x ->且11x -≠,解得1x <且0x ≠, 所以函数()f x 的定义域为(0,1), 故选B .【名师点睛】本题主要考查了函数的定义域的求解问题,其中熟记抽象函数的定义域的求解方法和对数函数的性质是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.13.函数()e 1e 1x x f x -=+的值域为A .()1,1-B .()2,2-C .()3,3-D .()4,4-【答案】A【解析】()e 121e 1e 1x x xf x -==-++, 因为e 11x +>,所以101e 1x <<+,所以202e 1x <<+, 所以2111e 1x-<-<+, 所以()f x 的值域为()1,1-,故选A.【名师点睛】该题考查的是有关函数的值域的求解问题,涉及的知识点有指数函数的值域,不等式的性质,属于简单题目.求解时,首先将函数解析式进行化简,得到()21e 1x f x =-+,之后结合指数函数的值域以及不等式的性质,得到结果.14.已知函数f (x )=23123,25x x x x ⎧--≤≤⎨-<≤⎩,,则方程f (x )=1的解是A .2或2B .2或3C .2或4D .±2或4【答案】C【解析】当x ∈[-1,2]时,由3-x 2=1,解得x =2;当x ∈(2,5]时,由x -3=1,解得x =4.所以方程f (x )=1的解为2或4.故选C .15.已知()f x 满足()12()3f x f x x+=,则()f x 等于A .12x x-- B .12x x-+ C .12x x +D .12x x-【答案】D【解析】本题主要考查求函数的解析式,根据方程求函数的解析式,把()12()3f x f x x+= ①中的x 换成1x ,得()132()f f x x x += ②,2⨯-①②得()()31362f x x f x x x x=-⇒=-.故选D . 16.已知函数()223,0,0x x f x x x ->⎧=⎨≤⎩.若0a >,0b <,且()()f a f b =,则()f a b +的最小值为A .3-B .1-C .0D .1【答案】B【解析】设()()f a f b t ==,则2230a b t -==>,32t a +∴=,b t =-, ()21232120222t t t t a b t -++-++∴+=-==>,()()233232f a b a b t t t t ∴+=+-=+--=-,当1t =时,()min2121t t -=-=-,即()min 1f a b +=-⎡⎤⎣⎦,本题正确选项为B.【名师点睛】本题考查函数最值的求解,关键是能够通过换元的方式将问题变为二次函数最值的求解问题.求解时,令()()f a f b t ==,用t 表示出,a b ,进而可得0a b +>,代入函数解析式可将()f a b +变为二次函数,根据二次函数图象求得最值.17.若函数 的定义域为 ,则实数 的取值范围是A .B .C . 或D . 或【答案】B【解析】因为函数 的定义域为 ,所以 >0恒成立, 因为 成立,所以若 ,则由 得 ,因此 , 故选B.【名师点睛】研究形如 恒成立问题,注意先讨论 的情况,再研究 时,开口方向,判别式正负,对称轴与定义区间位置关系,列不等式解得结果. 18.设函数f (x )=−x +2,则满足f (x −1)+f (2x )>0的x 的取值范围是______.【答案】5,3⎛⎫-∞ ⎪⎝⎭【解析】根据题意,函数()2f x x =-+,则()()()][()12122235f x f x x x x ⎡⎤-+=--++-+=-+⎣⎦, 若()()120f x f x -+>,即350x -+>,解得:53x <, 即x 的取值范围为5,3⎛⎫-∞ ⎪⎝⎭.故答案为:5,3⎛⎫-∞ ⎪⎝⎭.【名师点睛】本题考查函数的解析式的应用,涉及不等式的解法,属于基础题.求解时,由函数的解析式可得()()1235f x f x x -+=-+,据此解不等式即可得答案.19.若一次函数满足,则的值域为_______________.【答案】【解析】由已知可设,则,又,所以,故; 从而,当且仅当,即时等号成立. 故的值域为. 故填.【规律总结】已知函数的类型时,可用待定系数法求函数的解析式.20.如图,点M 是边长为1的正方形ABCD 的边CD 的中点.当点P 在正方形的边上沿A →B →C 运动时,点P 经过的路程为x ,APM △的面积为y ,则y 关于x 的函数关系式为_______________.【答案】1,0123,124x x y x x ⎧<≤⎪⎪=⎨-⎪<≤⎪⎩ 【解析】利用分段函数建立函数关系式.当点P 在线段AB 上,即0<x ≤1时,y =12x ; 当点P 在线段BC 上,即1<x ≤2时,y =11111(1)1(1)1(2)2232224xx x ⨯+⨯-⨯-⨯-⨯=--⨯.所以所求函数关系式为1,0123,124x x y x x ⎧<≤⎪⎪=⎨-⎪<≤⎪⎩.故填1,0123,124x x y x x ⎧<≤⎪⎪=⎨-⎪<≤⎪⎩.()f x [()]1f f x x =+2()()(0)f x g x x x=>),2[+∞)0()(≠+=a b ax x f b ab x a b b ax a x f f ++=++=2)()]([[()]1f f x x =+⎪⎩⎪⎨⎧==⇒⎩⎨⎧=+=211112b a b ab a 21)(+=x x f 21412141)21()(2=+⋅≥++=+=xx x x x x x g )0(41>=x x x 21=x )(x g ),2[+∞),2[+∞21.