二重积分7.1 二重积分的概念及性质
第一节二重积分的概念与性质

第一节二重积分的概念与性质第一篇:第一节二重积分的概念与性质第九章重积分第一节二重积分的概念与性质与定积分类似,二重积分的概念也是从实践中抽象出来的,它是定积分的推广,其中的数学思想与定积分一样,也是一种“和式的极限”.所不同的是:定积分的被积函数是一元函数,积分范围是一个区间;而二重积分的被积函数是二元函数,积分范围是平面上的一个区域.它们之间存在着密切的联系,二重积分可以通过定积分来计算.内容分布图示★ 曲顶柱体的体积★ 非均匀平面薄片的质量★ 二重积分的概念★ 二重积分的性质★ 例1★ 例4★ 内容小结★习题9-1★ 返回★ 二重积分的中值定理★ 例2★ 例3 ★ 例5 ★ 课堂练习内容要点:一、二重积分的概念引例1 求曲顶柱体的体积;引例2 求非均匀平面薄片的质量二重积分的定义二、二重积分的性质性质1—性质6二重积分与定积分有类似的性质.性质 1 ⎰⎰[αf(x,y)±βg(x,y)]dσ=α⎰⎰f(x,y)dσ±β⎰⎰g(x,y)dσ.DDD性质2 如果闭区域D可被曲线分为两个没有公共内点的闭子区域D1和D2, 则⎰⎰f(x,y)dσ=⎰⎰f(x,y)dσ+⎰⎰f(x,y)dσ.DD1D2这个性质表明二重积分对积分区域具有可加性.性质3 如果在闭区域D上, f(x,y)=1,σ为D的面积, 则⎰⎰1⋅dσ=⎰⎰dσ=σ.DD这个性质的几何意义是: 以D为底、高为1的平顶柱体的体积在数值上等于柱体的底面积.性质4 如果在闭区域D上, 有f(x,y)≤g(x,y),则⎰⎰f(x,y)dσ≤⎰⎰g(x,y)dσ.DD特别地, 有⎰⎰f(x,y)dσ≤⎰⎰|f(x,y)|dσ.DD性质5 设M,m分别是f(x,y)在闭区域D上的最大值和最小值, σ为D的面积, 则mσ≤⎰⎰f(x,y)dσ≤Mσ.D这个不等式称为二重积分的估值不等式.例题选讲:二重积分的性质(x例1不作计算,估计I=⎰⎰eD2+y2)dσ的值,其中D是椭圆闭区域:x2a2+y2b2≤1(0<b<a).例2(讲义例1)估计二重积分I=⎰⎰Ddσx+y+2xy+1622的值, 其中积分区域D为矩形闭区域{(x,y)|0≤x≤1,0≤y≤2}.例3判断r≤x+y≤1ln(x2+y2)dxdy的符号.例4积分⎰⎰D-x2-y2dxdy有怎样的符号, 其中D:x2+y2≤4.例5(讲义例2)比较积分⎰⎰ln(x+y)dσ与⎰⎰[ln(x+y)]2dσ的大小,其中区域D是三DD角形闭区域,三顶点各为(1,0),(1,1),(2,0).课堂练习1.将二重积分定义与定积分定义进行比较, 找出它们的相同之处与不同之处.2.试用二重积分表示极限lim∑∑en→+∞n2i=1j=11nni2+j2n2.第二篇:第一节二重积分的概念与性质09-3-30第九章重积分第一节二重积分的概念与性质教学目的:理解并掌握二重积分的概念;几何意义;二重积分存在的条件.熟练掌握二重积分的性质;能正确运用性质进行判断、计算与证明.重点: 二重积分的性质的运用.难点: 运用性质判断与计算.教学方法:直观教学,讲练结合.教学过程:一、二重积分的概念与几何意义1、【定义】: 设f(x,y)是有界闭区域D上的有界函数,将闭区域其中∆σi表示D D任意分成n个小闭区域∆σ1,∆σ2,Λ,∆σn,第i个小闭区域,也表示它的面积,在每个∆σi上任取一点(ξi,ηi),作乘积f(ξi,ηi)⋅∆σi,(i=1,2,Λ,n),并作和n∑f(ξ,η)∆σiii=1i,如果当各小闭区域的直径di中的最大值λ=max{di}→0时,这和 1≤i≤n式limλ→0∑f(ξ,η)∆σ的极限存在,且此极限与小区间∆σiiii=1ni的分法以及点(ξi,ηi)的取法无关,则称此极限为函数f(x,y)在闭区域D 上的二重积分,记为f(x,y)dσ,即D∑f(ξ,η)∆σ.