现代材料分析测试技术

合集下载

材料现代分析测试方法-rietveld

材料现代分析测试方法-rietveld

材料A的Rietveld分析
通过Rietveld分析确定了材料 A的晶格参数和晶体结构。对定量 分析,确定了多相材料的不 同相的含量。
应力分析中的Rietveld 分析
利用Rietveld分析和细致的晶 格参数测定,研究了材料内 部应力分布的变化。
材料现代分析测试方法rietveld
欢迎来到本次演讲,我们将介绍材料现代分析测试方法中的一种重要技术— —Rietveld分析。让我们一起探索这个引人入胜的领域。
什么是Rietveld分析
Rietveld分析是一种用于材料结构精确测定和相对定量分析的X射线衍射技术。它通过模拟实验光 谱与理论衍射谱之间的匹配,获得材料中的晶格参数、晶体结构和物相信息。
高分子材料
用于聚合物晶体结构、配位化合物和疏水 材料的分析。
Rietveld分析的优势和局限性
优势
• 高精度的结构测定 • 广泛适用于不同材料和结构类型 • 非破坏性分析
局限性
• 对样品质量和衍射数据的要求较高 • 无法解析非晶态或非结晶态样品 • 需要对实验结果进行仔细解释
Rietveld分析的实例和案例研究
总结和展望
Rietveld分析作为一种先进的材料现代分析测试方法,在材料科学和许多其他领域具有广泛应用前 景。希望本次演讲能为大家提供了对Rietveld分析的全面了解和启发。
3 模型优化
4 结构分析
通过最小二乘法将实验和计算的衍射谱 拟合。
从拟合结果中提取材料的晶格参数和晶 体结构信息。
Rietveld分析的应用领域
材料科学
用于研究材料的晶体结构、相变以及材料 表征。
地球科学
用于研究岩石、矿石和地质样品的晶体结 构和相组成。
药物化学

现代材料测试技术测试方法1精选全文

现代材料测试技术测试方法1精选全文

4.1差热分析
4.1.1差热分析的基本原理
2、差热分析的基本理论
ΔH=KS
差热曲线的峰谷面积S和 反应热效应△H成正比, 反应热效应越大,峰谷 面积越大。
具有相同热效应的反应, 传热系数K越小,峰谷面 积越大,灵敏度越高。
4.1差热分析
4.1.2差热分析曲线
1、DTA曲线的特征 DTA曲线是将试样和参比物置于
2、DTA曲线的温度测定及标定:外推法(反应起点、转变点、 终点) 外延起始温度——表示反应的起始温度
3、DTA曲线的影响因素 差热分析是一种热动态技术,在测试过程中体系的温度不断变 化,引起物质热性能变化。因此,许多因素都可影响DTA曲 线的基线、峰形和温度。归纳起来,影响DTA曲线的主要因 素有下列几方面:
用相同质量的试样和升温速度对不同粒度的胆矾进 行研究(如图)。说明颗粒大小影响反应产物的扩散 速度,过大的颗粒和过小的颗粒都可能导致反应温 度改变,相邻峰谷合并,分辨率下降。
4.1差热分析
4.1.2差热分析曲线
试样用量的多少与颗粒大 小对DTA曲线有着类似的 影响,试样用量多,放热 效应大,峰顶温度滞后, 容易掩盖邻近小峰谷,特 别是对在反应过程中有气 体放出的热分解反应。
(1)仪器方面的因素:包括加热炉的形状和尺寸,坩埚材料及大 小,热电偶的位置等。
(2)试样因素:包括试样的热容量、热导率和试样的纯度、结晶 度或离子取代以及试样的颗粒度、用量及装填密度等。
(3)实验条件:包括加热速度、气氛、压力和量程、纸速等。
4.1差热分析
4.1.2差热分析曲线
(1)热容和热导率的变化: 试样的热容和热导率的变化会引起 差热曲线的基线变化,一台性能良 好的差热仪的基线应是一条水平直 线,但试样差热曲线的基线在反应 的前后往往不会停留在同一水平上, 这是由于试样在反应前后热容或热 导率变化的缘故。

