心理统计常用公式总结
心理学公式总结认知与情绪的数学表达

心理学公式总结认知与情绪的数学表达在研究心理学过程中,数学表达是一种常用的工具,可以帮助我们理解和解释认知与情绪之间的关系。
本文将总结心理学中常用的数学公式,以便更好地理解认知与情绪的互动。
1. 认知心理学公式1.1 意义概括公式S = Σ(Wᵢ × Vᵢ)在认知心理学中,常使用意义概括公式来计算一个人对某个刺激的意义。
其中,S表示意义的总和,Wᵢ表示个体对刺激的重要性权重,Vᵢ表示刺激的特征值。
通过加权求和,可以得到该个体对刺激的整体意义评估。
1.2 工作记忆容量公式WM = K × N工作记忆是指短期记忆中能够同时存储和处理信息的能力。
工作记忆容量公式表达了工作记忆的容量和个体能够同时处理的信息数量之间的关系。
其中,WM表示工作记忆容量,K表示信息单元的容量,N 表示个体可以同时处理的信息单元数量。
1.3 反应时公式RT = TT + MT + CT反应时公式用于计算一个人完成某个任务所需的总时间。
其中,RT 表示总反应时,TT表示思考时间,MT表示运动时间,CT表示确认时间。
通过将思考、运动和确认时间累加,可以得到完成任务所需的总时间。
2. 情绪心理学公式2.1 平均情绪评分公式MS = Σ(Eᵢ × Dᵢ) / N平均情绪评分公式用于计算个体在一段时间内的情绪平均水平。
其中,MS表示平均情绪评分,Eᵢ表示第i个情绪状态的评分,Dᵢ表示第i个情绪状态的持续时间,N表示情绪状态的数量。
通过对每个情绪状态的评分和持续时间进行加权求和,可以得到情绪的平均水平。
2.2 情绪感官评估公式ESA = Σ(Sᵢ × Iᵢ) / Σ(Sᵢ)情绪感官评估公式用于计算不同感官对情绪产生的影响程度。
其中,ESA表示情绪感官评估,Sᵢ表示第i个感官的情绪强度评估,Iᵢ表示第i个感官对情绪产生的影响程度。
通过对每个感官的情绪强度评估和影响程度进行加权求和,再除以所有感官的情绪强度评估的总和,可以得到不同感官对情绪的影响程度。
心理统计学常用公式总结

心理统计常用公式总结
1、加权平均数
,其中W i 为权数
,其中为各小组的平均数,n i 为各小组人数
2、方差与标准差
,
其中
3、变异系数
,其中S 为标准差,M 为平均数
4、标准分数
,其中X 为原始数据,为平均数,S 为标准差
5、全距
R=最大数-最小数
6、四分差
,其中L b 为该四分点所在组的精确下限, F b 为该四分点所在组以下的累加次数,
和为该四分点所在组的次数,i 为组距,N 为数据个数
7、积差相关
基本公式:,其中
N 为成对数据的数目,S x 、S y 分别为X 和Y 的标准差
变形:
用估计平均数计算:
8、斯皮尔曼等级相关
,其中D 为各对偶等级之差
有相同等级时:
9、点二列相关
,其中是两个二分变量对偶的连续变量的平均数,p 、q 是二分变量各自所占的比率,p+q=1 ,S t 是连续变量的标准差
10、总体为正态,σ 2 已知:
总体为正态,σ 2 未知:。
心理统计公式汇总情况

心理统计公式汇总心理学考研分为:心理学学硕和心理学专硕(又称“应用心理硕士”、“心理专硕”)。
心理学学硕和心理学专硕考试科目不同,但是都会考察到心理学统计,(部分自主命题院校不考察心理学统计,考生需要提前了解院校信息。
)无论是对本专业还是跨专业心理学考研的同学而言,心理学统计始终是比较难懂的一块。
博仁教育老师为考生分章节整理出心理学统计公式,方便考生进行复习与记忆。
第三章集中量数1、几个集中量数的公式计算一览表平均数(M)算术平均数(M)未分组:1=niiXXn=∑分组数据:i ciif XMf∙=∑∑加权平均数(单位权重不相等的情况)iiiW XMwW∙=∑∑几何平均数(解决增长率的问题)lglg iXMgN=∑;11NNXMgX-=;1,,NNMg X X=调和平均数(解决速度的问题)倒数的算术平均数的倒数:1HiNMX=∑;中数(Md)未分组:无重复值N=奇数:中数即12N+位置的数;N=偶数:中数即中间两个数的平均数;有重复值若重复值没有位于中间,则求法与无重复值时一致;若重复值位于中间,则(P62):图示:思路:①连续性数字,不是一个点,是一个区间;②有几个重复的,则将组距除以几;分组d()2b bMdN iM L Ff=+-∙众数(Mo )1、直接观察法。
