幂的运算性质培优训练

合集下载

八年级上册——幂的运算(培优难题教案)(K12教育文档)

八年级上册——幂的运算(培优难题教案)(K12教育文档)

八年级上册——幂的运算(培优难题教案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级上册——幂的运算(培优难题教案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级上册——幂的运算(培优难题教案)(word版可编辑修改)的全部内容。

幂的运算考点·方法·破译幂的运算性质(其中m 、n 、p 都为正整数):1.m n m n a a a +⋅=2.()m n mn a a =3.()n n n ab a b =4.m n m n a a a -÷=5.011(0)(0)p p a a a a a-=≠=≠, 经典·考题·赏析【例1】下列算式,正确的个数是( )①3412a a a ⋅= ②5510a a a += ③336()a a = ④236(2)6a a -- A .0个B .1个C .2个D .3个【变式题组】 01。

计算212()()n n c c +⋅的结果是( )A .42n c +B .44n c +C .22n c +D .34n c +02.计算100101(2)(2)-+-=_______________03.如果3915()n m a b b a b ⋅=,则m =_________,n =____________04.计算2323()()()n n x y x y +-⋅-=_______________【例2】若2n+12448n +=,求n 的值。

【变式题组】01.若24m =,216n =,求22m n +的值02.若35n x =,求代数式2332(2)4()n n x x -+的值03.若3m x =,6n x =,则32m n x -=________.04.已知33m a =,32n b =,求233242()()m n m n m n a b a b a b +-⋅⋅⋅的值05.已知232122192m m ++-=,求m 的值【例3】552a =-,443b =-,335c =-,226d =-,那么a 、b 、c 、d 的大小关系为( )A .a >b 〉c >dB .a 〉b 〉d >cC .b 〉a >c 〉dD .a >d >b 〉c【变式题组】01.已知3181a =,4127b =,619c =,则a 、b 、c 的大小关系是( )A .a >b 〉cB .a >c 〉bC .a <b <cD .b >c >a 02.已知503a =,404b =,305c =,则a 、b 、c 的大小关系为( )A .a <b 〈cB .c 〈a <bC .c <b 〈aD .b <c <a【例4】求满足200300(1)3x ->的x 的最小正整数【变式题组】01.求满足2003005n <的最大整数值n.02.如果x 、y 是正整数,且2232x y ⋅=,求满足条件的整数x 、y03.求满足22(1)1n n n +--=的整数n 。

幂的运算总结性练习题

幂的运算总结性练习题

幂的运算总结性练习题幂运算是数学中常见且重要的运算方法之一。

它的原理是将一个数字乘以自己多次,通过指数来表示运算的次数。

在实际应用中,幂运算常用于表示面积、体积、复利计算等方面。

为了巩固对幂运算的理解和运用,下面给出一些幂运算的练习题,帮助读者巩固相关知识点。

题目一:计算幂1. 计算 2^3。

2. 计算 4^2。

3. 计算 5^0。

4. 计算 6^1。

5. 计算 3^4。

题目二:幂的运算规则1. 计算 (2^3)^2。

2. 计算 2^(3+2)。

3. 计算 (4^2)^(1/2)。

4. 计算 2^(3-2)。

5. 计算 (6^3)^(-1)。

题目三:幂运算的性质1. 把一个数的幂的幂记作数的幂的幂的幂,简化表达式2^(2^3)。

2. 计算 2^0+2^1+2^2+2^3+2^4。

题目四:应用题1. 小明每年年末将10000元存入银行,年利率为5%。

存款连续存5年,计算五年后小明的本息合计。

2. 若一个正方形的边长为a,计算正方形的面积。

3. 若一个圆的半径为r,计算圆的周长。

4. 若一个正方体的边长为a,计算正方体的体积。

5. 若一个长方体的长、宽、高分别为a、b、c,计算长方体的体积。

以上练习题旨在通过计算幂的运算,帮助读者熟悉幂运算的基本概念、运算规则和性质,并将其应用于实际问题中。

通过多次练习,读者将对幂运算有更深入的理解和熟练的运用。

建议读者在完成练习题后,自行核对答案,找出自己的错误,并尝试录入实际数值进行计算,提高运算的准确性和速度。

(完整版)七年级幂的运算提高练习题

(完整版)七年级幂的运算提高练习题

第8章 幂的运算 提高练习题一、 系统梳理知识:幂的运算:1、同底数幂的乘法 ; 2、幂的乘方 ; 3、积的乘方;4、同底数幂的除法:(1)零指数幂 ;(2)负整数指数幂。

请你用字母表示以上运算法则。

你认为本章的学习中应该注意哪些问题?二、例题精选:例1. 已知453)5(31+=++n nx x x ,求x 的值.例2. 若1+2+3+…+n =a ,求代数式))(())()(123221n n n n n xy y x y x y x y x --- (的值.例3. 已知2x +5y -3=0,求432x y⋅的值.例4. 已知742521052m n ⋅⋅=⋅,求m 、n .例5. 已知y x yx xa a a a +==+求,25,5的值.例6. 若n m n nm x x x ++==求,2,162的值.例7. 比较下列一组数的大小.(1)61413192781,, (2)9999909911,99X Y == .例8. 如果2200920080(0),12a a a a a +=≠++求的值.例9.已知723921=-+n n ,求n 的值.练习:1.计算9910022)()(-+-所得的结果是( ) A.-2 B.2 C.-992 D.992 2.当n 是正整数时,下列等式成立的有( )(1)22)(m ma a= (2)m m a a )(22= (3)22)(m m a a -= (4)m m a a )(22-=A.4个 B.3个 C.2个 D.1个 3.下列等式中正确的个数是( )①5510a a a += ②7310()()a a a -⋅-= ③4520()a a a -⋅-= ④556222+=A .0个B .1个C .2个D .3个 4.下列运算正确的是( )A .xy y x 532=+B .36329)3(y x y x -=- C .442232)21(4y x xy y x -=-⋅ D .333)(y x y x -=- 5.a 与b 互为相反数且都不为0,n 为正整数,则下列各组中的两个数互为相反数的一组是( ) A .n a 与nb B .2na 与2nb C .21n a-与21n b- D .21n a-与21n b--6.计算:2332)()(a a -+-= . 7.若52=m,62=n ,则n m 22+= .8.如果等式2(21)1a a +-=,则a 的值为 。

第8章 幂的运算 苏科版数学七年级下册全章复习与巩固培优篇(含答案)

第8章 幂的运算 苏科版数学七年级下册全章复习与巩固培优篇(含答案)