【2019年高考全国Ⅱ卷理数】设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(1) 2 ()f x f x +=,()2(1)f x f x ∴=-. ∵(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-;∴(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦; ∴(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-, 如图:当(2,3]x ∈时,由84(2)(3)9x x --=-解得173x =,283x =, 若对任意(,]x m ∈-∞,都有8()9f x ≥-,则73m ≤.则m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦.故选B.【名师点睛】本题考查了函数的解析式、图象.解题的关键是能够得到(2,3]x ∈时函数的解析式,并求出函数值为89-时对应的自变量的值. 22.【2017年高考山东理数】设函数24y x =-的定义域为A ,函数ln(1)y x =-的定义域为B ,则A B =A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)【答案】D【解析】由240x -≥得22x -≤≤, 由10x ->得1x <, 故{|22}{|1}{|21}A B x x x x x x =-≤≤<=-≤<.选D.【名师点睛】集合的交、并、补运算问题,应把集合先化简再计算,常借助数轴或韦恩图进行求解. 23.【2019年高考江苏】函数276y x x =+-的定义域是 ▲ .【答案】[1,7]-【解析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 由已知得2760x x +-≥,即2670x x --≤,解得17x -≤≤, 故函数的定义域为[1,7]-.【名师点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.24.【2018年高考江苏】函数()2log 1f x x =-的定义域为________.【答案】[2,+∞)【解析】要使函数()f x 有意义,则需2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[)2,+∞. 【名师点睛】求给定函数的定义域往往需转化为解不等式(组)的问题.求解本题时,根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域. 25.【2018年高考江苏】函数()f x 满足()()()4fx f x x +=∈R ,且在区间(]2,2-上,()πcos ,02,21,20,2x x f x x x ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则()()15f f 的值为________. 【答案】22【解析】由()()4f x f x +=得函数()f x 的周期为4,所以()()()111516111,22f f f =-=-=-+= 因此()()1π215cos .242f f f ⎛⎫=== ⎪⎝⎭ 【名师点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现()()f f a 的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.26.【2017年高考全国Ⅲ卷理数】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,则满足1()()12f x f x +->的x 的取值范围是_________. 【答案】1,4⎛⎫-+∞ ⎪⎝⎭【解析】令()()12g x f x f x ⎛⎫=+- ⎪⎝⎭, 当0x ≤时,()()13222g x f x f x x ⎛⎫=+-=+ ⎪⎝⎭; 当102x <≤时,()()11222x g x f x f x x ⎛⎫=+-=++ ⎪⎝⎭; 当12x >时,()()()112222x g x f x f x -⎛⎫=+-=+ ⎪⎝⎭,写成分段函数的形式:()()()132,021112,02221222,2x x x x g x f x f x x x x -⎧+≤⎪⎪⎪⎛⎫=+-=++<≤⎨ ⎪⎝⎭⎪⎪+>⎪⎩, 函数()g x 在区间(]11,0,0,,,22⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭三段区间内均单调递增, 且()001111,201,222142g -⎛⎫-=++>+⨯> ⎪⎝⎭, 可知x 的取值范围是1,4⎛⎫-+∞ ⎪⎝⎭. 【名师点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.。

