线性变换的矩阵表示式

合集下载

第五节线性变换的矩阵表示式

第五节线性变换的矩阵表示式

= T[(1, ···, n)P] =T[(1, ···, n)]P
= (1, ···, n)AP = (1, ···, n)P-1AP ,
因为 1, ···, n 线性无关, 所以
B = P-1AP .
证毕
这个定理表明 B 与 A 相似, 且两个基之间的
过渡矩阵 P 就是相似变换矩阵.
由关系式 (1) , 可见 与 T() 在基 1 , ···, n 下的坐标分别为
x1



x2
xn
,
x1
T
( )

A
x2
xn

,
即按坐标表示, 有
T() = A .
二、举例
例 12 在 P[ x]3 中, 取基
在 Vn 中取定一个基 1 , 2 , ···, n , 如果这个基
在变换 T 下的象(用这个基线性表示)为
T (1) a111 a212 an1n ,
T
(2 )

a121 a222

an 2 n
,
T (n ) a1n1 a2n2 annn ,

a2n
ann

,
那么, A 就称为线性变换 T 在基 1 , 2 , ···,
n 下的矩阵.
显然, 矩阵 A 由基的像 T(1), T(2), ···, T(n)
唯一确定.
如果给出一个矩阵 A 作为线性变换 T 在基
1 , 2 , ···, n 下的矩阵, 也就是给出了这个基在
0 1
0 0 .
0 0 0

(2)
TTTiijj

矩阵的变换和应用

矩阵的变换和应用

矩阵的变换和应用矩阵是线性代数中重要的概念之一,它具有广泛的应用范围。

在数学、工程、科学等领域,矩阵用于描述和处理各种数据和问题。

本文将重点介绍矩阵的变换和应用,包括线性变换、旋转变换、缩放变换和平移变换等。

一、线性变换矩阵的线性变换是矩阵在向量空间中的应用之一。

线性变换是指将一个向量或一个向量组通过矩阵的相乘操作进行转换的过程。

在二维空间中,线性变换可以表示为如下形式:\[\begin{pmatrix}x' \\y'\end{pmatrix}=\begin{pmatrix}a &b \\c & d\end{pmatrix}\begin{pmatrix}x \\y\end{pmatrix}\]其中,矩阵的第一行表示了原始向量在x轴上的线性变换,第二行表示了原始向量在y轴上的线性变换。

通过对矩阵进行相乘运算,可以得到经过线性变换后的新向量坐标。

二、旋转变换旋转变换是矩阵在几何学中的重要应用之一。

通过矩阵的乘法运算,可以将一个向量绕着原点进行旋转。

在二维空间中,旋转变换可以表示为如下形式:\[\begin{pmatrix}x' \\y'\end{pmatrix}=\begin{pmatrix}\cos\theta & -\sin\theta \\\sin\theta & \cos\theta\end{pmatrix}\begin{pmatrix}x \\y\end{pmatrix}\]其中,θ表示旋转的角度。

通过对原始向量和旋转矩阵进行相乘运算,可以得到经过旋转变换后的新向量坐标。

三、缩放变换缩放变换是矩阵在图形学和几何学中的常见应用之一。

通过矩阵的乘法运算,可以将一个向量在x轴和y轴上进行不同比例的缩放。

在二维空间中,缩放变换可以表示为如下形式:\[\begin{pmatrix}x' \\y'\end{pmatrix}=s_x & 0 \\0 & s_y\end{pmatrix}\begin{pmatrix}x \\y\end{pmatrix}\]其中,s_x表示x轴的缩放比例,s_y表示y轴的缩放比例。