现代材料分析方法

现代材料分析方法

现代材料分析方法现代材料分析方法包括物理、化学、电子、光学、表面和结构等多个方面的技术手段,具有快速、准确、非破坏性的特点。

下面将针对常用的材料分析技术进行详细介绍。

一、物理分析方法1. 微观结构分析:包括金相显微镜分析、扫描电镜、透射电镜等技术。

通过观察材料的显微结构、晶粒尺寸、相组成等参数,揭示材料的内在性质和形貌特征。

2. 热分析:如热重分析、差示扫描量热仪等。

利用材料在高温下的重量、热容变化,分析材料的热行为和热稳定性。

3. 电学性能测试:包括电导率、介电常数、介电损耗等测试,用于了解材料的电导性和电介质性能。

4. 磁性测试:如霍尔效应测试、磁滞回线测试等,用于研究材料的磁性行为和磁性特性。

二、化学分析方法1. 光谱分析:包括紫外可见光谱、红外光谱、核磁共振等。

通过检测材料对不同波长的光谱的吸收、散射等现象,分析材料的组分和结构。

2. 质谱分析:如质子质谱、电喷雾质谱等。

通过挥发、电离和分离等过程,分析材料中不同元素的存在及其相对含量。

3. 电化学分析:包括电化学阻抗谱、循环伏安法等。

通过测量材料在电场作用下的电流、电压响应,研究材料的电化学性能和反应过程。

4. 色谱分析:如气相色谱、高效液相色谱等。

利用材料在色谱柱上的分离和吸附效果,分析材料中组分的种类、含量和分布。

三、电子分析方法1. 扫描电子显微镜(SEM):通过照射电子束,利用电子和物质的相互作用,获得样品表面的详细形貌和成分信息。

2. 透射电子显微镜(TEM):通过透射电子束,观察材料的细观结构,揭示原子尺度的微观细节。

3. 能谱分析:如能量色散X射线谱(EDX)、电子能量损失谱(EELS)等。

通过分析材料与电子束相互作用时,产生的X射线和能量损失,来确定样品的元素组成和化学状态。

四、光学分析方法1. X射线衍射:通过物质对入射的X射线束的衍射现象,分析材料的晶体结构和晶格参数。

2. 红外光谱:通过对材料在红外辐射下的吸收和散射特性进行分析,确定材料的分子结构和化学键。

材料现代分析测试方法

材料现代分析测试方法

材料现代分析测试方法材料的现代分析测试方法是为了研究材料的组成、结构、性质以及相应的测试手段。

通过分析测试方法,我们可以深入了解材料的特点,进而为材料的研发、优化和应用提供有效的数据支持。

下面将介绍几种常用的材料现代分析测试方法。

一、质谱分析法质谱分析法是一种通过测量样品中不同质荷比(m/z)的离子的相对丰度来确定样品组成和结构的分析方法。

质谱分析法适用于分析有机物和无机物。

其优点是能快速分析出物质组成,提供准确的质量数据,对于结构复杂的样品仍能有效分析。

二、核磁共振(NMR)谱学核磁共振谱学是一种通过测量样品中核自旋与磁场相互作用的现象来分析样品结构和组成的方法。

不同核的共振频率和强度可以提供关于样品分子结构和组成的信息。

核磁共振谱学适用于有机物和无机物的分析。

由于从核磁共振谱图中可以获得丰富的结构信息,所以核磁共振谱学被广泛应用于有机化学、药物研发和材料科学等领域。

三、红外光谱学红外光谱学是一种通过测量样品对不同波长的红外辐射的吸收情况来分析样品结构和组成的方法。

不同官能团在红外区域会有特定的吸收峰位,因此红外光谱能提供有关样品中化学键和官能团的信息。

红外光谱学适用于有机物和无机物的分析。

它具有非破坏性、快速、易于操作等特点,在化学、生物和材料科学领域得到了广泛应用。

四、X射线衍射(XRD)X射线衍射是一种通过测量样品对入射X射线的衍射现象来研究样品结构和晶体结构的方法。

不同物质的晶格结构具有不同的衍射图样,通过分析衍射图样可以获得样品的晶体结构信息。

X射线衍射适用于分析有晶体结构的材料,如金属、陶瓷、单晶等。

它能提供关于晶体结构、晶粒尺寸和应力等信息,被广泛应用于材料科学、地质学和能源领域。

五、扫描电子显微镜(SEM)和透射电子显微镜(TEM)扫描电子显微镜和透射电子显微镜是一种通过聚焦电子束对材料进行观察和分析的方法。

扫描电子显微镜主要用于获得材料的表面形貌、颗粒分布和成分分析。