2、公式法。
(皮尔逊经验法&金式插补法)①皮尔逊经验法:o 32M Md M =-; ②金式插补法:ab a bf Mo L i f f =+⨯+ ;【组中值的计算】第四章 差异量数百分位数(点) 100bp bPN F P L i f⨯-=+⨯; 百分等级未分组:(10050)100R R P N-=-分组:()100[]b R b f X L P F N i-=⨯+ 四分位差31=2Q Q Q -; (Q3与Q1即P25与P75) 平均差未分组:..iiXA D nnX x-==∑∑分组:..fxA D n=∑;(IxI 为各组中点值对平均数离差的绝对值)方差与 标准差未分组:①222()sX X NNx-==∑∑;②原始数据代入:222222()()sN NXX X XNN-=-=∑∑∑∑分组:222()c f X X fNNxs-==∑∑22s ()f i Nfd d N=-⨯∑∑总方差与总标准差:222;()i i i iT i T iiN s N ds d X XN+==-∑∑∑标准差的应用差异系数100%sCVX=⨯标准分数X X xZs s-==第五章相关关系相关系数适用资料公式积差相关(皮尔逊)①成对的数据(≥30对);②连续变量;③正态双变量;④线性关系;rx yxyN s s=∑(N为成对数,x、y为离均差);原始值代入:2222()()X YXYNrN NX YX Y-=-∙-∑∑∑∑∑∑∑等级相关斯皮尔曼等级相关(两列)两列具有线性关系的等级或顺序变量;1、等级差数法:226=1(1)r RNDN--∑(D为对偶等级之差)2、等级序数法:43=(1)1(1)r X YRNN N NR R⎡⎤∙-+⎢⎥-+⎣⎦∑3、出现相同等级时:222222r RCyx Dyx+-=∙∙∑∑∑∑∑其中,32-N=12XNx C-∑∑;2(1)12Xn nC-=∑∑(N为成对数据数目,n为各列变量相同等级数)肯德尔等级相关(多列)肯德尔W系数(和谐系数):①K个评分人评N个对象,分析K个评分人的一致性程度;②同一个人先后K次评价N个对象,分析其前后一致性;1、基本公式:23s1()12WK N N=-;(K为评价者数,N为被评对象数)2i22123(1)(1)1NWK N N NR+=---∑; (iR为评价对象获得的K个评价者给的等级之和,222()()i ii iR Rs R RN N=-=-∑∑∑∑);2、相同等级时:23s=1()12WK N N K T--∑;其中,s的意义同上,T如下:312n nT-=∑∑;(n为相同等级数)肯德尔U系数(一致性系数):对偶比较法:将N个事物两两配对,可配成N(N-1)/N对,然后对每一对进行比较,择优选择,优者记1,非优者记0;2ij8=1(1)(1)ijr K rUN N K K-+-∙-∑∑();N为被评价对象数目(即等级数),K为评价者数目,ijr为对偶比较表中i>j(或i<j)格中的择优分数。
心理统计学常用公式总结

心理统计学常用公式总结心理统计学是心理学中的一个重要分支,它通过应用统计方法和概率理论来研究心理现象,分析和解释心理数据。
在心理统计学中,有许多常用的公式和方程式,用于计算和分析心理测量数据。
下面是一些常用的心理统计学公式总结。
1. 平均数(Mean)平均数是一组数值的总和除以数量的结果。
它是一组数据的集中趋势的一种度量。
平均数计算公式如下:平均数=总和/数量2. 中位数(Median)中位数是一组有序数据的中间值,将数据分为两个等长的部分。
对于一个有奇数个数据的数据集,中位数就是中间的值;对于有偶数个数据的数据集,中位数是中间两个值的平均数。
3. 众数(Mode)众数是一组数据中出现频率最高的值。
一个数据集可以有一个以上的众数,也可以没有众数。
4. 方差(Variance)方差是一组数据离其平均数的距离的平方的平均值。
方差用于衡量数据的离散程度。
方差计算公式如下:方差=Σ(数据-平均数)²/数量5. 标准差(Standard Deviation)标准差是方差的平方根,它是一组数据离其平均数的距离的平均值。
标准差也用于衡量数据的离散程度。