线性变换的矩阵表示与相似矩阵

线性变换的矩阵表示与相似矩阵

线性变换的矩阵表示与相似矩阵线性代数是数学中一个重要的分支,研究向量空间和线性变换的性质以及相应的代数结构。

在线性代数中,线性变换是其中一个重要的概念,它可以用矩阵表示,并且与相似矩阵有着密切的关系。

一、线性变换的矩阵表示线性变换是指保持向量空间中的线性结构不变的变换。

在二维或三维向量空间中,线性变换可以用一个矩阵来表示。

以二维向量空间为例,设有向量v=(v₁, v₂),线性变换v将其映射为向量v=(v₁, v₂),则可以使用矩阵v来表示v的线性变换,即:[v₁] [v₁₁, v₁₂] [v₁][v₂] = [v₂₁, v₂₂] × [v₂]其中,矩阵v=[v₁₁, v₁₂; v₂₁, v₂₂]表示线性变换v的矩阵表示。

这种矩阵表示的好处在于可以简化线性变换的计算,尤其是在高维向量空间中。

二、相似矩阵的定义相似矩阵是指具有相同特征值的矩阵。

设有两个v×v矩阵v和v,如果存在一个可逆矩阵v使得v=v⁻¹vv成立,则称矩阵v和v相似,矩阵v称为相似变换矩阵。

三、线性变换的矩阵表示与相似矩阵的联系线性变换的矩阵表示与相似矩阵有着密切的联系。

以二维向量空间为例,设有一个线性变换v的矩阵表示为v=[v₁₁, v₁₂; v₂₁, v₂₂],我们希望找到一个矩阵v使得v=v⁻¹vv中的矩阵v与v相似。

根据相似矩阵的定义,我们可以得到v=v⁻¹vv的形式。

对于二维向量空间来说,v为一个2×2的可逆矩阵,假设v=[v₁₁, v₁₂; v₂₁, v₂₂],则v可表示为:[v₁₁, v₁₂][v₂₁, v₂₂]若要使得v=v⁻¹vv成立,只需令v⁻¹=[v₁₁, v₁₂; v₂₁, v₂₂]即可。

则v的形式为:[v₁₁, v₁₂][v₂₁, v₂₂]通过矩阵相乘的运算可以得到:[v₁₁, v₁₂] [v₁₁, v₁₂][v₂₁, v₂₂] × [v₂₁, v₂₂]由此可以得到v=[v₁₁, v₁₂; v₂₁, v₂₂]与v=[v₁₁, v₁₂;v₂₁, v₂₂]相似的条件为:[v₁₁, v₁₂] [v₁₁, v₁₂][v₂₁, v₂₂] = [v₂₁, v₂₂]也就是说,要使得两个矩阵相似,只需保证其对应位置上的元素相等即可。

线性变换的相关知识点总结

线性变换的相关知识点总结

线性变换的相关知识点总结一、线性变换的定义线性变换是指一个向量空间V到另一个向量空间W的一个函数T,满足以下两条性质:1.加法性质:对于向量空间V中的任意两个向量x和y,有T(x+y)=T(x)+T(y)。

2.数乘性质:对于向量空间V中的任意向量x和标量a,有T(ax)=aT(x)。

根据以上的定义,我们可以得出线性变换的几个重要性质:1. 线性变换保持向量空间中的原点不变;2. 线性变换保持向量空间中的直线和平面不变;3. 线性变换将线性相关的向量映射为线性相关的向量;4. 线性变换将线性无关的向量映射为线性无关的向量。

二、线性变换的矩阵表示在研究线性变换时,我们通常会使用矩阵来表示线性变换。

设V和W分别是n维和m维向量空间,选择它们的一组基{v1, v2, ..., vn}和{w1, w2, ..., wm}。

线性变换T可以用一个m×n的矩阵A来表示,假设向量x在基{v1, v2, ..., vn}下的坐标为[x],向量T(x)在基{w1, w2, ..., wm}下的坐标为[T(x)],则有[T(x)]=[A][x]。

由此可见,矩阵A中的每一列都是T(vi)在基{w1, w2, ..., wm}下的坐标,而T(vi)可以写成基{w1, w2, ..., wm}的线性组合,所以矩阵A的列向量就是线性变换T对基{v1, v2, ..., vn}下的坐标系的映射。