⎰⎰f(x,y)dσ=limλD→0iiii=1n其中:① f(x,y)称为被积函数, ② f(x,y)dσ称为被积表达式,③ x,y称为积分变量, ④ dσ称为面积元素, ⑤ D称为积分区域,⑥n∑f(ξ,η)∆σ称为积分和.iiii=12、面积元素dσ在直角坐标系下用平行于坐标轴的直线网来划分区域D,则面积元素为 dσ=dxdy故二重积分可写为DD⎰⎰f(x,y)dσ3、【二重积分存在定理】设f(x,y)是有界闭区域D上的连续函数,则二重积分⎰⎰f(x,y)dσ存在.D4、二重积分的几何意义≥0时,二重积分(1)当被积函数f(x,y)⎰⎰f(x,y)dσD表示以f(x,y)为顶,以D为底面的曲顶柱体的体积.(2)当被积函数f(x,y)≤0时,二重积分表示曲顶柱体体积的相反数.二、二重积分的性质假设被积函数在有界闭区域D上连续.1.2.⎰⎰kf(x,y)dσ=k⎰⎰f(x,y)dσ,k为常数.DD⎰⎰[f(x,y)±g(x,y)]dσ=⎰⎰f(x,y)dσ±⎰⎰g(x,y)dσ.DDD二重积分的线性性:设α,β为常数则上述两式合并为⎰⎰[αf(x,y)+βg(x,y)]dσD=α⎰⎰f(x,y)dσ+β⎰⎰g(x,y)dσ.DD3.(二重积分对区域可加性)⎰⎰f(x,y)dσ=⎰⎰f(x,y)dσ+⎰⎰f(x,y)dσ,(D=D+DDD1D2).4.⎰⎰dσ=σ, σ为D的面积.D.(积分不等式)若f(x,y)≤g(x,y),则⎰⎰f(x,y)dσ≤⎰⎰g(x,y)dσ.DD注意:若在D上f(x,y)≤g(x,y)但等号不是恒成立,则有⎰⎰f(x,y)dσ<⎰⎰g(x,y)dσ.DD推论:⎰⎰f(x,y)dσ≤⎰⎰DDf(x,y)dσ.6.【积分估值定理】设M、m分别是f(x,y)在闭区域D上的最大值和最小值,则 mσ≤⎰⎰f(x,y)dσ≤Mσ.其中σ为D的面积.D7.【积分中值定理】设函数f(x,y)在闭区域D上连续,则在D上至少存在一点(ξ,η)使得d=⎰⎰f(x,y)σD.σ为D的面积.fξ(η,⋅)σ8.设区域D=D1+D2,且D1与D2关于x轴对称;(1)当f(x,y)关于y是偶函数即 f(x,-y)=f(x,y)时,有⎰⎰f(x,y)dσ=2⎰⎰f(x,y)dσ.DD1当f(x,y)关于y是奇函数时即f(x,-y)=-f(x,y)时,有⎰⎰f(x,y)dσ=0.D(2)类似有设区域D=D1+D2,且D1与D2关于y轴对称;当f(x,y)关于x是偶函数时即f(-x,y)=f(x,y)时,有⎰⎰f(x,y)dσ=2⎰⎰f(x,y)dσ.DD1当f(x,y)关于x是奇函数时即f(-x,y)=-f(x,y)时,有⎰⎰f(x,y)dσ=0.D三、应用举例例1 比较3与(x+y)dσ(x+y)dσ⎰⎰⎰⎰DD的大小,其中D={(x,y)|(x-2)+(y-1)≤2}.22解:如图,由于点A(1,0)在(x-2)+(y-1)≤2上,过点A的切线为x+y=1,那么在D上有 1≤x+y≤(x+y)≤(x+y),23(x+y)dσ<(x+y)dσ.⎰⎰⎰⎰DD2222cosx+ydσ,I=cos(x+y)dσ, 2⎰⎰⎰⎰D例2(05.4)设I1=I3=⎰⎰cos(x2+y2)2dσ,其中D={(x,y)|x+y2≤1},则DD(A)I3>I2>I1(B)I1>I2>I3(C)I2>I1>I3(D)I3>I1>I2答(A).因为在区域D上,0≤x+y≤1<所以π,且cosz∈[0,π]为减函数,π>1≥x2+y2≥x2+y2≥(x2+y2)2≥0,2222222从而cos(x+y)≤cos(x+y)≤cos(x+y),故I3>I2>I1.例3设D:x2+y2≤a2,当a=()时,(a)1(b)3⎰⎰Da2-x2-y2dxdy=π.331(c)3(d)3 242答(b).根据二重积分的几何意义,此积分表示半径为a的上半球体1433的体积.