专题8.13 幂的运算(全章复习与巩固)(培优篇)(专项练习)一、单选题1.计算的结果是()A.B.C.D.2.下列整式的运算中,正确的是()A.B.C.D.3.已知,,那么下列关于,,之间满足的等量关系正确的是()A.B.C.D.4.下列运算中,错误的个数是()(1);(2);(3);(4)A.1个B.2个C.3个D.4个5.已知,则a、b、c的大小关系为( )A.B.C.D.6.方程的整数解的个数是( )A.2B.3C.4D.57.计算的结果是( )A.B.1C.﹣D.﹣28.下列运算正确的是()A.B.C.D.9.已知,,则的值是()A.B.C.D.10.小马虎在下面的计算中只做对了一道题,他做对的题目是()A.B.C.D.二、填空题11.已知:,,则________.12.若,,则的值为________.13.计算:______.14.若,,则______.15.如果,那么x的值为_____.16.若x,y均为实数,,则_______.17.若,则代数式xy与之间关系是_______.18.已知,用含x,y的代数式表示为___________;三、解答题19.计算:(1) (2)20.计算:(1) ; (2) ;(3) .21.(1)已知,,求的值;(2)已知,求的值.22.按要求解答下列各小题.(1) 已知,,求的值;(2) 如果,求的值;(3) 已知,求m的值.23.已知,,(其中为任意实数)(1)____,____;(2)先化简再求值:,其中;(3)若,请判断是否为同底数幂的乘法运算,试说明理由.24.阅读材料:定义:如果,那么称a为n的劳格数,记为,例如:,那么称2是100的劳格数,记为.填空:根据劳格数的定义,在算式中,______相当于定义中的n,所以______;直接写出______;探究:某数学研究小组探究劳格数有哪些运算性质,以下是他们的探究过程若a、b、m、n均为正数,且,,根据劳格数的定义:,______,∵∴,这个算式中,______相当于定义中的a,______相当于定义中的n,∴______,即,请你把数学研究小组探究过程补全拓展:根据上面的推理,你认为:______.参考答案1.C【分析】根据幂的乘方与积的乘方法则计算即可.解:.故选:C.【点拨】本题考查了幂的乘方与积的乘方,属于基础题,掌握基本的运算法则是关键.2.D【分析】分别根据同底数幂的乘法,积的乘方与幂的乘方以合并同类项法则判断出各选项即可.解:A.,故此选项不合题意;B.,故此选项不合题意;C.与不是同类项,无法合并,故此选项不合题意;D.,故此选项符合题意.故选:D.【点拨】本题主要考查了同底数幂的乘法,积的乘方与幂的乘方以合并同类项,熟练掌握同底数幂的乘法,积的乘方与幂的乘方以合并同类项法则是解答本题的关键.3.A【分析】由可得:,则可得到,即可得到结论;解:∵,,,∴,,∴,∴;故选A.【点拨】本题主要考查了同底数幂的乘法,解答的关键是对同底数幂的乘法的运算法则的掌握与灵活运用.4.D【分析】利用同底数幂的乘法运算法则,合并同类项的法则对各式进行运算,即可得出结果.解:(1),故(1)错误;(2),故(2)错误;(3),故(3)错误;(4),故(4)错误,综上所述,错误的个数为4个,故选:D.【点拨】本题主要考查同底数幂的乘法运算法则、合并同类项运算等知识,解题的关键是对相应的运算法则的掌握.5.B【分析】逆运用幂的乘方法则,把a、b、c都写成一个数的8次方的形式,比较底数得结论.解:解: ,故选:B.【点拨】本题考查了整式的运算,掌握幂的乘方法则是解决本题的关键.6.C【分析】方程的右边是1,有三种可能,需要分类讨论.第1种可能:指数为0,底数不为0;第2种可能:底数为1;第3种可能:底数为,指数为偶数.解:由题意可得,当且,解得:;当,解得:或;当且是偶数,解得:;综上所述:x的值有4个.故选:C【点拨】本题考查了:(a是不为0的任意数)以及1的任何次方都等于1.容易遗漏第3种可能情况,需特别注意.7.A【分析】根据有理数的乘方法则以及积的乘方法则进行计算即可.解:====故选:A.【点拨】本题考查的是有理数的乘方以及积的乘方运算,熟知有理数乘方的法则是解题的关键.8.A【分析】根据同底数幂的乘法、除法法则、幂的乘方法则、合并同类项法则逐项判断即可.解:,故A计算正确,符合题意;,故B计算错误,不符合题意;,故C计算错误,不符合题意;和不是同类项,不能进行加减计算,故D计算错误,不符合题意.故选A.【点拨】本题主要考查幂的乘方、同底数幂的乘法和除法运算法则、合并同类项等知识点.掌握各运算法则是解题关键.9.C【分析】先根据幂的乘方的逆运算求出,,再根据同底数幂的乘除法逆运算求出,即可得到答案.解:∵,,∴,,∴,∴,∴,故选C.【点拨】本题主要考查了幂的乘方的逆运算,同底数幂乘除法的逆运算,熟知,是解题的关键.10.D【分析】根据同底数幂的乘法、科学记数法、积的乘方运算及负整数指数幂运算逐项计算即可得到答案.解:A、,计算错误,不符合题意;B、,6后是7个0而不是8个0,计算错误,不符合题意;C、,计算错误,不符合题意;D、根据负整数指数幂的定义及计算可知,计算正确,符合题意;故选:D.【点拨】本题考查整式混合运算及有理数混合运算,涉及同底数幂的乘法、科学记数法、积的乘方运算及负整数指数幂运算,熟练掌握相关运算法则是解决问题的关键.11.##【分析】根据同底数幂的乘法以及幂的乘方的逆运算计算即可得出答案.解:∵,,故答案为:.【点拨】本题考查的是幂的运算公式,需要熟练掌握四个幂的运算公式及其逆运算.12.54【分析】根据同底数幂的乘法和幂的乘方逆运算计算即可;解:∵,,∴;故答案是54.【点拨】本题主要考查了同底数幂的乘法和幂的乘方,准确计算是解题的关键.13.49【分析】根据和(a≠0,p是正整数)的运算法则进行计算即可得出答案.解:=1÷=49,故答案为:49.【点拨】本题考查了负整数指数幂和零指数幂,熟练运用零指数幂,负整数指数幂运算法则是解决本题的关键.14.##0.5【分析】用同底数幂相乘和幂的乘方的逆用进行计算即可.解:∵,∴,,∵,∴,∴,故答案为:.【点拨】本题考查同底数幂相乘和幂的乘方,解本题的关键是掌握幂的乘方和同底数幂相乘运算法则,并灵活运用.15.【分析】利用同底数幂的除法算出等式左边的值,再解一元一次方程即可.解:∵,∴原方程可变形为.∴.解得:.经检验:是原方程的解.故答案为:.【点拨】本题考查同底数幂的除法,以及解一元一次方程.熟练掌握同底数幂的除法法则,解一元一次方程的步骤,是解题的关键.16.1【分析】根据同底数幂的乘法和幂的乘方法则得出,再根据积的乘方法则得出,得出,从而求出答案.解:∵,∴;又∵,∴∴,∴【点拨】本题主要考查同底数幂的乘法、幂的乘方与积的乘方,根据运算法则将式子进行相应的换算是解题的关键.17.【分析】由条件可得可得而从而可得答案.解:∵,∴∴而∴∴故答案为:【点拨】本题考查的是同底数幂的乘法运算,积的乘方的逆运算,掌握“利用幂的运算与逆运算进行变形”是解本题的关键.18.【分析】根据有理数乘方的逆运算、幂的乘方的逆用、积的乘方与幂的乘方法则即可得.解:,,故答案为:.【点拨】本题考查了有理数乘方的逆运算、幂的乘方的逆用、积的乘方与幂的乘方,熟练掌握各运算法则是解题关键.19.(1) (2)【分析】(1)先计算积的乘方,再计算整式的除法;(2)先乘方再加减,注意负号的作用.(1)解:(2)【点拨】本题考查整式的乘除法,涉及积的乘方、同底数幂的除法、零指数幂、负整指数幂的计算等知识,是基础考点,掌握相关知识是解题关键.20.(1)0(2) (3)【分析】(1)根据同底数幂的乘法和幂的乘方以及合并同类项的计算法则求解即可;(2)根据幂的乘方和同底数幂的除法计算法则求解即可;(3)根据同底数幂的乘除法计算法则求解即可.(1)解:;(2)解:;(3)解:.【点拨】本题主要考查了幂的混合运算,熟知相关计算法则是解题的关键.21.(1)24;(2)【分析】(1)由同底数幂的乘法法则的逆运算和负整数指数幂的定义来计算求解;(2)配方得出,求出,,再代入计算即可.解:(1)∵,,∴===24;(2)将变形为,∴,,∴==.【点拨】本题考查了配方法的应用、偶次方的非负性质、负整数指数幂的定义,同底数幂的乘法法则的逆运算,熟练掌握相关知识是解决问题的关键.22.(1)4(2) (3)【分析】(1)根据同底数幂相除的运算法则即可得到答案;(2)将变成底数为3的幂,根据同底数幂相乘的法则即可得到答案;(3)将8,变为底数为2的幂,再根据同底数幂相乘及相除的法则即可得到答案.(1)解:∵,,∴;(2)解:由题意可得,,∵,∴;(3)解:由题意可得,,∴,解得.【点拨】本题考查同底数幂乘除的法则:同底数幂相乘底数不变指数相加,同底数幂相除底数不变指数相减.23.(1),;(2),4;(3)是,理由见分析.【分析】(1)根据幂的乘方运算的逆运算即可求解;(2)先通过条件求出的值,再代入化简结果即可;(3)根据幂的乘方运算法则得出,进一步得出两个底数相等即可.解:(1),,即,解得:;由,得:,,;(2)===,由,,利用同底数幂相除得:,即:,得:,将,代入化简结果得:原式=;(3)由,得:,由,得:,,即:,得:,整理可得:,的底数相同,即为同底数幂的乘法运算.【点拨】本题考查了整式的混合运算、积的乘方和幂的乘方,掌握它们的运算法则是解题关键.24.1000,3;﹣8;b,a+b,,a+b;-.【分析】根据新定义法则进行运算即可.解:∵如果,那么称a为n的劳格数,记为,∴,那么称3是1000的劳格数,记为.∴在算式中,1000相当于定义中的n,所以3;﹣8;∵,∴,∵,,∴=pq,∴这个算式中,pq相当于定义中的a,相当于定义中的n,∴=+,即,设,,∴,,∵,∴=a-b=-,即-.故答案为:1000,3;﹣8;b,a+b,,a+b;-.【点拨】此题考查了新定义问题,用到了幂的相关运算,解题的关键是理解新定义及其运算法则.。