另外,矩阵A的行空间也是线性变换T的像空间,而零空间是T的核空间。

线性变换的基本性质在矩阵表示下也可以得到进一步的解释,例如线性变换的复合、逆变换等都可以在矩阵表示下进行研究。

因此,矩阵表示是研究线性变换的重要工具。

三、特征值和特征向量特征值和特征向量是线性代数中的一个非常重要的概念,它们在研究线性变换的性质时有非常重要的应用。

设T是一个n维向量空间V上的线性变换,那么存在一个标量λ和一个非零向量v,使得Tv=λv。

这里的λ就是T的特征值,v就是T的特征向量。

线性变换的矩阵表示

线性变换的矩阵表示
对任意的Vn, 设 x i i , 则有
n
T ( ) T ( x i i ) x i T ( i )
n
n
i 1
x1 x (T ( 1 ), T ( 2 ), , T ( n )) 2 xn
i 1
i 1
x1 x ( 1 , 2 , , n ) A 2 , xn 即 x1 x1 x x T [( 1 , 2 , , n ) 2 ] ( 1 , 2 , , n ) A 2 , xn xn 上式唯一地确定了一个变换T, 并且, 所确定的变 换T是以A为矩阵的线性变换. 反之, 以A为矩阵的线性变换T由上式唯一确定. 结论: 在Vn中取定一个基后, 由线性变换T可唯一 地确定一个矩阵A; 反之, 由一个矩阵A也可唯一地确 定一个线性变换T.
0 1 0 0 0 0 2 0 . A 0 0 0 n 1 0 0 0 0 例3: 在R3中, T表示将向量投影到xoy平面的线性 变换, 即 T ( xi yj zk ) xi yj , (1) 取基为i , j , . k , 求T的矩阵 (2) 取基为 i , j , i j k , 求T的矩阵. 1 0 0 i 0 , j 1 , k 0 . 其中 0 0 1 1 0 0 解(1): Ti i 即 T ( i , j , k ) ( i , j , k ) 0 1 0 . j, Tj 0 0 0 T k 0
三、线性变换在不同基下的矩阵
上面的例子表明: 同一个线性变换在不同的基下 的矩阵不同. 那么, 这些矩阵之间有什么关系呢?

线性变换的矩阵表示

线性变换的矩阵表示

线性变换的矩阵表示线性变换是数学中的重要概念,它在许多领域都有广泛应用。

线性变换可以通过矩阵表示,这种表示形式方便计算和讨论线性变换的性质。

本文将介绍线性变换的矩阵表示以及相关概念和性质。

1. 线性变换的定义线性变换是指满足以下两个条件的映射:(1) 对于任意向量u和v以及实数a和b,线性变换T满足T(a*u +b*v) = a*T(u) + b*T(v)。