标准差计算公式如下:标准差=√方差6. 相关系数(Correlation Coefficient)相关系数衡量两个变量之间的关系强度和方向。
它是一个介于-1和1之间的值,越接近-1或1表示关系越强,越接近0表示关系越弱。
相关系数计算公式如下:相关系数=协方差/(标准差1*标准差2)7. 正态分布(Normal Distribution)正态分布是在统计学中经常出现的一种分布模式。
它呈钟形曲线,对称分布在平均数周围。
正态分布可以由均值和标准差来完全描述。
8. 标准分数(Standard Scores)标准分数是将原始分数转化为以标准差为单位的分数。
它表示一个分数距离平均数的几个标准差。
标准分数=(原始分数-平均数)/标准差9. 置信区间(Confidence Interval)置信区间是对总体参数的估计范围,常用来估计平均值或比例的范围。
心理统计常用公式总结

心理统计常用公式总结1 、组数K (总体分布为正态)厂7 广:「〜八’(N为数据个数,K取近似整数)未分组时已分组时,其中皿为估计平均数,i为组距,d=(Xc-O)/i组差数,比组中值3 、中数全不—样!奇(冊1)住个数'偶M2和N/2+1M个数的均数如有-样的数已分组b严"叫,其中Ft为中数所在区间的次数和,险为中数所在区间的次数Lid4为中数所在区间精确下限,1为组距,N为数据个数出现次数最多的数,分组时次数最多那一组区间的组中值3M1-2M (皮尔逊经验法儿其中阳为中数,M为平均数AX=J fLb+二礙全氏插补法),其中h为含众数这一区间的精确下限.刍为髙于介数所在组一个组距那fa + fbfb为低于介数所在组一个组距那1分组区间的次数,i为组距4 、众数2 、算术平均数5 、加权平均数126 、几何平均数-・一」一二・,其中n 为数据个数, X i 为数据的值7 、调和平均数宅我弹工盅-{工舒丫用(用原始分数直接计算)未分组叭其中X 减r 己分组晒其中©=(花-酗)”也曲估计半均数,證为组口值,f 为各组区间的次数,励8 、方差与标准差常珂腐—皿翳)+ (恥哥十恋石+…+ M 曙川何十埜+…+虬)其中」1 -: J J '■_-': ' -.■ x ■i -2--7-: *■'cr =—xioo%9 、变异系数」'匚,其中S 为标准差,M 为平均数X-X10、标准分数 ,其中 X 为原始数据,n i 为各小组人数•为各小组的平均数,--为平均数,S为标准差3411、全距R =最大数—最小数12、平均差已分组时,^ = X C -X13、四分差,其中Lb 为该四分点所在组的精确下限,Fb 为该四分点所在组以下的累加次数,14、积差相关基本公式: 需:,其中:'■ - ' / -变形:差法公式:3N—幺=2分组后Q7十2匕小“44.二和为该四分点所在组的次数, i 为组距, N 为数据个数AD工HN耒分组时,N 为成对数据的数目,S x 、 S y 分别为X 和Y 的标准差工05_N ^X Y-^X '^Y '一叔工疋-(工盘产迦云—0亍 用估计平均数计算:用相关表计算:工“厂①触迄侶)15、斯皮尔曼等级相关",其中D 为各对偶等级之差有相同等级时:减差法工宀17-工(“y 尸其中:葺 禺分别为乩 咻标准差贅、梦为离均差,滋题十碓)方差吐-啲方差直接用等级序数计算:-(N + 1)],其中R X 、 RY 分别为二变量各等级数其中疋=X 「AM X r Y' =Y- AM^, AM X .卫皿丫为估计卫6其中工宀耳尹-三壬=工咛^ 5>a =气尹-1?,送G =工哙2梯成对数据数目,九为相同等级数目K 个等级之和,H 为被评价事物的件数即等级数,K 为评价彳16、肯德尔等级相关有相同等级:;7系数〔一致性系数)二也二斥_迁头 其中M 为被评价事物的数目即等级数,疋为评价者白NK (N~ 1)(疋 _ 1)衍为对偶比较记录中心〔或i ① 的格中的择优分] 其中工害垃为相同等级的数目—J 二f 二"册系数(和谐系数) n —-——,其中一工風・-工附-学厂鸟为每一件被评价:r si「九-血■后 K F17、点二列相关匸,其中亠 旷是两个二分变量对偶的连续变量的平均数,p 、 q 是二分变量各自所占的比率,p+q=1 , S t 是连续变量的标准差dr”,其中ST与…:是连续变量的标准差与平均数, y为P的正态曲线的高度19、多系列相关工【仙-片)百],其中P i为每系列的次数比率,y 1为每一名义变量下限的正态曲线高度,yh为每一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数,S t为连续变量的标准差返■站crZ7-—”更~・卡2■邑工20、总体为正态,b 2已知:,L二' 1 -21、总体为正态,122、亠工(Xp尸后©T)尽J23247。