透射电子显微镜则能提供材料的内部结构和界面微观结构的信息。

材料分析测试技术

材料分析测试技术

材料分析测试技术第一篇:材料分析测试技术一、引言材料分析测试技术是现代材料科学领域中非常重要的一部分,涵盖了材料结构、材料性能以及材料组成等方面的研究。

通过对材料进行分析测试,能够为材料的合理设计、精细加工、可靠使用以及环境保护等方面提供科学依据。

二、主要内容1.材料结构分析测试:此项测试主要是通过对材料的原位形貌、拉伸或压缩变形过程以及破坏机理的观察和分析,来揭示材料微结构的特征和结构与性能之间的关系。

2.材料物理性质测试:此项测试主要包括材料的热学性能、电学性能、光学性能等各个方面。

其中,热学性能测试包括热膨胀系数、热导率、比热等;电学性能测试包括电导率、介电常数、磁导率等;光学性能测试包括透过率、反射率、吸收率等。

3.材料化学成分测试:此项测试主要是通过对材料中各种元素化学量的测定,来确定材料的组成及其含量范围。

其中,常用的测试方法有荧光光谱法、原子吸收光谱法、质谱法等。

4.材料力学性能测试:此项测试主要是通过对材料的受力响应、变形、破坏等参数的测定,来评估材料的强度、韧性、脆性、疲劳性等力学特性。

其中,常用的测试方法有拉伸试验、压缩试验、硬度测试等。

三、测试技术优化为了提高材料分析测试的准确性和可靠性,需要注重以下几个方面:1.测试设备的选用和改进:从设备的选型、使用、维护等多方面考虑,提高设备的测试精度、可靠性和稳定性,并为特定的测试任务提供更优化的测试方法。

2.测试方法的优化:对测试方法的有效性、精度和可重复性进行评估和提高,并根据实际测试情况不断优化测试方法。

3.测试样品的处理:要注重对测试样品的处理和制备,避免样品的变形、损伤、干扰等因素对测试结果的影响。

4.测试人员的素质提高:对测试人员必须进行专业知识的培训和技能的提高,使其具备独立进行测试的能力和科学分析测试结果的能力。

四、应用前景目前,材料分析测试技术已经广泛应用于材料科学领域中的各个方面,如材料设计、加工制造、环境保护、矿产资源开发等。

现代材料分析测试技术材料分析测试技术

现代材料分析测试技术材料分析测试技术

(1-7)
如果电子速度较低,其质量和静止质量相近,即m≈m0.如果加速电压很高,使电子速度极高,则必须经过相对论校正,此时:
式中 c——光速
表1-长在390-760nm之间,从计算出的电子波波长可以看出,在常用的100-200kV加速电压下,电子波的波长要比可见光小5个数量级。
01
1.1 引言
光学显微镜的分辨率
由于光波的波动性,使得由透镜各部分折射到像平面上的像点及其周围区域的光波发生相互干涉作用,产生衍射效应。一个理想的物点,经过透镜成像时,由于衍射效应,在像平面上形成的不再是一个像点,而是一个具有一定尺寸的中央亮斑和周围明暗相间的圆环所构成的Airy斑。如图1-1所示。 测量结果表明Airy斑的强度大约84%集中在中心亮斑上,其余分布在周围的亮环上。由于周围亮环的强度比较低,一般肉眼不易分辨,只能看到中心亮斑。因此通常以Airy斑的第一暗环的半径来衡量其大小。根据衍射理论推导,点光源通过透镜产生的Airy斑半径R0的表达式为:
据说日本电子已经制造了带球差校正器的透射电镜,但一个球差校正器跟一台场发射透射电镜的价格差不多。
式中 Cs表示球差系数。
No Fringe Un-corrected Corrected Si (111)Σ3 grain boundary TEM Cs Corrector
β-Si3N4
2nm
2200FS + STEM Cs corrector
电子波波长
根据德布罗意(de Broglie)的观点,运动的电子除了具有粒子性外,还具有波动性。这一点上和可见光相似。电子波的波长取决于电子运动的速度和质量,即 (1-4) 式中,h为普郎克常数:h=6.626×10-34J.s;m为电子质量;v为电子运动速度,它和加速电压U之间存在如下关系: 即 (1-5) 式中e为电子所带电荷,e=1.6×10-19C。 将(1-5)式和(1-4)式整理得: (1-6)