人教版八年级上册14.1.2幂的运算培优例题和练习(无答案)

人教版八年级上册14.1.2幂的运算培优例题和练习(无答案)

幂的运算幂的运算性质(其中m 、n 、p 都为正整数):1.m n m n a a a +⋅=2.()m n mn a a =3.()n n n ab a b =4.m n m n a a a -÷=5.011(0)(0)p pa a a a a -=≠=≠, 【例1】下列算式,正确的个数是( )①3412a a a ⋅= ②5510a a a += ③336()a a = ④236(2)6a a -- A .0个 B .1个 C .2个 D .3个【解法指导】①同底数幂相乘,底数不变,指数相加,结果应为7a ;②合并同类项,结果为52a ;③幂的乘方,底数不变,指数相乘,即过位9a ;④积的乘方,等于积的每一个因式分别乘方,结果为68a -,故选A .【变式题组】01.计算212()()n n c c +⋅的结果是( )A .42n c +B .44n c +C .22n c +D .34n c + 02.计算100101(2)(2)-+-=_______________ 03.如果3915()n m a b b a b ⋅=,则m =_________,n =____________04.计算2323()()()n n x y x y +-⋅-=_______________【例2】若2n+12448n +=,求n 的值.【解法指导】将等式的左右两边变形为同底数幂的形式.解:∵2n+12448n +=,∴2n+122248n +=,22222232n n n ⋅+=⋅,243232n ⋅=⋅,∴24,2n n ==【变式题组】01.若24m =,216n =,求22m n +的值02.若35n x =,求代数式2332(2)4()n n x x -+的值03.若3m x =,6n x =,则32m n x -=________.04.已知33m a=,32n b =,求233242()()m n m n m n a b a b a b +-⋅⋅⋅的值【例3】(希望杯)552a =-,443b =-,335c =-,226d =-,那么a 、b 、c 、d 的大小关系为( ) A .a >b >c >d B .a >b >d >cC .b >a >c >dD .a >d >b >c 【解法指导】逆用幂的乘方公式()mn m n aa =,将a 、b 、c 、d 变为指数相同的幂的形式. 解:∵55511112(2)32a =-=-=-,44411113(3)81b =-=-=-,33311115(5)125c =-=-=-,22211116(6)36d =-=-=-,∴a >d >b >c.故选D .【变式题组】01.已知3181a =,4127b =,619c =,则a 、b 、c 的大小关系是() A .a >b >c B .a >c >b C .a <b <c D .b >c >a02.已知503a =,404b =,305c =,则a 、b 、c 的大小关系为()A .a <b <cB .c <a <bC .c <b <aD .b <c <a【例4】求满足200300(1)3x ->的x 的最小正整数【解法指导】将左右两边变成指数相同的幂的形式解:∵200300(1)3x -> ∴21003100[(1)](3)x ->∴2(1)27x -> ∵x 为正整数∴1x ->1x >∴x 的最小正整数为7【变式题组】01.求满足2003005n <的最大整数值n.02.如果x 、y 是正整数,且2232x y ⋅=,求满足条件的整数x 、y03.求满足22(1)1n n n +--=的整数n.演练巩固 反馈提高01.下列运算正确的是( )A .3412x x ⋅=B .623(6)(2)3x x x -÷-=C .23a a a -=-D .236(2)6x x -=-02.下列各式计算正确的是() A .23523a a a += B .235(2)6b b = C .2(3)()3xy xy xy ÷= D .56236x x x ⋅=03.当n 为正整数时,221()n x +-等于() A .42n x +- B .41n x +-C .41n x +D .42n x + 04.计算3224()a a a +⋅的结果为() A . 92a B .62a C .68a a +D .12a 05.下列命题中,正确的个数是( )(1)m 为正奇数时,一定有等式(4)4m m -=-(2)等式(2)2m m-=,无论m 为何值时都不成立 (3)三个等式:236326236()()[))]a a a a a a -=-=--=,,((都不成立; (4)两个等式:3434(2)2m m m m x y xy -=-,3434(2)2n n n n x y x y -=-都不一定成立. A .1个 B .2个C .3个D .4个06.下列各题中,计算正确的是( ) A .322366()()m n m n --= B .322331818[()()]m n m n --=-C .2222398()()m n mn m n --=-D .232399()()m n mn m n --=-07.已知22|2||238|0y x x x y x y y x -+-+=⋅-⋅,则=_______________08.32125a a x x x x +⋅⋅=,则关于y 的方程ay =a +14的解是________________09.在555511(2)(3)()()23----,,,中,最大的数是_________________10.一块长方形草坪的长是1m a-米,宽是3m a +米(m 、n 均为大于1的正整数),则该长方形草坪的面积是______________2米.11.计算 ⑴2001100021()(2)34-⋅=_______________ 20012002200311312.计算⑴122n n y yy y +⋅-⋅⑵4344()()2()()x x x x x x x -+⋅-+⋅---⋅⑶4224223322()()()()()()x x x x x x x x +-⋅--⋅-⋅-⑷232223()7()()()x y x x y -+⋅-⋅-13.若2(32)|235|0a b a b ++++=,化简:2322231()()()a a ax y bxy x y z a ⋅-⋅14.已知n 是正整数,216n x =,求322211()()1616n n x x -的值15.已知a 、b 、c 为自然数,且227371998a b c ⋅⋅=,求2010()a b c --的值培优01.若1122222n n n n x y +--=+=+,,其中n 为整数,则x 与y 的数量关系为() A .x =4y B .y =4xC .x =12yD .y =12x 02.化简4322(2)2(2)n n n ++-得( ) A .1128n +- B .12n +- C .78 D .7403.化简2231424m m m ++--=__________________ 04.15825⨯的位数为_____________________05.2001200220033713⨯⨯所得积的末位数字是____________________06.若3436x y ==,,求2927x y x y --+的值07.是否存在整数a 、b 、c 满足91016()()()28915a b c ⋅⋅=?若存在,求出a 、b 、c 的值;若不存在,说明理由.08.如果整数x 、y 、z 满足10981()()()271615256x y z ⋅⋅=,求()x y x y z ---的值09.已知311n m +能被10整除,求证:42311n m +++也能被10整除10.设a 、b 、c 、d 都是非零自然数,且543219a b d c a ==-=,c ,,求d b -的值11.已知k 、x 、y 、z 是整数,且k >x >y >z ,若k 、x 、y 、z 满足方程16(2222)330k x y z +++=,求k 的值.09.已知311n m +能被10整除,求证:42311n m +++也能被10整除10.设a 、b 、c 、d 都是非零自然数,且543219a b d c a ==-=,c ,,求d b -的值11.已知k 、x 、y 、z 是整数,且k >x >y >z ,若k 、x 、y 、z 满足方程16(2222)330k x y z +++=,求k 的值.。

第八章《幂的运算》培优训练卷(含答案)

第八章《幂的运算》培优训练卷(含答案)