由⋅aπ=π得a=3⇒选(b).232例4当D是由()围成的区域时,⎰⎰dxdy=1.D(a)x轴,y轴及2x+y-2=0(b)x=1,x=2及y=3,y=1,y=(d)x+y=1,x-y=1 22答(a,b,c).因为⎰⎰dxdy=1表示积分区域的面积为1,故只需考察哪(c)x=D些选项积分区域的面积为1.例5 判断x+y≤1ln(x2+y2)dσ的正负.解:在区域D={(x,y)|x+y≤1 }上有x+y≤1且等号不恒成立,所以ln(x+y)≤ln1=0且等号不能恒成立,故x+y≤1ln(x2+y2)dσ<x+y1(ln1)dσ=0.例6估计积分值I=⎰⎰xy(x+y)dσ,D={(x,y)|0≤x≤1,0≤y≤2}.D解:0≤xy(x2+y2)≤6⇒0≤I≤12.(注意:积分区域为矩形SD=2)例7D1={(x,y)|x+y≤1,x,y≥0}D2={(x,y)|(x-2)+(y-1)≤2}I1=⎰⎰(x+y)2dσ,I2=⎰⎰(x+y)3dσ,D1D1I3=⎰⎰(x+y)2dσ,I4=⎰⎰(x+y)3dσD2D2试用适当符号连接I1,I2,I3,I4.解:在D1上有I1>I2(0≤x+y≤1),在D2上I4>I3(x+y≥1).又由(x+y)2≤1⇒I1≤由(x+y)2≥1⇒I3≥故I4>I3>I1>I2.22例8 设D={(x,y)|1≤x+y≤4},证明 3πe≤xe⎰⎰D⎰⎰dσ=D1,2>I1,2+y2⎰⎰dσ=2π>D2dσ≤3πe4.证明因为SD=σ=4π-π=3π,又因为e≤e由积分的估值性质得 3πe≤xe⎰⎰Dx+y2≤e4,+y2dσ≤3πe4.例9设D={(x,y)|x+y≤R}(1)若f(x,y)在D上有界且可积,则limR→0⎰⎰f(x,y)dσ=0.Df(x,y)dσ=πf(0,0).R→0R2⎰⎰D(1)证明:设m,M分别为函数f(x,y)在D上的最小值与最大值,则(2)若f(x,y)在D上连续,则limm≤f(x,y)≤M,由积分估值定理知⎰⎰mdσ≤⎰⎰f(x,y)dσ≤⎰⎰Mdσ又D={(x,y)|x+y≤R}所以πmR≤D2D⎰⎰f(x,y)dσ≤πMRDD2,limR→0⎰⎰f(x,y)dσ=0.DD(2)解:由积分中值定理知f(x,y)在D上连续⇒∃(ξ,η)∈D,s..t⎰⎰f(x,y)dσ=πR2⋅f(ξ,η),所以lim112f(x,y)dσ=lim⋅πRf(ξ,η)R→0R2⎰⎰R→0R2D=πlimf(ξ,η)=πlimf(ξ,η)=πf(0,0).R→0(ξ,η)→(0,0)小结:1.定义∑f(ξ,η)∆σ为二重积分.⎰⎰f(x,y)dσ=limλD→0iiii=1n2.二重积分几何意义:表示曲顶柱体的体积.3.正确运用各条性质进行判断、计算、证明.课后记:比较大小与证明问题下手较困难.第三篇:6.7 二重积分的概念与性质第6章多元函数微积分6.7二重积分的概念与性质习题解1.利用二重积分定义证明:⎰⎰kf(x,y)dσ=k⎰⎰f(x,y)dσ。
二重积分基础数学资料

用若干个小平 顶柱体体积之 和近似曲顶柱 体的体积,
曲顶柱体的体积
先分割曲顶柱体的底,
积分区域
积分和
被积函数
积分变量
被积表达式
面积元素
2、二重积分的概念
性质1
性质2
(——与定积分有类似的性质)
3、二重积分的性质
性质3
性质4
4、二重积分的几何意义
例 求
,其中区域
为由直线
所围区域。
答案:2
区域的特征,其次需要考虑被积函数
的特点,在积分区域中为二次积分即两个定积分来计算。
例 计算二重积分
其中
区域
一、在直角坐标系下计算
1、积分区域为矩形域
例 计算二重积分
其中
答案:
二重积分的计算 (D是矩形区域)
y
0
x
z
y
a
b
c
d
D
D是矩形区域 [a,b ; c,d]
输出:ans= 3
所围成的区域。
例
解:
X-型
例 计算二重积分
是由直线
所围成的
闭区域。
答案:
例 计算 其中D是由直线
解法1 把D看成X型域,则
y=1, x=2 及 y=x 所围区域.