函数概念与知识点总结

函数概念与知识点总结

函数概念与知识点总结一、函数的概念1.1 函数的定义函数是数学中的一个基本概念,它描述了一种对应关系,将一个或多个输入参数映射到一个输出结果。

在数学中,函数通常表示为f(x),其中x是输入参数,f(x)是输出结果。

函数也可以表示为y=f(x),其中y是输出结果,x是输入参数。

函数还可以表示为y=f(x1,x2, ..., xn),其中x1, x2, ..., xn是多个输入参数。

1.2 函数的特性函数具有一些特性,包括单值性、有限性、定义域和值域。

单值性表示对于每个输入参数,函数有且只有一个输出结果。

有限性表示函数的定义域和值域都是有限的。

定义域是函数能接受的输入参数的集合,而值域是函数输出结果的集合。

1.3 函数的分类函数可以根据其形式、性质和用途进行分类。

常见的函数包括线性函数、二次函数、指数函数、对数函数、三角函数、双曲函数等。

函数还可以根据其定义域和值域的不同进行分类,如有界函数、无界函数、周期函数等。

二、函数的性质与图像2.1 函数的奇偶性函数可以根据其图像的对称性来判断奇偶性。

若函数的图像关于原点对称,则函数是奇函数;若函数的图像关于y轴对称,则函数是偶函数。

2.2 函数的增减性函数的增减性描述了函数在定义域内的增加和减少情况。

若对于定义域内的任意两个值x1和x2,若x1<x2,则f(x1)<f(x2),则函数是单调递增的;若x1<x2,则f(x1)>f(x2),则函数是单调递减的。

2.3 函数的最值函数的最值指在定义域内的最大值和最小值。

函数的最值可以通过求导数或利用一阶导数的性质进行判断。

2.4 函数的图像函数的图像是函数在平面直角坐标系中的表示。

通过绘制函数的图像,可以直观地理解函数的性质和变化规律。

例如,线性函数的图像是一条直线,二次函数的图像是一个抛物线。

三、函数的运算3.1 函数的加减运算当两个函数f(x)和g(x)相加或相减时,可以将它们的对应项相加或相减,得到一个新的函数h(x)=f(x)±g(x)。

高三数学专题复习-函数概念及其表示专题练习带答案

高三数学专题复习-函数概念及其表示专题练习带答案

04 函数概念及其表示1.函数f (x )=log 2(1-2x )+1x +1的定义域为( ) A.⎝⎛⎭⎫0,12 B .⎝⎛⎭⎫-∞,12 C .(-1,0)∪⎝⎛⎭⎫0,12 D .(-∞,-1)∪⎝⎛⎭⎫-1,12 【答案】D.要使函数有意义,需满足⎩⎪⎨⎪⎧1-2x >0,x +1≠0,解得x <12且x ≠-1,故函数的定义域为(-∞,-1)∪(-1,12).2.已知集合A={x|x 2-2x ≤0},B={y|y=log 2(x+2),x ∈A },则A ∩B 为( ) A.(0,1) B.[0,1] C.(1,2) D.[1,2]【答案】D由题意,集合A={x|x 2-2x ≤0}=[0,2], 因为x ∈A ,则x+2∈[2,4],所以B={y|y=log 2(x+2),x ∈A }=[1,2], 所以A ∩B=[1,2].故选D .3.已知函数f (x )=⎩⎪⎨⎪⎧f (-x ),x >2,ax +1,-2≤x ≤2,f (x +5),x <-2,若f (2 019)=0,则a =( )A .0B .-1C .1D .-2【答案】B.由于f (2 019)=f (-2 019)=f (-404×5+1)=f (1)=a +1=0,故a =-1.4.下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是( ) A.y=x B.y=lg x C.y=2x D.y=【答案】Dy=10lg x =x ,定义域与值域均为(0,+∞).A 项中,y=x 的定义域和值域均为R;B 项中,y=lg x 的定义域为(0,+∞),值域为R;C 项中,y=2x 的定义域为R,值域为(0,+∞);D 项中,y=的定义域与值域均为(0,+∞).故选D . 5.