第八章《幂的运算》培优训练卷班级___________ 姓名___________ 学号____________ 分数____________一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.(2021·重庆八中九年级阶段练习)计算52a a ⋅的结果是( ) A .52aB .62aC .53aD .63a2.(2022·全国·七年级)下列选项中,是同底数幂的是( ) A .()2a -与2aB .2a -与()3a -C .5x -与5xD .()3-a b 与()3b a -3.(2022·重庆涪陵·八年级期末)下列计算正确的是( ) A .2323a a a +=B .623a a a ÷=C .33(2)6a a =D .()1432a a =4.(2021·重庆市万盛经济技术开发区溱州中学八年级阶段练习)若a m =4,a n =2,则a m+3n的值是( )A .8B .12C .24D .325.(2022·福建省福州第十六中学八年级期末)近年来,新冠肺炎给人类带来了巨大灾难,经科学家研究,冠状病毒多数为球形或近似球形,其直径约为0.00000011米,其中数据0.00000011用科学记数法表示正确的是( ) A .81.110-⨯B .71.110-⨯C .61.110-⨯D .60.1110-⨯6.(2021·北京·清华附中八年级期中)已知781a =,927b =,139c =,则a ,b ,c 的大小关系是( ) A .a b c >>B .a c b >>C .a b c <<D .b c a >>二、填空题(本大题共10小题,每小题2分,共20分) 7.(2022·四川南充·八年级期末)计算22-的结果是______.8.(2022·天津市第七中学八年级期末)计算:36x x ⋅=________________.9.(2021·黑龙江·哈尔滨德强学校八年级阶段练习)计算:202120212552⎛⎫⎛⎫-⨯= ⎪⎪⎝⎭⎝⎭_______.10.(2021·辽宁兴城·八年级期中)已知a m =4,a n =6,则a m +n =______. 11.(2022·全国·七年级)若0(3)1x -=,则x 的取值范围是________.12.(2021·浙江嘉兴·七年级期末)若9a ∙27b ÷81c =9,则2c ﹣a ﹣32b 的值为____.13.(2022·全国·七年级)若n 是正整数,且210n a =,则3222()8()n n a a --=__________.14.(2021·湖南永兴·八年级阶段练习)11()6-,0(2)-,2(3)-这三个数按从小到大的顺序排列,正确的排列是____(用<号连接)15.(2021·山东·济南育英中学七年级期中)我们定义:三角形=a b •a c ,五角星=z •(x m •y n ),若=4,则的值=_____.16.(2022·吉林吉林·八年级期末)如图,王老师把家里的WIFI 密码设置成了数学问题.吴同学来王老师家做客,看到WIFI 图片,思索了一会儿,输入密码,顺利地连接到了王老师家里的网络,那么她输入的密码是________.账号:Mr .Wang 's house王134wang1314x yz ⎢⎥⊕=⎣⎦ 浩15220hao31520xy x z ⎢⎥⊕⋅=⎣⎦ 阳()()422244x y y z ⎢⎥⊕⋅=⎢⎥⎣⎦密码三、解答题(本大题共11小题,17,18每小题7分,19,20,21,22,23,24,25每小题8分,26,27每小题9分,共88分.解答应写出文字说明、证明过程或演算步骤) 17.(2021·吉林临江·八年级期末)计算:2222342()()a b a b a ----⋅÷18.(2021·广东高州·七年级期末)计算: (1)﹣12021+(13)﹣2+(π﹣3.14)0;(2)(6a 3b 2﹣4a 2b )÷2ab .19.(2021·全国·八年级课时练习)已知3m a =,5n a =,求: (1)m n a -的值; (2)32m n a -的值.20.(2022·全国·七年级)声音的强弱用分贝表示,通常人们讲话时的声音是50分贝,它表示声音的强度是105,汽车的声音是100分贝,表示声音的强度是1010,喷气式飞机的声音是150分贝,求:(1)汽车声音的强度是人声音的强度的多少倍? (2)喷气式飞机声音的强度是汽车声音的强度的多少倍?21.(2021·河南·八年级阶段练习)规定*33a b a b =⨯,求: (1)求1*2;(2)若2*(1)81x +=,求x 的值.22.(2021·福建永春·八年级期中)规定两个非零数a ,b 之间的一种新运算,如果a m =b ,那么a ∧b =m .例如:因为52=25,所以5∧25=2;因为50=1,所以5∧1=0. (1)根据上述规定填空:2∧32= ;﹣3∧81= . (2)在运算时,按以上规定请说明等式8∧9+8∧10=8∧90成立.23.(2021·山西·太原市外国语学校七年级阶段练习)若a *b =c ,则a c =b .例如:若2*8=3,则23=8(1)根据上述规定,若5*1125=x ,则x = . (2)记5*2=a ,5*6=b ,5*18=c ,求a ,b ,c 之间的数量关系.24.(2020·江苏江都·七年级期中)如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.25.(2019·福建·莆田第十五中学七年级阶段练习)我们已经学习过“乘方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果b a =N (a >0,a ≠1,N >0),则b 叫做以a 为底N 的对数,记作log Na =b ,例如:因为35=125,所以1255log =3;因为211=121,所以12111log =2(1)填空:66log = ,16log = ; (2)如果(2)2log m -=3,求m 的值.26.(2021·河北邢台·八年级阶段练习)按要求解答下列各小题. (1)已知10m =6,10n =2,求10m ﹣n 的值; (2)如果a +3b =4,求3a ×27b 的值; (3)已知8×2m ÷16m =215,求m 的值.27.(2021·江苏连云港·七年级期中)阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=① 则22021202222222S =++⋅⋅⋅++② ②-①得,2022221S S S -==-. 请仿照小明的方法解决以下问题: (1)220222++⋅⋅⋅+=______; (2)求2501111222+++⋅⋅⋅++=______;(3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.(2021·重庆八中九年级阶段练习)计算52a a ⋅的结果是( ) A .52a B .62a C .53a D .63a【答案】B 【分析】根据同底数幂的乘法运算法则求解即可. 【详解】 解:562=2a a a ⋅. 故选:B . 【点睛】此题考查了同底数幂的乘法,解题的关键是熟练掌握同底数幂的乘法运算法则.同底数幂相乘,底数不变,指数相加.2.(2022·全国·七年级)下列选项中,是同底数幂的是( ) A .()2a -与2a B .2a -与()3a -C .5x -与5xD .()3-a b 与()3b a -【答案】C 【分析】根据各项的底数分析判断即可 【详解】A . ()2a -的底数是a -,2a 的底数是a ,故该选项不符合题意;B . 2a -的底数是a ,()3a -的底数是a -,故该选项不符合题意; C . 5x -与5x 的底数都是x ,故该选项符合题意;D . ()3-a b 的底数是()a b -,()3b a -的底数是()b a -,故该选项不符合题意;故选C 【点睛】本题考查了同底数幂的形式,理解幂的定义是解题的关键.把n 个相同的因数a 相乘的积记作n a ,其中a 叫做底数,n 叫做指数.3.(2022·重庆涪陵·八年级期末)下列计算正确的是( ) A .2323a a a +=B .623a a a ÷=C .33(2)6a a =D .()1432a a =【分析】根据合并同类项,同底数幂的除法,积的乘方,幂的乘方依次计算判断即可得. 【详解】解:A 、22a a +,不是同类项,不能化简,选项错误; B 、624a a a ÷=,选项错误; C 、()3328a a =,选项错误; D 、()4312a a =,选项正确; 故选:D . 【点睛】本题主要考查合并同类项,同底数幂的除法,积的乘方,幂的乘方,熟练掌握各运算法则是解题的关键.4.(2021·重庆市万盛经济技术开发区溱州中学八年级阶段练习)若a m =4,a n =2,则a m +3n的值是( )A .8B .12C .24D .32【答案】D 【分析】根据同底数幂的乘法的逆运算,以及幂的乘方的逆运算进行求解即可. 【详解】解:∵4m a =,2n a =,∴()()33334232m n m n m n a a a a a +=⋅=⋅=⨯=,故选D . 【点睛】本题主要考查了同底数幂乘法的逆运算,幂的乘方的逆运算,解题的关键在于能够熟练掌握相关计算法则.5.