解法2 把D看成Y型域,则
要将按X型域确定的积分限改为按Y型域确定积分限.为此,应根据定限的方法先将题中所给的积分限还原成平面区域D,然后再按Y型域重新确立积分限,得到二次积分.
第一节 二重积分的概念和性质
1、问题的提出 2、二重积分的概念 3、二重积分的性质 4、二重积分的几何意义
第七章 二重积分
柱体体积=底面积×
二重积分的概念及性质

积分对变量的可加性
定义
如果f(x,y)在平面上是可积的,那么对于任 意的a和b,有 ∫∫Df(x,y)dσ=∫a→bf(x,y)dσ+∫∫Df(x,y)dσ, 其中D是包含在区间[a,b]内的可积区域。
应用
该性质可以用于计算二重积分,特别是当被 积函数与某个变量的关系较为简单时。
04 二重积分的物理应用
个小弧段进行积分,然后将结果相加得到总长度。
平面曲线的曲率与挠率
曲率
曲率是描述曲线弯曲程度的量,可以 通过二重积分计算出曲线的曲率。
挠率
挠率是描述曲线在垂直方向上的弯曲 程度的量,也可以通过二重积分计算 出曲线的挠率。
THANKS FOR WATCHING
感谢您的观看
积分区域的可加性
定义
如果D1和D2是平面上互不相交的可积区域,则它们分别上的二重积分之和等于它们并集上的二重积分。 即,如果D=D1∪D2,则∫∫Df(x,y)dσ=∫∫D1f(x,y)dσ+∫∫D2f(x,y)dσ。
应用
该性质可以用于简化复杂的积分区域,将复杂区域分解为简单区域进行计算。
积分对区域的可加性
转换坐标
将被积函数从直角坐标转换为极坐标形式,即$x = rhocostheta$,$y = rhosintheta$。
分层积分
将极坐标下的二重积分拆分成两个累次积分,即先对角度积分再对极径积分。
逐个计算
对每个角度范围,计算其在极径上的积分值,并求和。
得出结果
将所有角度范围的积分结果相加,得到整个极坐标区域上的二重积分值。
二重积分的概念及性质
目录
• 二重积分的定义 • 二重积分的计算方法 • 二重积分的性质和定理 • 二重积分的物理应用 • 二重积分的数学应用
二重积分的概念与性质

b
n
f (i )xi ———积分和.
i 1
n
下页
二、定积分定义
定积分的定义
lim f (i )xi . a f (x)dx 0
i1
b
n
根据定积分的定义, 曲边梯形的面积为 A f (x)dx . a 变速直线运动的路程为 S T v(t)dt .
i 1 i 1 b n n b
下页
•定积分的几何意义 当f(x)0时, f(x)在[a, b]上的定积分表示由曲线yf(x)、直 线xa、xb与x轴所围成的曲边梯形的面积.
一般地, f(x)在[a, b]上的定积分表示介于x轴、曲线yf(x) 及直线xa、xb之间的各部分面积的代数和.
0 i 1
n
A lim f ( i )xi .
0 i 1
n
下页
2.变速直线运动的路程
已知物体直线运动的速度vv(t)是时间 t 的连续函数, 且 v(t)0, 计算物体在时间段[T1, T2]内所经过的路程S.