统计学常用公式总结

心理统计常用公式总结1 、组数 K(总体分布为正态)( N 为数据个数, K 取近似整数)2 、算术平均数3 、中数4 、众数5 、加权平均数,其中 W i 为权数,其中为各小组的平均数, n i 为各小组人数6 、几何平均数,其中 n 为数据个数, X i 为数据的值7 、调和平均数8 、方差与标准差,其中9 、变异系数,其中 S 为标准差, M 为平均数10 、标准分数,其中 X 为原始数据,为平均数, S 为标准差11 、全距R=最大数-最小数12 、平均差13 、四分差,其中 L b 为该四分点所在组的精确下限, F b 为该四分点所在组以下的累加次数,和为该四分点所在组的次数, i 为组距, N 为数据个数14 、积差相关基本公式:,其中N 为成对数据的数目, S x 、 S y 分别为 X 和 Y 的标准差变形:差法公式:用估计平均数计算:用相关表计算:15 、斯皮尔曼等级相关,其中 D 为各对偶等级之差直接用等级序数计算:,其中 R X 、 R Y 分别为二变量各等级数有相同等级时:16 、肯德尔等级相关有相同等级:17 、点二列相关,其中是两个二分变量对偶的连续变量的平均数, p 、 q 是二分变量各自所占的比率, p+q=1 , S t 是连续变量的标准差18 、二列相关,其中 S T 与是连续变量的标准差与平均数, y 为 P 的正态曲线的高度19 、多系列相关,其中 P i 为每系列的次数比率, y 1 为每一名义变量下限的正态曲线高度,y h 为每一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数, S t 为连续变量的标准差20 、总体为正态,σ 2 已知:21 、总体为正态,σ 2 未知:22 、23 、24 、。
心理统计学公式汇总

心理统计学公式汇总在心理统计学的领域中,各种公式犹如工具,帮助我们理解、分析和解释数据。
下面就为大家汇总一些常见且重要的心理统计学公式。
一、集中趋势的测量1、算术平均数算术平均数是最常用的集中趋势测量指标,其公式为:\\bar{X} =\frac{\sum_{i=1}^{n} X_{i}}{n}\其中,\(\bar{X}\)表示算术平均数,\(X_{i}\)表示第\(i\)个观测值,\(n\)表示观测值的数量。
2、中位数当数据呈现偏态分布时,中位数比平均数更能代表数据的集中趋势。
对于未排序的数据,首先将其从小到大排序。
如果数据个数\(n\)为奇数,中位数就是位于中间位置的那个数;如果\(n\)为偶数,中位数则是中间两个数的平均值。
3、众数众数是数据中出现次数最多的数值。
二、离散程度的测量1、极差极差是一组数据中最大值与最小值之差,公式为:\(R =X_{max} X_{min}\)。
2、方差方差反映了数据相对于平均数的离散程度,其公式为:\S^2 =\frac{\sum_{i=1}^{n} (X_{i} \bar{X})^2}{n 1}\3、标准差标准差是方差的平方根,公式为:\(S =\sqrt{\frac{\sum_{i=1}^{n} (X_{i} \bar{X})^2}{n 1}}\)。
三、正态分布相关公式1、正态分布的概率密度函数\f(x) =\frac{1}{\sigma \sqrt{2\pi}} e^{\frac{(x \mu)^2}{2\sigma^2}}\其中,\(\mu\)是均值,\(\sigma\)是标准差。
2、标准正态分布若\(X\)服从正态分布\(N(\mu, \sigma^2)\),则\(Z =\frac{X \mu}{\sigma}\)服从标准正态分布\(N(0, 1)\)。