现代材料测试技术

现代材料测试技术
随着新材料和新工艺的不断涌现,对材料测试技术的精度和稳定性提出了更高的要求。为解决这一问题,需要不断改 进测试方法和设备,提高测试技术的可靠性和准确性。
测试标准的统一和规范
目前,材料测试领域存在多种不同的测试标准和规范,这给测试结果的可比性和互操作性带来了挑战。为推动测试标 准的统一和规范,需要加强国际合作和交流,共同制定国际通用的测试标准和规范。
应用
广泛应用于生物学、医学、 材料科学等领域,用于观 察细胞、组织、材料等微 观结构。
优缺点
具有高分辨率、操作简便 等优点,但对样品制备要 求高,且对非金属材料成 像效果较差。
激光共聚焦显微镜技术
原理
利用激光作为光源,通过共聚焦 技术实现三维成像,可获得样品
的表面形貌和内部结构信息。应用适用于生物医学、材料科学等领 域,用于研究细胞、组织、材料
对操作环境要求较高。
04
电子显微分析技术
透射电子显微镜技术
原理
利用高能电子束穿透样品,通过电磁透镜成像,观察样品的内部 结构。
应用
用于研究材料的微观形貌、晶体结构、化学成分及相变等。
特点
具有高分辨率、高放大倍数和广泛的应用范围。
扫描电子显微镜技术
1 2
原理
利用聚焦电子束在样品表面扫描,通过检测样品 发射的次级电子等信号成像,观察样品表面形貌。
能测试。
非破坏性测试
在不破坏材料的情况下,利用物理、 化学等方法对材料进行测试。例如, X射线衍射、超声波检测、电子显 微镜观察等。
在线测试
在材料加工、使用过程中进行实时 测试,以监控材料性能和质量。例 如,自动化生产线上的无损检测、 实时监测等。
材料测试技术的原理和特点
原理