(2022·福建省福州第十六中学八年级期末)近年来,新冠肺炎给人类带来了巨大灾难,经科学家研究,冠状病毒多数为球形或近似球形,其直径约为0.00000011米,其中数据0.00000011用科学记数法表示正确的是( ) A .81.110-⨯B .71.110-⨯C .61.110-⨯D .60.1110-⨯【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.00000011=71.110-⨯, 故选B . 【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.(2021·北京·清华附中八年级期中)已知781a =,927b =,139c =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .a b c << D .b c a >>【答案】A 【分析】根据幂的乘方的逆运算可直接进行排除选项. 【详解】解:∵781a =,927b =,139c =,∴()742833a ==,()932733b ==,()1322633c ==,∴a b c >>; 故选A . 【点睛】本题主要考查幂的乘方的逆用,熟练掌握幂的乘方的逆用是解题的关键. 二、填空题(本大题共10小题,每小题2分,共20分) 7.(2022·四川南充·八年级期末)计算22-的结果是______. 【答案】14【分析】根据负整数指数幂的运算法则计算即可.解:2211224-==, 故答案为:14.【点睛】本题考查了负整数指数幂,熟知运算法则是解题的关键.8.(2022·天津市第七中学八年级期末)计算:36x x ⋅=________________. 【答案】9x 【分析】根据同底数幂的乘法法则,底数不变,指数相加计算即可. 【详解】 ∵36x x ⋅=9x , 故答案为:9x . 【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.9.(2021·黑龙江·哈尔滨德强学校八年级阶段练习)计算:202120212552⎛⎫⎛⎫-⨯= ⎪⎪⎝⎭⎝⎭_______.【答案】1- 【分析】由积的乘方的逆运算进行计算,即可得到答案. 【详解】 解:20212021202120212525()(1)15252⎛⎫⎛⎫-⨯=-⨯=-=- ⎪⎪⎝⎭⎝⎭;故答案为:1-. 【点睛】本题考查了积的乘方的逆运算,解题的关键是掌握运算法则,正确的进行计算. 10.(2021·辽宁兴城·八年级期中)已知a m =4,a n =6,则a m +n =______. 【答案】24 【分析】利用同底数幂的乘法的逆运算即可求解.解:4,6m n a a ==, 又4624m n m n a a a +=⋅=⨯=, 故答案是:24. 【点睛】本题考查了同底数幂的乘法的逆运算,解题的关键是掌握相应的运算法则. 11.(2022·全国·七年级)若0(3)1x -=,则x 的取值范围是________. 【答案】3x ≠ 【分析】任何不为零的数的零次幂都等于零,根据定义解答. 【详解】解:∵0(3)1x -=, ∴3x ≠, 故答案为:3x ≠. 【点睛】此题考查了零指数幂定义,熟记定义是解题的关键.12.(2021·浙江嘉兴·七年级期末)若9a ∙27b ÷81c =9,则2c ﹣a ﹣32b 的值为____.【答案】-1 【分析】根据幂的乘方公式以及同底数幂的乘法公式的逆运用,即可求解. 【详解】解:∵9a ∙27b ÷81c =9,∴(32)a ∙(33)b ÷(34)c =9,即:32a ∙33b ÷34c =32,∴2a +3b -4c =2,即: a +32b -2c =1,∴2c ﹣a ﹣32b =-1,故答案是:-1. 【点睛】本题主要考查幂的乘方公式以及同底数幂的乘法公式,熟练掌握幂的乘方公式以及同底数幂的乘法公式的逆运用是解题的关键.13.(2022·全国·七年级)若n 是正整数,且210n a =,则3222()8()n n a a --=__________. 【答案】200 【分析】把所求式子化为含a 2n 的形式,再代入即可求值; 【详解】解:32222322()8()()8()1000800200n n n n a a a a --=-=-= 故答案为:200 【点睛】本题考查代数式求值,解题的关键是熟练掌握积的乘方、幂的乘方公式逆用.14.(2021·湖南永兴·八年级阶段练习)11()6-,0(2)-,2(3)-这三个数按从小到大的顺序排列,正确的排列是____(用<号连接)【答案】()1201(2)36-⎛⎫-<<- ⎪⎝⎭【分析】根据负整数指数幂,零次幂,有理数的乘方分别计算,再比较大小即可. 【详解】()()1021=62=1,396-⎛⎫--= ⎪⎝⎭,,169<< ∴()1201(2)36-⎛⎫-<<- ⎪⎝⎭故答案为:()1201(2)36-⎛⎫-<<- ⎪⎝⎭.【点睛】本题考查了负整数指数幂,零次幂,有理数的乘方,掌握负整数指数幂,零次幂,有理数的乘方是解题的关键.15.(2021·山东·济南育英中学七年级期中)我们定义:三角形=a b •a c ,五角星=z •(x m •y n ),若=4,则的值=_____.【答案】32【分析】根据题意可得出算式2334x y ⋅=,根据同底数幂的乘法得出234x y +=,求出2422316(3)x y y x ++==,根据题意得出所求的代数式是2(981)x y ⋅,再根据幂的乘方和积的乘方进行计算,最后求出答案即可.【详解】解:根据题意得:2334x y ⋅=,所以234x y +=,即2423416x y +==,所以2(981)x y ⋅242[(3)(3)]x y =⨯⋅242(33)x y =⨯⋅222(33)x y =⨯⋅224=⨯32=,故答案为:32.【点睛】本题考查了有理数的混合运算和整式的混合运算,解题的关键是能灵活运用整式的运算法则进行计算.16.(2022·吉林吉林·八年级期末)如图,王老师把家里的WIFI 密码设置成了数学问题.吴同学来王老师家做客,看到WIFI 图片,思索了一会儿,输入密码,顺利地连接到了王老师家里的网络,那么她输入的密码是________. 账号:Mr .Wang 's house王134wang1314x yz ⎢⎥⊕=⎣⎦浩15220hao31520xy x z ⎢⎥⊕⋅=⎣⎦阳()()422244x y y z ⎢⎥⊕⋅=⎢⎥⎣⎦密码【答案】yang 8888【分析】根据题中wifi 密码规律确定出所求即可.【详解】解:阳()()422244x y y z ⎢⎥⊕⋅=⎢⎥⎣⎦阳88888888x y z yang ⊕= 故答案为:yang 8888.【点睛】此题考查了同底数幂相乘和幂的乘方,熟练掌握运算法则是解本题的关键.三、解答题(本大题共11小题,17,18每小题7分,19,20,21,22,23,24,25每小题8分,26,27每小题9分,共88分.解答应写出文字说明、证明过程或演算步骤)17.(2021·吉林临江·八年级期末)计算:2222342()()a b a b a ----⋅÷【答案】8b【分析】幂的混合运算,先做乘方,然后做乘除.【详解】解:2222342()()a b a b a ----⋅÷22668a b a b a ---=⋅÷888a b a --=÷8b =.【点睛】本题考查了整式的混合运算,负整数指数幂,同底数幂的乘法,幂的乘方与积的乘方,解题关键是熟练掌握幂的有关运算法则.18.(2021·广东高州·七年级期末)计算:(1)﹣12021+(13)﹣2+(π﹣3.14)0; (2)(6a 3b 2﹣4a 2b )÷2ab .【答案】(1)9;(2)232a b a -【分析】(1)根据有理数的乘方,负整指数幂,零次幂进行计算即可;(2)直接根据多项式除以单项式的法则计算即可.【详解】(1)(1)﹣12021+(13)﹣2+(π﹣3.14)0 191=-++9=;(2)(6a 3b 2﹣4a 2b )÷2ab3226242a b ab a b ab =÷-÷232a b a =-【点睛】本题考查了有理数的乘方,负整指数幂,零次幂,多项式除以单项式,掌握以上运算法则是解题的关键.19.(2021·全国·八年级课时练习)已知3m a =,5n a =,求:(1)m n a -的值; (2)32m n a -的值.【答案】(1)35;(2)2725. 【分析】(1)根据同底数幂的除法法则的逆运算解题;(2)根据同底数幂的除法法则的逆运算、幂的乘方法则的逆运算解题.【详解】解:(1)∵3m a =,5n a =, ∴3355m n m n a a a -=÷÷==; (2)∵3m a =,5n a =, ∴32323232()527(352)m n m n m n a a a a a -====÷÷÷. 【点睛】本题考查幂的运算,涉及同底数幂的除法的逆运算、幂的乘方的逆运算等知识,是重要考点,掌握相关知识是解题关键.20.(2022·全国·七年级)声音的强弱用分贝表示,通常人们讲话时的声音是50分贝,它表示声音的强度是105,汽车的声音是100分贝,表示声音的强度是1010,喷气式飞机的声音是150分贝,求:(1)汽车声音的强度是人声音的强度的多少倍?