若函数f (x )满足f (1-ln x )=1x,则f (2)等于( )A.12 B .e C.1e D .-1【答案】B.解法一:令1-ln x =t ,则x =e 1-t ,于是f (t )=1e1-t ,即f (x )=1e1-x ,故f (2)=e.解法二:由1-ln x =2,得x =1e ,这时1x =11e =e ,即f (2)=e.6.若函数y=f (x )的值域是[1,3],则函数F (x )=1-f (x+3)的值域是( ) A.[-8,-3] B.[-5,-1]C.[-2,0]D.[1,3]【答案】C∵1≤f (x )≤3,∴1≤f (x+3)≤3,-3≤-f (x+3)≤-1,∴-2≤1-f (x+3)≤0.故F (x )的值域为[-2,0].7.设函数f (x )=⎩⎪⎨⎪⎧3x -b , x <1,2x , x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =( ) A .1 B .78C.34 D .12【答案】D.f ⎝⎛⎭⎫56=3×56-b =52-b , 当52-b ≥1,即b ≤32时,f ⎝⎛⎭⎫52-b =252-b , 即252-b =4=22,得到52-b =2,即b =12;当52-b <1,即b >32时,f ⎝⎛⎭⎫52-b =152-3b -b =152-4b , 即152-4b =4,得到b =78<32,舍去. 综上,b =12,故选D.8. 若任意都有,则函数的图象的对称轴方程为A .,B .,C .,D .,【答案】A令,代入则联立方程得解方程得=所以对称轴方程为解得所以选A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)①若函数g(x)=2x-a在x<1时与x轴有一个交点,则a>0,并且当x=1时,g(1)=2-a>0,则0<a<2,函数h(x)=4(x-a)(x-2a)与x轴有一个交点,所以2a≥1且a<1⇒ ≤a<1;
②若函数g(x)=2x-a与x轴有无交点,则函数h(x)=4(x-a)(x-2a)与x轴有两个交点,当a≤0时g(x)与x轴有无交点,h(x)=4(x-a)(x-2a)在x≥1与x轴有无交点,不合题意;当h(1)=2-a≥0时,a≥2,h(x)与x轴有两个交点,x=a和x=2a,由于a≥2,两交点横坐标均满足x≥1;综上所述a的取值范围为 ≤a<1或a≥2.
天天练
一、选择题
1.集合A={1,2,3},B={-1,0,1},满足条件f(3)=f(1)+f(2)的映射f:A→B的个数是()
A.2 B.4 C.5 D.7
2.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y=x2,值域为{1,4}的“同族函数”共有()
5.定义在R上的函数f(x),若对任意x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称f(x)为“Z函数”,给出下列函数:
①y= x3-x2+x-2;②y=2x-(sinx+cosx)③y=ex+1④f(x)= 其中是“Z函数”的个数为()
A.1 B.2 C.3 D.4
技巧点拨:由函数的定义域与解析式推出函数f(x)的偶函数是解答本题的关键.
9.[-3,1]
解析:要使函数y= 有意义,则3-2x-x2≥0,解得-3≤x≤1,则函数y= 的定义域是[-3,1].
解后反思:熟悉常见函数有意义的条件是解决这类问题的关键,如本题中偶次根式有意义的条件是根号下的式子非负.
10.[0, )
∴不等式等价为(x1-x2)[f(x1)-f(x2)]>0恒成立,
即函数f(x)是定义在R上的增函数.
①y= x3-x2+x-2;y′=x2-2x+1=(x-1)2,则函数在定义域上单调递增.
②y=2x-(sinx+cosx);y′=2-(cosx-sinx)=2+ sin >0,函数单调递增,满足条件.
3.D令f(a)=t,则f(t)≤3⇔ 或 解得t≥-3,则f(a)≥-3⇔ 或 解得a<0或0≤a≤ ,则实数a的取值范围是(-∞, ],故选D.