(1)分割: T1t0<t1<t2< <tn1<tnT2, tititi1; (2)近似代替: 物体在时间段[ti1, ti]内所经过的路程近似为 Siv(i)ti ( ti1< i<ti ); (3)求和: 物体在时间段[T1, T2]内所经过的路程近似为
b
a f (x)dx a g(x)dx (a<b).
•推论2 | f (x)dx | | f (x) | dx (a<b). a a •性质6 设M及m分别是函数f(x)在区间[a, b]上的最大值及最 小值, 则
b b
b
b
高中数学(人教版)二重积分的概念与性质课件

取近似 2) 取近似. m i ( i , i ) i Vi f ( i , i ) i 和 ) f ( , 求
i 1 i i
n
3) 求和. V
n
i
( , )
i 1 i i
n
n
i
, i ) i4) 取极限.m lim ( i , i ) i 4) 取极限.V lim f ( i 取极限
o
x
(一)引例
1.曲顶柱体的体积 1) 分割. 用一组曲线网把D分成n个小区域
2.平面薄片的质量
1) 分割. 用一组曲线网把D分成n个小块
1 , 2 , , i , , n
i
几 何 问 题 2) 取近似. V f ( , )
3) 求和. V
1 , 2 , , i , , n
D
f ( x, y) 0
一般情况
曲顶柱体体积的负值
曲顶柱体体积的代数和
例 1
根据二重积分的几何意义,计算下列积分值:
D : x2 y2 R2.
(1)
y
d
D
o
z
x
( 2)
D
R 2 x 2 y 2 d
o
y
x
二重积分的概念与性质
一、二重积分的概念
二、二重积分的性质
二重积分的概念与性质
0
i 1
i , i ) i . f ( f ( x , y )d lim 0
D i 1
n
积 分 区 域
被 积 函 数
积 分 变 量
被面 积积 积 表元 分 达素 和 式
第一节二重积分的概念与性质

第⼀节⼆重积分的概念与性质第⼀节⼆重积分的概念与性质学习指导1.教学⽬的:使读者理解⼆重积分的概念与性质。
2.基本练习:熟悉⼆重积分的⼏何、物理背景。
熟悉⼆重积分的性质。
3.应注意的事项:⼆重积分是⼆元函数乘积和式的极限,是定积分的推⼴,因此从引例到研究⽅法,从定义到性质都是类似的,读者要善于⽐较,触类旁通,温故⽽知新。
第⼀节⼆重积分的概念与性质⼀、⼆重积分的概念1. 曲顶柱体的体积(1)曲顶柱体(2)曲顶柱体的体积现在我们来讨论如何定义并计算上述曲顶柱体的体积V。
平顶柱体的体积2. 平⾯薄⽚的质量(1) 问题的提出(2) 均匀薄⽚的质量(3) ⾮均匀薄⽚质量的计算⽅法(4) ⼆重积分的定义上⾯两个问题的实际意义虽然不同,但所求量都归结为同⼀形式的和的极限。
在物理、⼒学、⼏何和⼯程技术中,有许多物理量或⼏何量都可以归结为这⼀形式的和的极限。
因此我们要⼀般的研究这种和的极限,并抽象出下述⼆重积分的定义。
定义设是有界闭区域上的有界函数.将闭区域任意分成个⼩闭区域其中表⽰第个⼩闭区域,也表⽰它的⾯积。
再每个上任取⼀点,作乘积,并作和。
如果当个⼩闭区域的直径中最⼤值趋于零时,这和的极限总存在。
则称此极限为函数在闭区域上的⼆重积分,记作,即。
(1)叫做被积函数,叫做被积表达式,叫做⾯积元素,与叫其中积分变量,叫做积分区域,叫做积分和。
(5) 直⾓坐标系中的⾯积元素在⼆重积分的定义中对闭区域的划分是任意的,如果在直⾓坐标系中⽤平⾏于坐标轴的直线⽹来划分,那么除了包含边界点的⼀些⼩闭区域外,其余的⼩闭区域都是矩形闭区域。
设矩形闭区域的边长为和,则。
因此在直⾓坐标系中,有时也把⾯积元素记作。
⽽把⼆重积分记作其中叫做直⾓坐标系中的⾯积元素。
(6) ⼆重积分的存在性这⾥我们要指出,当在闭区域上连续时,式右端的和的极限必定存在,也就是说,函数在上的⼆重积分必定存在。
我们总假定函数在闭区域上连续,所以在上的⼆重积分都是存在的,以后就不在每次加以说明了。
二重积分知识点

二重积分知识点一、引言二重积分是高等数学中的重要内容,是对二元函数在有限区域上的积分运算。
二重积分的概念与求解技巧是深入理解、掌握多元函数的必备工具,也为解决实际问题提供了数学方法。