(2)喷气式飞机声音的强度是汽车声音的强度的多少倍?【答案】(1) 105;(2) 105.【分析】(1)由题意直接根据同底数幂的除法运算法则进行计算即可得出答案;(2)根据题意利用同底数幂的除法运算法则进行计算即可得出答案.【详解】解:(1)因为1010÷105=1010-5=105,所以汽车声音的强度是人声音的强度的105倍;(2)因为人的声音是50分贝,其声音的强度是105,汽车的声音是100分贝,其声音的强度为1010,所以喷气式飞机的声音是150分贝,其声音的强度为1015,所以1015÷1010=1015-10=105,所以喷气式飞机声音的强度是汽车声音的强度的105倍.【点睛】本题主要考查的是同底数幂的除法的应用,熟练掌握同底数幂的除法法则是解题的关键. 21.(2021·河南·八年级阶段练习)规定*33a b a b =⨯,求:(1)求1*2;(2)若2*(1)81x +=,求x 的值.【答案】(1)27;(2)1x =【分析】(1)根据规定即可完成;(2)根据规定及幂的运算,可得关于x 的方程,解方程即可.【详解】(1)33a b a b *=⨯,1212333927∴*=⨯=⨯=;(2)2(1)81x *+=,214333x +∴⨯=,3433x +∴=则34x +=,解得:1x =.本题是新定义运算问题,考查了同底数幂的运算,解方程等知识,理解新定义运算是解题的关键.22.(2021·福建永春·八年级期中)规定两个非零数a,b之间的一种新运算,如果a m=b,那么a∧b=m.例如:因为52=25,所以5∧25=2;因为50=1,所以5∧1=0.(1)根据上述规定填空:2∧32=;﹣3∧81=.(2)在运算时,按以上规定请说明等式8∧9+8∧10=8∧90成立.【答案】(1)5,4;(2)说明见解析.【分析】(1)结合新定义运算及有理数的乘方运算法则分析计算;(2)结合新定义运算及同底数幂的乘法运算法则进行分析说明.【详解】解:(1)∵25=32,∴2∧32=5,∵(−3)4=81,∴−3∧81=4,故答案为:5;4;(2)设8∧9=a,8∧10=b,8∧90=c,∴8a=9,8b=10,8c=90∴8a×8b=8a+b=9×10=90=8c,∴a+b=c,即8∧9+8∧10=8∧90.【点睛】本题考查新定义运算,掌握有理数乘方运算法则,同底数幂的乘方运算法则是解题关键.23.(2021·山西·太原市外国语学校七年级阶段练习)若a*b=c,则a c=b.例如:若2*8=3,则23=8(1)根据上述规定,若5*1125=x,则x=.(2)记5*2=a,5*6=b,5*18=c,求a,b,c之间的数量关系.【答案】(1)﹣3;(2)2b=a+c.(1)根据定义和负整数指数幂公式即可解答;(2)根据定义得5a =2,5b =6,5c =18,发现62=2×18,从而得到a ,b ,c 之间的关系.【详解】解:(1)根据题意得:3311551255x -===, ∴x =﹣3.故答案为:﹣3;(2)根据题意得:5a =2,5b =6,5c =18,∴52b =(5b )2=62=36,5a ×5c =2×18=36,∴52b =5a ×5c =5a +c ,∴2b =a +c .【点睛】本题考查了负整数指数幂,同底数幂的乘法,幂的乘方,会逆用幂的运算法则是解题的关键.24.(2020·江苏江都·七年级期中)如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.【答案】(1)3,0,﹣2;(2)a +b =c ,理由见解析.【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a ,b ,c 的等式,然后根据幂的运算法则求解即可.【详解】(1)∵33=27,∴(3,27)=3,∵40=1,∴(4,1)=0, ∵2﹣2=14,∴(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a +b =c .理由:∵(3,5)=a ,(3,6)=b ,(3,30)=c ,∴3a =5,3b =6,3c =30,∴3a ×3b =5×6=3c =30,∴3a ×3b =3c ,∴a +b =c .【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.25.(2019·福建·莆田第十五中学七年级阶段练习)我们已经学习过“乘方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果b a =N (a >0,a ≠1,N >0),则b 叫做以a 为底N 的对数,记作log N a =b ,例如:因为35=125,所以1255log =3;因为211=121,所以12111log =2 (1)填空:66log = ,16log = ;(2)如果(2)2log m -=3,求m 的值.【答案】(1)1,0;(2)m =10.【分析】(1)把对数运算转化为幂运算求解即可;(2)把对数运算转化为幂的运算求解即可.【详解】解:(1)∵1066,61==,∴66log =1,16log =0,故答案为:1,0;(2)∵(2)2log m -=3,∴32=m ﹣2,解得:m =10.【点睛】本题考查了新运算问题,解答时,熟练将对数运算转化为对应的幂的运算是解题的关键. 26.(2021·河北邢台·八年级阶段练习)按要求解答下列各小题.(1)已知10m =6,10n =2,求10m ﹣n 的值;(2)如果a +3b =4,求3a ×27b 的值;(3)已知8×2m ÷16m =215,求m 的值.【答案】(1)3;(2)81;(3)4m =-【分析】(1)根据同底数幂的除法逆用可直接进行求解;(2)根据同底数幂的乘法的逆用可直接进行求解;(3)根据同底数幂的乘除法可直接进行求解.【详解】解:(1)∵10m =6,10n =2,∴101010623m n m n -=÷=÷=;(2)∵a +3b =4,∴334327333381a b a b a b +⨯=⋅===;(3)∵8×2m ÷16m =215,∴31534422222m m m m +-==⨯÷∴3315m -=,解得:4m =-.【点睛】本题主要考查同底数幂的乘除运算,熟练掌握同底数幂的乘除运算是解题的关键. 27.(2021·江苏连云港·七年级期中)阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=①则22021202222222S =++⋅⋅⋅++②②-①得,2022221S S S -==-.请仿照小明的方法解决以下问题:(1)220222++⋅⋅⋅+=______;(2)求2501111222+++⋅⋅⋅++=______; (3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)【答案】(1)221−2;(2)2-5012;(3)101223-;(4)()121n a a a +--+11n na a +- 【分析】(1)根据阅读材料可得:设s =220222++⋅⋅⋅+①,则2s =22+23+…+220+221②,②−①即可得结果;(2)设s =2501111222+++⋅⋅⋅+①,12s =2505111112222++⋅⋅⋅++②,②−①即可得结果; (3)设s =()()()2100222-+-+⋅⋅⋅+-①,-2s =()()()23101222-+-+⋅⋅⋅+-②,②−①即可得结果;(4)设s =2323n a a a na +++⋅⋅⋅+①,as =234123n a a a na ++++⋅⋅⋅+②,②−①得as -s =-a -2341n n a a a a na +--⋅⋅⋅-++,同理:求得-2314n a a a a ++--⋅⋅⋅-,进而即可求解.【详解】解:根据阅读材料可知:(1)设s =220222++⋅⋅⋅+①,2s =22+23+…+220+221②,②−①得,2s −s =s =221−2;故答案为:221−2;(2)设s =2501111222+++⋅⋅⋅+①, 12s =2505111112222++⋅⋅⋅++②, ②−①得,12s −s =-12s =5112-1, ∴s =2-5012, 故答案为:2-5012; (3)设s =()()()2100222-+-+⋅⋅⋅+-①-2s =()()()23101222-+-+⋅⋅⋅+-②②−①得,-2s −s =-3s =()1012-+2 ∴s =101223-; (4)设s =2323n a a a na +++⋅⋅⋅+①,as =234123n a a a na ++++⋅⋅⋅+②,②-①得:as -s =-a -2341n n a a a a na +--⋅⋅⋅-++,设m =-a -234n a a a a --⋅⋅⋅-+③,am =-2314n a a a a ++--⋅⋅⋅-④,④-③得:am -m =a -1n a +,∴m =11n a a a +--, ∴as -s =11n a a a +--+1n na +, ∴s =()121n a a a +--+11n na a +-. 【点睛】本题考查了规律型−实数的运算,解决本题的关键是理解阅读材料进行计算。