4.D函数y=10lgx的定义域为(0,+∞),又当x>0时,y=10lgx=x,故函数的值域为(0,+∞).只有D选项符合.
5.C∵对于任意给定的不等实数x1、x2,不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)恒成立,
∴f(t2-1)=t(t≥0)⇔f(x)= ,符合题意,故选D.
7.C令x=cosθ,θ∈[0,π],则函数f(x)即g(θ)= = ,而 的几何意义是单位圆(在x轴及其上方)上的点与点(2,1)连线的斜率,所以函数f(x)= 的值域为[0,1],故选C.
8.C因为函数f(x)的定义域(-∞,0)∪(0,+∞)关于原点对称,又当x>0时,-x<0,f(-x)=-lnx-x=f(x),同理,当x<0时,也有f(-x)=f(x),所以f(x)为偶函数.因为f(x)在(0,+∞)上为减函数,且f(2)=-ln2-2=ln -2,所以,当m>0时,由f( )<ln -2,得f( )<f(2),所以 >2,解得0<m< .根据偶函数的性质知当m<0时,得- <m<0,故选C.
③y=ex+1为增函数,满足条件.
④f(x)= ,当x>0时,函数单调递增,当x<0时,函数单调递减,不满足条件.故选C.
6.DA:取x=0,可知f(sin0)=sin0,即f(0)=0,再取x= ,可知f(sinπ)=sin ,即f(0)=1,矛盾,∴A错误;同理可知B错误;C:取x=1,可知f(2)=2,再取x=-1,可知f(2)=0,矛盾,∴C错误,D:令t=|x+1|(t≥0),
解析:因为当x≥1时,f(x)=2x-1∈[1,+∞),则由f(x)的值域为R得 解得0≤a< ,即实数a的取值范围为[0, ).
误区警示:分段函数的值域为每一段的值域的并集.
11.(1)-1(2) ≤a<1或a≥2.
解析:(1)a=1时,f(x)= ,函数f(x)在(-∞,1)上为增函数,函数值大于-1,在 为减函数,在 为增函数,当x= 时,f(x)取得最小值为-1;
12.解析:由直线y=4x+1与y=x+2求得交点A ;
由直线y=x+2与y=-2x+4,求出交点B .
由图象可看出:
f(x)=
f(x)的最大值为f( )= .
(2)若f(x)恰有2个零点,则实数a的取值范围是________.
三、解答题
12.对于每个实数x,设f(x)取y=4x+1,y=x+2,y=-2x+4三个函数中的最小值,用分段函数写出f(x)的解析式,并求f(x)的最大值.
天天练
1.D按f(3)=f(1)+f(2)的要求寻找.
2.A不要忘了1,-1,2.这种的类型的情况,还有1,-1,2,-2的情况.
A.9B.8个C.5个D.4个
3.(·广东三校联考)设函数f(x)= 若f(f(a))≤3,则实数a的取值范围是()
A.(-∞,- ) B.[- ,+∞)
C.[- , ]D.(-∞, ]
4.(·新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()
A.y=xB.y=lgxC.y=2xD.y=
A.(0, )B.(0,2)
C.(- ,0)∪(0, ) D.(-2,0)∪(0,2)
二、填空题
9.(·江苏卷)函数y= 的定义域是__________.
10.(·厦门一检)已知函数f(x)= 的值域为R,则实数a的取值范围是__________.
11.设函数f(x)=
(1)若a=1,则f(x)的最小值为________;
6.存在函数f(x)满足,对任意x∈R都有()
A.f(sin2x)=sinxB.f(sin2x)=x2+x
C.f(x2+1)=|x+1| D.f(x2Байду номын сангаас2x)=|x+1|
7.(·武汉调研)函数f(x)= 的值域为()
A.[- , ] B.[- ,0]
C.[0,1] D.[0, ]
8.(·深圳二调)已知f(x)= 则关于m的不等式f( )<ln -2的解集为()
相关文档
最新文档