本文将从二重积分的概念、性质、计算方法和应用等方面,全面详细地介绍二重积分的知识点。
二、概念1. 二重积分的定义设f (x,y )在闭区域D 上有定义,D 由有向闭曲线C 围成,且f (x,y )在D 上有界。
若存在数I ,对于任意给定的正数ε,都存在正数δ,使得对于D 内任意满足Δσ<δ的任意分割σ,对应的任意代点ξij ,总有|∑∑f mj=1n i=1(ξij )Δσij −I|<ε则称I 为函数f (x,y )在闭区域D 上的二重积分,记作I =∬f D(x,y )dσ其中,Δσij 表示第(i,j )个小区域的面积,Δσ表示整个区域D 的面积。
2. 二重积分的几何意义二重积分的几何意义是对二元函数在闭区域上的面积进行逐点求和,即将闭区域D 分割成无穷多个小面积区域,并对每个小面积区域上的函数值进行乘积再求和,最终得到二重积分。
三、性质1. 线性性质设闭区域D上有二重积分∬fD(x,y)dσ,若c为常数,则有∬(cf(x,y)) D dσ=c∬fD(x,y)dσ∬(f(x,y)±g(x,y)) D dσ=∬fD(x,y)dσ±∬gD(x,y)dσ2. 区域可加性设闭区域D可分为非重叠的两部分D1和D2,则有∬fD (x,y)dσ=∬fD1(x,y)dσ+∬fD2(x,y)dσ3. Fubini定理(累次积分)设函数f(x,y)在闭区域D上连续,则有∬f D (x,y)dσ=∫(∫fβ(x)α(x)(x,y)dy)badx=∫(∫fδ(y)γ(y)(x,y)dx)dcdy其中,(x,y)∈D,α(x)≤y≤β(x),γ(y)≤x≤δ(y)。
4. 值定理设函数f(x,y)在闭区域D上一致连续,则存在(ξ,η)∈D,使得∬fD (x,y)dσ=f(ξ,η)∬dDσ=f(ξ,η)σ(D)其中,σ(D)表示闭区域D的面积。
二重积分的概念与性质

(2)二重积分与被积函数和积分区域有关,与积分变量 的表示无关。即
f x, ydxdy f u,vdudv
D
D
(3)二重积分的几何意义:若f(x, y)0,二重积分表示以 f(x, y)为曲顶,以Байду номын сангаас为底的曲顶柱体的体积;若f(x, y)0,二 重积分表示曲顶柱体的体积的负值;当f(x, y)有正、有负时, 二重积分就等于这些区域上柱体体积的代数和。
存在,则称此极限为函数f(x, y)在区域D上的二重积分,记作
f x, yd ,即
D
n
D
f x, yd
lim 0 i1
f
i ,i k
关于二重积分的几点说明: (1)当f(x, y)在闭区域D上连续时, f(x, y) 在D上的二重积 分必定存在。以后总假定f(x, y)在D上连续。
高等数学
二重积分的概念与性质
一、二重积分的定义
定义 设f(x, y)是有界闭区域D上的有界函数.将D任意分成 n个小区域Δσ1,Δσ2,…,Δσn,小区域Δσi的面积仍记为
n
Δσi.在Δσi内任取一点(ξi, ηi),作和式 f (i ,i )i 。 i 1
如果当各小区域中的最大直径λ趋于零时,若此和式的极限
f x, yd f x, yd f x, yd
D
D1
D2
性质4 若在D上,f(x, y)=1,σ为区域D的面积,则
1d = d
D
D
性质5 若在D上,f(x, y) σ(x, y),则有不等式
f x, yd x, yd
D
D
特殊地,由于-|f(x, y)| f(x, y) |-f(x, y)| , 又有
二、二重积分的性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
V Vi. i 1
Z=f (x,y)
y D
i
(2)近似代替
在每个 中任取一点
则
z
Vi f (i ,i )i (i 1, 2,, n)
Z=f (x,y)
以 为底,f (i ,i )
为高的小平顶柱体体积
y
(3)求和
x
D i (i ,i )
将n个小平顶柱体的体积加起来,可得曲顶柱体体积
i 1
f (i ,i ) i
还有许多的实际问题,如平面薄片的质量等,其求解
过程都是采取分割、近似代替、求和、取极限的方法,
最后归结为求上述和式的极限.