材料现代分析测试技术-光谱分析

材料现代分析测试技术-光谱分析
弧焰中心a的温度最高,边缘b的温度较低。由弧焰中心 发射出来的辐射光,必须通过整个弧焰才能射出,由于
弧层边缘的温度较低,因而这里处于基态的同类原子较多。 这些低能态的同类原子能吸收高能态原子发射出来的光而 产生吸收光谱。原子在高温时被激发,发射某一波长的谱 线,而处于低温状态的同类原子又能吸收这一波长的辐射, 这种现象称为自吸现象。
光电直读光谱仪
在原子发射光谱法中, 一般多采用摄谱法(spectrography)。
摄谱法是用感光板记录光谱。将光谱感光板置于摄谱仪 焦面上,接受被分析试样的光谱作用而感光,再经过 显影、定影等过程后,制得光谱底片,其上有许多黑 度不同的光谱线。然后用影谱仪观察谱线位置及大致 强度,进行光谱定性及半定量分析。
(6)谱线的自吸与自蚀
三、谱线的自吸与自蚀(self-absorption and selfreversal of spectral lines)
在实际工作中,发射光谱是通过物质的蒸发、激发、 迁移和射出弧层而得到的。首先,物质在光源中蒸发形成 气体,由于运动粒子发生相互碰撞和激发,使气体中产生
大量的分子、原子、离子、电子等粒子,这种电离的气 体在宏观上是中性的,称为等离子体。在一般光源中, 是在弧焰中产生的,弧焰具有一定的厚度,如下图:
4. Atomic fluorimetry
气态自由原子吸收特征波长的辐射后,原子的外层 电子 从基态或低能态跃迁到较高能态,约经10-8 s,又跃
迁至基态或低能态,同时发射出与原激发波长相同(共 振荧光)或不同的辐射(非共振荧光—直跃线荧光、阶 跃线荧光、阶跃激发荧光、敏化荧光等),称为原子荧 光。波长在紫外和可见光区。在与激发光源成一定角度 (通常为90)的方向测量荧光的强度,可以进行定量分 析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
衍射花样的特征有两方面来定义: 1)衍射线在空间的分布规律(衍射方向)
它由晶胞的大小、形状、和位向所决定。 2)衍射线的强度
它取决于原子的品种和它在晶胞中的位置。
整理ppt
11
布拉格方程
当波程差等于波长 整数倍时,就会发 生相长干涉,即 nλ= 2dSin
n称为反射级,可为 1,2,3……
晶体的X射线衍射
整理ppt
12
布拉格方程
布拉格方程: 2dSin =nλ 其中:d 是面间距(晶格常数)
λ是入射X射线的波长 是入射线或反射线与反射面的夹角, 称为掠射角,由于它等于入射线与衍射线夹 角的一半,故又称为半衍射角,把2 称为衍射 角
整理ppt
13
布拉格方程讨论
产生衍射的条件: 根据布拉格方程,sin 不能大于1,因此:
晶面指数确定方法:取晶面在各晶轴上的 截距系数p、q、r的倒数1/p、1/q、1/r,化 简成互质的整数比h :k :l,用(hkl)表 示这组晶面。
整理ppt
6
晶面指数确定方法
1 : 1 :1 h:k:l pqr
整理ppt
7
晶向与晶向指数
在晶体点阵中,连接两个结点的直线所确定的方 向称为晶向。晶向用晶向指数[uvw]表示。确定晶 向指数的方法:
整理ppt
9
衍射的概念
衍射的概念: 衍射是由于存在某种位相关系的两个或两
个以上的波相互叠加所引起的一种物理现 象。
这些波必须是相干波源(同方向、同频率、 位相差恒定)
整理ppt
10
X射线的衍射
X射线在晶体中的衍射现象,实质上是大量的 原子散射波互相干涉的结果,每种晶体所产生的 衍射花样都反映出晶体内部的原子分布规律。
面间距为dHKL的晶面并不一定是晶体中 的原子面,而是为了简化布拉格方程所引
入的反射面,我们把这样的反射面称为干
涉面。干涉面的面指数称为干涉指数。
整理ppt
15
布拉格方程的应用
(1) X射线光谱分析
已知晶格常数d 及亮斑的位置,可求x射线的波长。
(2) X射线晶体结构分析
根据图样及 ,可研究晶格结构和x射线本身的性质。
整理ppt
2
晶体的基本ቤተ መጻሕፍቲ ባይዱ质
1 均一性:指晶体内部在其任一部位都具有相同性质的特性。如密度、 化学性质。
2 异向性:指晶体的性质因观测方向的不同而表现出差异的特性。如硬 度,解理。
3 对称性:指晶体中的相同部分或性质,能够在不同方向或位置上有规 律地重复出现。
4 自限性:指晶体能自发地形成封闭的凸几何多面体外形的特点。 5 最小内能:指的是在相同热力学条件下,晶体与同种物质的非晶态相
整理ppt
16
整理ppt
17
比较,其内能最小,因而晶体的结构也是最稳定的。 6 稳定性:由于晶体有最小的内能,因而结晶状态是一个相对稳定的状
态。 7 固定的熔点
整理ppt
3
空间点阵
为了探讨千变万化的晶体结构的一些共 同规律,可以把晶体结构进行几何抽象。 抽象的方法是把晶体结构中各周期重复单 位中的等同点抽象成一个仅代表重心位置 而不代表组成、重量和大小的几何点,这 些几何点称为结点或点阵点。
对衍射而言,n的最小值为1,所以在任 何可观测的衍射角下,产生衍射的条件为 <2d。
整理ppt
14
反射级数与干涉级数
将布拉格方程中的n隐含在d中得到简化 的布拉格方程: 2dHKLSin =nλ
把(hkl)晶面的n级反射看成为与(hkl) 晶面平行、面间距为(nh,nk,nl) 的晶面的一 级反射。
X射线衍射晶体学
整理ppt
1
晶体和非晶体
晶体是质点(原子、离子或分子)在空间按一 定规律周期性重复排列构成的固体物质。
非晶体是指组成物质的分子(或原子、离子) 不呈空间有规则周期性排列的固体。它没有一定 规则的外形,如玻璃、松香、石蜡等。它的物理 性质在各个方向上是相同的,叫“各向同性”。 它没有固定的熔点。所以有人把非晶体叫做“过 冷液体”或“流动性很小的液体”。
整理ppt
4
晶胞
结点在空间周期性排列的几何图形,就称为晶 体结构的空间点阵。连接结点中相邻结点而成的 单位平行六面体,称为晶胞。
选取晶胞的条件: ①能同时反映出空间点阵的周期性和对称性; ②在满足①的条件下有尽可能多的直角; ③在满①和②的条件下,体积最小。
整理ppt
5
晶面指数
描述晶面或一族互相平行面网在空间位置 的符号(hkl)称为晶面符号或密勒符号。 其中hkl称为晶面指数或晶面指标。
(1)在一簇互相平行的结点直线中引出过坐标 原点的直线;
(2)在该直线上选距原点最近的结点,量出它 的结点坐标;
(3)将三个坐标用方括号括起来,即为该结点 直线的晶向指数。
晶向为空间向量,向量坐标为(u,v,w)。
整理ppt
8
晶带
在晶体结构中平行某一 晶向的所有晶面均属于同 一个晶带,这些晶面叫做 晶带面。晶带面的交线相 互平行,其中通过坐标原 点的那条平行直线叫做晶 带轴,用[uvw] 表示。晶带 轴的指数即为该晶带的指 数。同一晶带中包含有各 种不同晶面族的晶面。
相关文档
最新文档