(2) 线性变换T对于向量的加法和数乘运算封闭,即T(u + v) = T(u) + T(v),T(k*u) = k*T(u)(k为实数)。

2. 矩阵表示的意义线性变换的矩阵表示可以将线性变换转化为矩阵的乘法运算,从而方便计算和分析线性变换的性质。

对于任意线性变换T,可以找到一个矩阵A,使得对于任意向量u,有T(u) = A*u。

矩阵A被称为线性变换T的矩阵表示。

3. 线性变换的矩阵表示方法线性变换的矩阵表示可以通过以下步骤得到:(1) 选择标准基下的基向量,分别记作e1, e2, ..., en。

(2) 对于每个基向量ei,计算线性变换T(ei)的坐标表示,得到矩阵A的第i列。

(3) 将所有计算得到的列向量排列起来,得到矩阵A。

4. 矩阵表示的性质线性变换的矩阵表示具有以下性质:(1) 线性变换的合成对应于矩阵的乘法。

对于线性变换T1和T2,它们的矩阵表示分别为A和B,则它们的合成线性变换对应的矩阵表示为A*B。

(2) 线性变换的逆对应于矩阵的逆。

若线性变换T存在逆变换,它们的矩阵表示分别为A和A^-1,则逆变换对应的矩阵表示为A^-1。

(3) 线性变换的像空间和核空间可以通过矩阵表示进行刻画。

像空间对应于矩阵的列空间,而核空间对应于矩阵的零空间。

5. 矩阵表示的例子考虑一个二维平面上的旋转变换,将向量绕原点逆时针旋转θ度。

选择标准基下的基向量为e1 = (1, 0)和e2 = (0, 1)。

对于基向量e1,旋转变换后的坐标表示为cosθ*e1 - sinθ*e2。

线性变换与矩阵的关系

线性变换与矩阵的关系

线性变换与矩阵的关系线性代数是数学中的一个分支学科,它是整个数学的一个基础。

线性代数的核心概念是线性变换和矩阵。

线性变换可以被视为线性代数中最基本的概念,矩阵则是线性变换最常用的工具。

本文将探讨线性变换与矩阵之间的关系。

一、线性变换的定义线性变换是一种把向量空间V中的每一个元素映射到向量空间W中的一种映射。

如果对于每个向量x和每个标量c,我们都有T(x + cy) = T(x) + cT(y),则此映射为线性变换。

其中,T为线性变换的运算符,y是向量空间V中的元素。

线性变换的一个重要性质是它保持线性运算。

这意味着,对于向量空间V中的任何两个向量x和y,以及标量c,都有:T(x + y) = T(x) + T(y)T(cx) = cT(x)这些性质使得线性变换在数学中扮演着重要的角色。

二、矩阵的定义矩阵是一个有限的、有序的、由数构成的矩形表。

我们通常用大写字母表示矩阵,例如A。

矩阵可以用来表示线性变换,而线性变换可以用矩阵来描述。

我们可以将矩阵视为一种数字表示,它包含了一个线性变换所以可能的操作。

三、线性变换和矩阵的关系线性变换和矩阵是密不可分的。

每个线性变换都可以表示为一个矩阵,而每个矩阵也可以表示为一个线性变换。

矩阵的第i行和第j列上的元素用a(i,j)表示。

我们可以用以下公式将一个向量空间中的向量转换成矩阵的形式:⎡ a(1,1) a(1,2) ... a(1,n)⎤⎢ a(2,1) a(2,2) ... a(2,n)⎥A = ⎢ ... ... ... ... ... ⎥⎢ a(n,1) a(n,2) ... a(n,n)⎥⎣⎦对于一个给定的矩阵A,我们可以将它作为线性变换T的矩阵表示。