四、相关分析1、皮尔逊积差相关系数用于测量两个连续变量之间的线性关系,公式为:\r =\frac{\sum_{i=1}^{n} (X_{i} \bar{X})(Y_{i} \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_{i} \bar{X})^2 \sum_{i=1}^{n} (Y_{i} \bar{Y})^2}}\2、斯皮尔曼等级相关系数适用于测量两个顺序变量之间的相关性,公式为:\r_s = 1 \frac{6 \sum_{i=1}^{n} d_{i}^2}{n(n^2 1)}\其中,\(d_{i}\)是两个变量的等级差。
心理统计学常用公式总结

心理统计常用公式总结1 、组数K(总体分布为正态)(N 为数据个数,K 取近似整数)2 、算术平均数3 、中数4 、众数5 、加权平均数,其中W i 为权数,其中为各小组的平均数,n i 为各小组人数6 、几何平均数,其中n 为数据个数,X i 为数据的值7 、调和平均数8 、方差与标准差,其中9 、变异系数,其中S 为标准差,M 为平均数10 、标准分数,其中X 为原始数据,为平均数,S 为标准差11 、全距R=最大数-最小数12 、平均差13 、四分差,其中L b 为该四分点所在组的精确下限,F b 为该四分点所在组以下的累加次数,和为该四分点所在组的次数,i 为组距,N 为数据个数14 、积差相关基本公式:,其中N 为成对数据的数目,S x 、S y 分别为X 和Y 的标准差变形:差法公式:用估计平均数计算:用相关表计算:15 、斯皮尔曼等级相关,其中D 为各对偶等级之差直接用等级序数计算:,其中R X 、R Y 分别为二变量各等级数有相同等级时:16 、肯德尔等级相关有相同等级:17 、点二列相关,其中是两个二分变量对偶的连续变量的平均数,p 、q 是二分变量各自所占的比率,p+q=1 ,S t 是连续变量的标准差18 、二列相关,其中S T 与是连续变量的标准差与平均数,y 为P 的正态曲线的高度19 、多系列相关,其中P i 为每系列的次数比率,y 1 为每一名义变量下限的正态曲线高度,y h 为每一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数,S t 为连续变量的标准差20 、总体为正态,σ 2 已知:21 、总体为正态,σ 2 未知:22 、23 、24 、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
心理统计常用公式总结
1 、组数K (总体分布为正态)(N 为数据个数,K 取近似整数)
2 、算术平均数
3 、中数
4 、众数
5 、加权平均数
,其中W i 为权数
,其中为各小组的平均数,n i 为各小组人数
6 、几何平均数
,其中n 为数据个数,X i 为数据的值
7 、调和平均数
8 、方差与标准差
,
其中
9 、变异系数,其中S 为标准差,M 为平均数
10 、标准分数,其中X 为原始数据,为平均数,S 为标准差
11 、全距R =最大数-最小数
12 、平均差
13 、四分差
,其中L b 为该四分点所在组的精确下限, F b 为该四分点所在组以下的累加次数,
和为该四分点所在组的次数,i 为组距,N 为数据个数
14 、积差相关
基本公式:,其中
, ,N 为成对数据的数目,S x 、S y 分别为X 和Y 的标准差
变形:
差法公式:
用估计平均数计算:
用相关表计算:
15 、斯皮尔曼等级相关
,其中 D 为各对偶等级之差
直接用等级序数计算:,其中R X 、R Y 分别为二变量各等级数有相同等级时:
16 、肯德尔等级相关
有相同等级:
17 、点二列相关,其中是两个二分变量对偶的连续变量的平均数,p 、q 是二分变量各自所占的比率,p+q=1 ,S t 是连续变量的标准差
18 、二列相关
,其中S T 与是连续变量的标准差与平均数,y 为P 的正态曲线的高度
19 、多系列相关
,其中P i 为每系列的次数比率,y 1 为每一名义变量下限的正态曲线高度,y h 为每一名义变量上线的正态曲线高度,
为每一名义变量对偶的连续变量的平均数,S t 为连续变量的标准差
20 、总体为正态,σ 2 已知:
21 、总体为正态,σ 2 未知:
22 、
23 、
24 、。