第8章 幂的运算(中考经典常考题)-江苏省2023-2024学年下学期七年级数学单元培优

第8章 幂的运算(中考经典常考题)-江苏省2023-2024学年下学期七年级数学单元培优

第8章幂的运算(中考经典常考题)-江苏省2023-2024学年下学期七年级数学单元培优专题练习(苏科版)一.选择题(共25小题)1.(2023•苏州)下列运算正确的是( )A.a3﹣a2=a B.a3•a2=a5C.a3÷a2=1D.(a3)2=a5 2.(2023•镇江)下列运算中,结果正确的是( )A.2m2+m2=3m4B.m2•m4=m8C.m4÷m2=m2D.(m2)4=m63.(2023•镇江)如图,在甲、乙、丙三只袋中分别装有球29个、29个、5个,先从甲袋中取出2x个球放入乙袋,再从乙袋中取出(2x+2y)个球放入丙袋,最后从丙袋中取出2y 个球放入甲袋,此时三只袋中球的个数都相同,则2x+y的值等于( )A.128B.64C.32D.16 4.(2023•淮安)下列计算正确的是( )A.2a﹣a=2B.(a2)3=a5C.a3÷a=a3D.a2•a4=a6 5.(2023•泰州)若a≠0,下列计算正确的是( )A.(﹣a)0=1B.a6÷a3=a2C.a﹣1=﹣a D.a6﹣a3=a3 6.(2023•常州)计算a8÷a2的结果是( )A.a4B.a6C.a10D.a16 7.(2023•宿迁)下列运算正确的是( )A.2a﹣a=1B.a3•a2=a5C.(ab)2=ab2D.(a2)4=a6 8.(2023•无锡)下列运算正确的是( )A.a2×a3=a6B.a2+a3=a5C.(﹣2a)2=﹣4a2D.a6÷a4=a29.(2023•徐州)下列运算正确的是( )A.a2•a3=a6B.a4÷a2=a2C.(a3)2=a5D.2a2+3a2=5a410.(2022•淮安)计算a2•a3的结果是( )A.a2B.a3C.a5D.a6 11.(2022•徐州)下列计算正确的是( )A.a2•a6=a8B.a8÷a4=a2C.2a2+3a2=6a4D.(﹣3a)2=﹣9a2 12.(2022•南京)化简(a2)3的结果为( )A.a5B.a6C.a8D.a9 13.(2022•镇江)下列运算中,结果正确的是( )A.3a2+2a2=5a4B.a3﹣2a3=a3C.a2•a3=a5D.(a2)3=a514.(2022•盐城)下列计算,正确的是( )A.a+a2=a3B.a2•a3=a6C.a6÷a3=a2D.(a2)3=a6 15.(2022•宿迁)下列运算正确的是( )A.2m﹣m=1B.m2•m3=m6C.(mn)2=m2n2D.(m3)2=m516.(2022•无锡)下列运算正确的是( )A.2a2﹣a2=2B.(ab2)2=ab4C.a2•a3=a6D.a8÷a4=a417.(2021•常州)计算(m2)3的结果是( )A.m5B.m6C.m8D.m9 18.(2021•南通)下列计算正确的是( )A.a3+a3=a6B.a3•a3=a6C.(a2)3=a5D.(ab)3=ab3 19.(2021•无锡)下列运算正确的是( )A.a2+a=a3B.(a2)3=a5C.a8÷a2=a4D.a2•a3=a5 20.(2021•徐州)下列计算正确的是( )A.(a3)3=a9B.a3•a4=a12C.a2+a3=a5D.a6÷a2=a3 21.(2021•泰州)(﹣3)0等于( )A.0B.1C.3D.﹣3 22.(2021•宿迁)下列运算正确的是( )A.2a﹣a=2B.(a2)3=a6C.a2•a3=a6D.(ab)2=ab2 23.(2021•盐城)计算a2•a的结果是( )A.a2B.a3C.a D.2a2 24.(2021•淮安)计算(x5)2的结果是( )A.x3B.x7C.x10D.x25 25.(2021•南京)计算(a2)3•a﹣3的结果是( )A.a2B.a3C.a5D.a9二.填空题(共4小题)26.(2023•泰州)溶度积是化学中沉淀的溶解平衡常数.常温下CaCO3的溶度积约为0.000 0000028,将数据0.0000000028用科学记数法表示为 .27.(2022•常州)计算:m4÷m2= .28.(2022•苏州)计算:a•a3= .29.(2021•无锡)每个生物携带自身基因的载体是生物细胞的DNA,DNA分子的直径只有0 .0000002cm,将0.0000002用科学记数法表示为 .第8章幂的运算(中考经典常考题)-江苏省2023-2024学年下学期七年级数学单元培优专题练习(苏科版)参考答案与试题解析一.选择题(共25小题)1.(2023•苏州)下列运算正确的是( )A.a3﹣a2=a B.a3•a2=a5C.a3÷a2=1D.(a3)2=a5【答案】B【解答】解:A.a3与a2不是同类项,无法合并,则A不符合题意;B.a3•a2=a3+2=a5,则B符合题意;C.a3÷a2=a,则C不符合题意;D.(a3)2=a6,则D不符合题意;故选:B.2.(2023•镇江)下列运算中,结果正确的是( )A.2m2+m2=3m4B.m2•m4=m8C.m4÷m2=m2D.(m2)4=m6【答案】C【解答】解:2m2+m2=3m2,则A不符合题意;m2•m4=m6,则B不符合题意;m4÷m2=m2,则C符合题意;(m2)4=m8,则D不符合题意;故选:C.3.(2023•镇江)如图,在甲、乙、丙三只袋中分别装有球29个、29个、5个,先从甲袋中取出2x个球放入乙袋,再从乙袋中取出(2x+2y)个球放入丙袋,最后从丙袋中取出2y 个球放入甲袋,此时三只袋中球的个数都相同,则2x+y的值等于( )A.128B.64C.32D.16【答案】A【解答】解:由题意,得5﹣2y+2x+2y=29+2y﹣2x=29+2x﹣2x﹣2y,即5+2x=29+2y﹣2x=29﹣2y,∴解得∴2x+y=2x×2y=16×8=128,故选:A.4.(2023•淮安)下列计算正确的是( )A.2a﹣a=2B.(a2)3=a5C.a3÷a=a3D.a2•a4=a6【答案】D【解答】解:A、2a﹣a=a,故A不符合题意;B、(a2)3=a6,故B不符合题意;C、a3÷a=a2,故C不符合题意;D、a2•a4=a6,故D符合题意;故选:D.5.(2023•泰州)若a≠0,下列计算正确的是( )A.(﹣a)0=1B.a6÷a3=a2C.a﹣1=﹣a D.a6﹣a3=a3【答案】A【解答】解:A.(﹣a)0=1(a≠0),故此选项符合题意;B.a6÷a3=a3,故此选项不合题意;C.a﹣1=,故此选项不合题意;D.a6与a3无法合并,故此选项不合题意.故选:A.6.(2023•常州)计算a8÷a2的结果是( )A.a4B.a6C.a10D.a16【答案】B【解答】解:a8÷a2=a6.故选:B.7.(2023•宿迁)下列运算正确的是( )A.2a﹣a=1B.a3•a2=a5C.(ab)2=ab2D.(a2)4=a6【答案】B【解答】解:A.2a﹣a=a,故A不符合题意;B.a3•a2=a5,故B符合题意;C.(ab)2=a2b2,故C不符合题意;D.(a2)4=a8,故D不符合题意.故选:B.8.(2023•无锡)下列运算正确的是( )A.a2×a3=a6B.a2+a3=a5C.(﹣2a)2=﹣4a2D.a6÷a4=a2【答案】D【解答】解:A.a2×a3=a5,故本选项不符合题意;B.a2与a3不是同类项,所以不能合并,故本选项不符合题意;C.(﹣2a)2=4a2,故本选项不符合题意;D.a6÷a4=a2,故本选项符合题意.故选:D.9.(2023•徐州)下列运算正确的是( )A.a2•a3=a6B.a4÷a2=a2C.(a3)2=a5D.2a2+3a2=5a4【答案】B【解答】解:A、a2•a3=a5,故此选项不符合题意;B、a4÷a2=a2,故此选项符合题意;C、(a3)2=a6,故此选项不符合题意;D、2a2+3a2=5a2,故此选项不符合题意;故选:B.10.(2022•淮安)计算a2•a3的结果是( )A.a2B.a3C.a5D.a6【答案】C【解答】解:a2•a3=a5.故选:C.11.(2022•徐州)下列计算正确的是( )A.a2•a6=a8B.a8÷a4=a2C.2a2+3a2=6a4D.(﹣3a)2=﹣9a2【答案】A【解答】解:∵a2•a6=a2+6=a8,∴A选项的结论符合题意;∵a8÷a4=a8﹣4=a4,∴B选项的结论不符合题意;∵2a2+3a2=5a2,∴C选项的结论不符合题意;∵(﹣3a)2=9a2,∴D选项的结论不符合题意,故选:A.12.(2022•南京)化简(a2)3的结果为( )A.a5B.a6C.a8D.a9【答案】B【解答】解:(a2)3=a6.故选:B.13.(2022•镇江)下列运算中,结果正确的是( )A.3a2+2a2=5a4B.a3﹣2a3=a3C.a2•a3=a5D.(a2)3=a5【答案】C【解答】解:A.3a2+2a2=5a2,故此选项不合题意;B.a3﹣2a3=﹣a3,故此选项不合题意;C.a2•a3=a5,故此选项符合题意;D.(a2)3=a6,故此选项不合题意;故选:C.14.(2022•盐城)下列计算,正确的是( )A.a+a2=a3B.a2•a3=a6C.a6÷a3=a2D.(a2)3=a6【答案】D【解答】解:A.a与a2不是同类项,所以不能合并,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.a6÷a3=a3,故本选项不合题意;D.(a2)3=a6,故本选项符合题意;故选:D.15.(2022•宿迁)下列运算正确的是( )A.2m﹣m=1B.m2•m3=m6C.(mn)2=m2n2D.(m3)2=m5【答案】C【解答】解:A、2m﹣m=m,故A不符合题意;B、m2•m3=m5,故B不符合题意;C、(mn)2=m2n2,故C符合题意;D、(m3)2=m6,故D不符合题意;故选:C.16.(2022•无锡)下列运算正确的是( )A.2a2﹣a2=2B.(ab2)2=ab4C.a2•a3=a6D.a8÷a4=a4【答案】D【解答】解:2a2﹣a2=a2,故A错误,不符合题意;(ab2)2=a2b4,故B错误,不符合题意;a2•a3=a5,故C错误,不符合题意;a8÷a4=a4,故D正确,符合题意;故选:D.17.(2021•常州)计算(m2)3的结果是( )A.m5B.m6C.m8D.m9【答案】B【解答】解:(m2)3=m2×3=m6.故选:B.18.(2021•南通)下列计算正确的是( )A.a3+a3=a6B.a3•a3=a6C.(a2)3=a5D.(ab)3=ab3【答案】B【解答】解:A.a3+a3=2a3,故本选项不合题意;B.a3•a3=a6,故本选项符合题意;C.(a2)3=a6,故本选项不合题意;D.(ab)3=a3b3,故本选项不合题意;故选:B.19.(2021•无锡)下列运算正确的是( )A.a2+a=a3B.(a2)3=a5C.a8÷a2=a4D.a2•a3=a5【答案】D【解答】解:A.a2+a,不是同类项,无法合并,故此选项不合题意;B.(a2)3=a6,故此选项不合题意;C.a8÷a2=a6,故此选项不合题意;D.a2•a3=a5,故此选项符合题意.故选:D.20.(2021•徐州)下列计算正确的是( )A.(a3)3=a9B.a3•a4=a12C.a2+a3=a5D.a6÷a2=a3【答案】A【解答】解:A.(a3)3=a9,故A正确,本选项符合题意;B.a3•a4=a7,故B错误,选项不符合题意;C.a2+a3不能合并,故C错误,选项不符合题意;D.a6÷a2=a4,故D错误,选项不符合题意.故选:A.21.(2021•泰州)(﹣3)0等于( )A.0B.1C.3D.﹣3【答案】B【解答】解:(﹣3)0=1.故选:B.22.(2021•宿迁)下列运算正确的是( )A.2a﹣a=2B.(a2)3=a6C.a2•a3=a6D.(ab)2=ab2【答案】B【解答】解:A.因为2a﹣a=a,所以A选项不合题意;B.因为(a2)3=a6,所以B选项正确;C.因为a2•a3=a2+3=a5,所以C选项不合题意;D.因为(ab)2=a2b2,所以D选项不合题意;故选:B.23.(2021•盐城)计算a2•a的结果是( )A.a2B.a3C.a D.2a2【答案】B【解答】解:a2•a=a3.故选:B.24.(2021•淮安)计算(x5)2的结果是( )A.x3B.x7C.x10D.x25【答案】C【解答】解:(x5)2=x5×2=x10.故选:C.25.(2021•南京)计算(a2)3•a﹣3的结果是( )A.a2B.a3C.a5D.a9【答案】B【解答】解:(a2)3•a﹣3=a6•a﹣3=a6﹣3=a3.故选:B.二.填空题(共4小题)26.(2023•泰州)溶度积是化学中沉淀的溶解平衡常数.常温下CaCO3的溶度积约为0.000 0000028,将数据0.0000000028用科学记数法表示为 2.8×10﹣9 .【答案】2.8×10﹣9.【解答】解:0.0000000028=2.8×10﹣9.故答案为:2.8×10﹣9.27.(2022•常州)计算:m4÷m2= m2 .【答案】m2.【解答】解:m4÷m2=m4﹣2=m2.故答案为:m2.28.(2022•苏州)计算:a•a3= a4 .【答案】a4.【解答】解:a3•a,=a3+1,=a4.故答案为:a4.29.(2021•无锡)每个生物携带自身基因的载体是生物细胞的DNA,DNA分子的直径只有0 .0000002cm,将0.0000002用科学记数法表示为 2×10﹣7 .【答案】见试题解答内容【解答】解:0.0000002=2×10﹣7,故答案为:2×10﹣7.。