这个线性变换对一个向量进行变换的方式为 T(x) = Ax,其中x为向量,Ax表示矩阵A和向量x的乘积。

矩阵乘法的目的是用一个矩阵描述一种线性变换。

在矩阵乘法中,行列式中每个元素都表示了一种特定的线性变换。

线性变换的矩阵表示式

线性变换的矩阵表示式

§5 线性变换的矩阵表示式上节例10中,关系式()T x Ax =()n x R ∈ 简单明了地表示出中的一个线性变换. 我们自然希望中任何一个线性变换都能用这样的关系式来表示. 为此,考虑到n n Ae Ae ==αα,,11 (n e e ,,1 为单位坐标向量),即()n i Ae i i ,,2,1 ==α,可见如果线性变换有关系式()Ax x T =,那么矩阵应以()i e T 为列向量. 反之,如果一贯个线性变换使()()n i e T i i ,,2,1 ==α,那么必有关系式()11122(),,()n n n T x T e e x T x e x e x e ==+++⎡⎤⎣⎦1122()()()n n x T e x T e x T e =+++()11(),,()(,,)n n T e T e x x Ax αα===总之,中任何线性变换,都能用关系式()()nR x Ax x T ∈=表示,其中1((),,())n A T e T e =.把上面的讨论推广到一般的线性空间,我们有定义7 设是线性空间中的线性变换,在中取定一个基n αα,,1 ,如果这个基在变换下的象(用这个基线性表示)为11112121212122221122(),(),(),n n n n n n n nn n T a a a T a a a T a a a αααααααααααα=+++⎧⎪=+++⎪⎨⎪⎪=+++⎩记()()()()n n T T T αααα,,,,11 = ,上式可表示为11(,,)(,,)n n T A αααα=, (5)其中1111n n nn a a A a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,那么,就称为线性变换在基n αα,,1 下的矩阵 .显然,矩阵由基的象()()n T T αα,,1 唯一确定.如果给出一个矩阵作为线性变换在基n αα,,1 下的矩阵,也就是给出了这个基在变换下的象,那么根据变换保持线性关系的特性,我们来推导变换必须满足的关系式:中的任意元素记为in i i x αα∑==1,有 11()()n n i i i i i i T x x T ααα====∑∑121((),,())n n x x T T x αα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭121(,,)n n x x A x αα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 即112211(,,)(,,)n n n n x x x x T A x x αααα⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪⎢⎥ ⎪ ⎪=⎢⎥ ⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ (6)这个关系式唯一地确定一个变换,可以验证所确定的变换是以为矩阵的线性变换.总之。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§5 线性变换的矩阵表示式
上节例10中,关系式
()T x Ax
=
()n x R ∈
简单明了地表示出n R 中的一个线性变换. 我们自然希望n
R 中任何一个线性变换都能用这样的关系式来表示. 为此,考虑到n n Ae Ae ==αα,,11 (n e e ,,1 为单位坐标向量),即
()n i Ae i i ,,2,1 ==α, 可见如果线性变换T 有关系式()Ax x T =,那么矩阵A 应以()i e T 为列向量. 反之,如果一贯个线性变换T 使()()n i e T i i ,,2,1 ==α,那么T 必有关系式
()11122(),
,()
n n n T x T e e x T x e x e x e ==++
+⎡⎤⎣⎦
1122()()()
n n x T e x T e x T e =++
+
()11(),,()(,,)n n T e T e x x Ax
αα===
总之,n R 中任何线性变换T ,都能用关系式
()()n R x Ax x T ∈=表示,其中1((),,())n A T e T e =.
把上面的讨论推广到一般的线性空间,我们有
定义7 设T 是线性空间n V 中的线性变换,在n V 中取定一个基
n αα,,1 ,如果这个基在变换T 下的象(用这个基线性表示)为
11112121212122221122(),(),(),
n n n n n n n nn n T a a a T a a a T a a a αααααααααααα=++
+⎧⎪=+++⎪⎨⎪⎪
=++
+⎩
记()()()()n n T T T αααα,,,,11 = ,上式可表示为
11(,,)(,,)n n T A αααα=, (5) 其中
1111
n n nn a a A a a ⎛⎫ ⎪=
⎪ ⎪⎝⎭,
那么,A 就称为线性变换T 在基n αα,,1 下的矩阵 .
显然,矩阵A 由基的象()()n T T αα,,1 唯一确定.
如果给出一个矩阵A 作为线性变换T 在基n αα,,1 下的矩阵,也就是给出了这个基在变换T 下的象,那么根据变换T 保持线性关系的特性,我们来推导变换T 必须满足的关系式:
n
V 中的任意元素记为
i
n
i i x αα∑==1,有
1
1
()()
n
n
i i i i i i T x x T ααα====∑∑
121((),
,())n n x x
T T x αα⎛⎫
⎪ ⎪
= ⎪ ⎪⎝⎭
121(,
,)n n x x A x αα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,