7.1.2 二重积分的定义
定义7-1 设 f (x, y) 在有界闭区域 D上有界,将区域D
任意分成 n 个小闭区域
其中
既表示第i个小闭区域,也表示它的面积. 任取一点
(2)当连续函数 f (x, y) 0时,二重积分
的几何意义:以D为底,以曲面 z f (x, y)为顶的曲顶
柱体的体积.
当f (x, y) 0时,
等于曲顶柱体体积的负值.
首页 上页 下页 返回 结束
当 f (x, y) 在D的一部分区域上是正的,在其它部分区域
是负的,则二重积分等于xOy面上方的曲顶柱体体积减 去xOy面下方曲顶柱体体积所得的差值.
D
D
性质2
(7-3)
性质3 二重积分对积分区域D具有可加性:
f (x, y)d f (x, y) d f (x, y) d (7-4)
D
D1
D2
性质4
为D 的面积, 则
1d d
(7-5)
D
D
性质5 若在D上 f (x, y) g (x, y) ,则
M
y
y
P
D
首页 上页 下页 返回 结束
解法: 类似定积分解决问题的思想:
“分割, 近似代替, 求和, 取极限”
步骤如下:
z
(1)分割 用任意曲线网分D为 n个小闭区域
1, 2, , n
以它们为底把曲顶柱体分为 n 个 x
小曲顶柱体,体积记为 V(i i 1,2,, n),
则有
在闭区
域D上连续, 为D 的面积 , 则至少存在一点
使
f (x, y)d f (, )
(7-8)
D
二重积分的中值定理在几何上表示
在D内至少有一点 ( ,) ,使得曲顶柱体的体积等于以
D为底,以 f ( ,) 为高的平顶柱体的体积.
7.1 二重积分的概念及性 质
曲顶柱体的体积 二重积分的定义 二重积分的性质
首页 上页 下页 返回 结束
7.1.1 曲顶柱体的体积
给定曲顶柱体:
z
底: xoy 面上的闭区域 D
顶: 连续曲面
侧面:以 D 的边界为准线 , x
母线平行于 z 轴的柱面 x 求其体积.
平顶柱体体积=底(x, y) d g (x, y) d (7-6)
D
D
特别地, 若 f (x, y) 0,则 f (x, y) d 0
D
性质6 设
D 的面积为 , 则有
m f (x, y) d M
D
(7-7)
首页 上页 下页 返回 结束
性质7 (二重积分的中值定理)
x, y 称为积分变量
积分区域 被积函数 面积元素
利用二重积分定义,上面所求曲顶柱体的体积就
是函数 f (x, y) 在闭区域D上的二重积分,即
V f (x, y)d
D
注意 (1)设D为有界闭区域,有
f (x, y) 在D上可积
f (x, y)在D上有界
f (x, y) 在D上连续
f (x, y) 在D上可积
(3)在直角坐标系中,如果用平行坐标轴的直线来划
分区域D , 这时
因此面积元素 也常
记作 dxdy, 二重积分记作
yy
f (x, y) dxd y.
D
o
O
D
x
x
首页 上页 下页 返回 结束
7.1.3 二重积分的性质
性质1 k f (x, y)d k f (x, y) d ( k 为常数() 7-2)
的近似值,即 n f (i ,i ) i i 1
首页 上页 下页 返回 结束
(4)取极限
各个小闭区域的面积越小,体积V 的近似值就越精确.
记 m1aixn {i }
即 i max P1P2 P1,P2 i
的直径,
则有
n
V
lim 0
作和式
如果极限
可积, 并称此极限为
f (x, y)d,
D
,记 m1aixn {i}.
存在,则称 f (x, y) 在D上 f (x, y) 在D上的 二重积分,记作
即
n
D
f (x, y)d
lim 0
i 1
f (i ,i ) i
(7-1)
积分和
被积表达式