112211(,,)(,,)n n n n x x x x T A x x αααα⎡⎤
⎛⎫⎛⎫
⎢⎥ ⎪ ⎪⎢⎥ ⎪ ⎪=⎢⎥ ⎪ ⎪⎢⎥ ⎪ ⎪

⎥⎝⎭⎝⎭⎣⎦
(6)
这个关系式唯一地确定一个变换T ,可以验证所确定的变换T 是以A 为矩阵的线性变换.总之。

以A 为矩阵的线性变换T 由关系式(6)唯一确定.
定义7和上面一段讨论表明,在n V 中取定一个基以后,由线性变换
T 可唯一确定一个矩阵A ,由一个矩阵A 也可唯一地确定一个线性变换T ,这样,在线性变换与矩阵之间就有一一对应的关系.
由关系式(6),可见α与()αT 在基n αα,,1 下的坐标分别为
112
2,(),
n n x x x x T A x x αα⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 即按坐标表示,有 ()ααA T = .
例11 在3][x P 中,取基 321234,,,1,
p x p x p x p ====
求微分运算D 的矩阵 .

21123421234312341123430300,
20020,10001,00000,
Dp x p p p p Dp x p p p p Dp p p p p Dp p p p p ⎧==+++⎪
==+++⎪⎨
==+++⎪⎪
==+++⎩
所以D 在这组基下的矩阵为
0000300002000
010A ⎛⎫

⎪= ⎪

⎝⎭
.
例12 在3
R 中,T 表示将向量投
影到xOy 平面的线性变换,即
()T xi yj zk xi yj ++=+ ,
(1) 取基为k j i ,,,求T 的矩阵;
(2) 取基为k j i j i ++==,,βα,求T 的矩阵 . 解 (1)
,,0,Ti i Tj j Tk =⎧⎪
=⎨⎪=⎩

100(,,)(,,)010000T i j k i j k ⎛⎫ ⎪
= ⎪
⎪⎝⎭ (2)
,
,T i T j T i j ααββγαβ==⎧⎪
==⎨⎪=+=+⎩

()()101,,,,011000T αβγαβγ⎛⎫ ⎪
= ⎪
⎪⎝⎭
由上例可见,同一个线性变换在不同的基下有不同的矩阵,一般地,我们有
定理 3 设线性空间n V 中取定两个基:n n ββαα,,,,,11 ,由基
n αα,,1 到基n ββ,,1 的过度矩阵为P ,n V 中的线性变换T 在这两个基下
的矩阵依次为A 和B ,那么
1
B p Ap -=. 证 按定理的假设,有
11(,,)(,,),n n p p ββαα=可逆;

11(,,)(,,)n n T A αααα=,
11(,,)(,,)n n T B ββββ=, 于是
[]
111(,,)(,
,)(,,)n n n B T T p ββββαα== []11(,
,)(,
,)n n T p Ap
αααα==
11(,
,)n p Ap
ββ-=,
因为n ββ,,1 线性无关,所以
1B p Ap
-=
证毕
这定理表明B 与A 相似,且两个基之间的过度矩阵P 就是相似变换矩阵.
例13 设2V 中的线性变换T 在基
21,αα下的矩阵为
11122122a
a A a a ⎛⎫= ⎪
⎝⎭,
求T 在基21,αα下的矩阵.
解 :
211201(,)(,),
10αααα⎛⎫
= ⎪⎝⎭

0110P ⎛⎫= ⎪
⎝⎭ , 求得
101,
10P -⎛⎫
= ⎪⎝⎭
于是T 在基21,αα下的矩阵为
1112212222212122111212
11010101101010a a a a a a B a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
定义8 线性变换T 的象空间()n V T 的维数,称为线性变换T 的秩. 显然,若A 是T 的矩阵,则T 的秩就是()A R .,若T 的秩r ,则T 的核r
S 的维数为n r -.
“线
性变换与矩阵的一一对应”
的最佳匹配结果
(注:本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待你的好评与关注!)。

相关文档
最新文档