小班专题八年级上册数学幂的运算知识讲解基础培优教案学案含答案

小班专题八年级上册数学幂的运算知识讲解基础培优教案学案含答案

幂的运算(培优)【学习目标】1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算. 【要点梳理】要点一、同底数幂的乘法性质+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

即m n m n a a a +=⋅(,m n 都是正整数).要点二、幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n p mnp a a (0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n aaa ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅n n n nabc a b c (n 为正整数).(2)逆用公式:()nn na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯. 【典型例题】类型一、同底数幂的乘法性质1、计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- . 【答案与解析】解:(1)353519(2)(2)(2)(2)(2)b b b b b +++⋅+⋅+=+=+.(2)23235(2)(2)(2)[(2)](2)x y y x x y x y x y -⋅-=-⋅--=--. 【总结升华】(1)同底数幂相乘时,底数可以是多项式,也可以是单项式.(2)在幂的运算中,经常用到以下变形:()()(),n nn a n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数 ()()()()()n nnb a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数. 类型二、幂的乘方法则2、计算:(1)23[()]a b --; (2)32235()()2y y y y +- ; (3)22412()()m m xx -+⋅; (4)3234()()x x ⋅.【答案与解析】解:(1)23[()]a b --236()()a b a b ⨯=--=--.(2)32235()()2y y y y +-⋅666662220y y y y y =+-=-=. (3)22412()()m m xx -+⋅4(22)2(1)8822106m m m m m x x x x x -+-+-=⋅=⋅=.(4)3234()()x x ⋅61218x x x =⋅=.【总结升华】(1)运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.(2)幂的乘方的法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.3、已知84=m,85=n,求328+m n的值.【思路点拨】由于已知8,8m n 的值,所以逆用同底数幂的乘法和幂的乘方把328+m n变成323288(8)(8)m n m n ⨯=⨯,再代入计算.【答案与解析】解:因为3338(8)464===m m , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .【总结升华】运用整体的观念看待数学问题,是一种重要的数学思维方法.把8,8m n 当成一个整体问题就会迎刃而解.同时看到灵活地双向应用运算性质,使运算更加方便、简洁. 举一反三: 【变式】已知322,3mm ab ==,则()()()36322mm m m a b a b b +-⋅= .【答案】-5;提示:原式()()()()23223232m m m m ab a b =+-⋅∵∴ 原式=23222323+-⨯=-5.类型三、积的乘方法则4、计算:(1)24(2)xy - (2)24333[()]a a b -⋅- 【思路点拨】利用积的乘方的运算性质进行计算. 【答案与解析】解:(1)24442448(2)(1)2()16xy x y x y -=-⋅⋅⋅=-.(2)24333[()]a a b -⋅-231293636274227()()()a a b a a b a b =-⋅-=-⋅-⋅=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略. 举一反三:【变式】下列等式正确的个数是( ).①()3236926x yx y -=- ②()326m maa -= ③()36933aa =④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个 【答案】A ;提示:只有⑤正确;()3236928x yx y -=-;()326m m a a -=-;()3618327a a =;()()57121351071035103.510⨯⨯⨯=⨯=⨯【巩固练习】一.选择题1.下列计算正确的是( ). A. ()325xx = B.()5315xx =C. 4520x x x ⋅= D.()236x x --=2.()()2552aa -+-的结果是( ).A.0B.72a - C.102a D. 102a - 3.下列算式计算正确的是( ). A.()33336aa a +== B.()22nn x x -=C.()()3626y y y -=-= D.()33333327c c c ⨯⨯⎡⎤==⎢⎥⎣⎦4.31n x+可以写成( ).A.()13n x+ B.()31n x+ C.3nx x ⋅ D.()21n n x+5.下列计算中,错误的个数是( ). ①()23636xx = ②()2551010525a b a b -=- ③3328()327x x -=-④()42367381x yx y = ⑤235x x x ⋅=A. 2个B. 3个C. 4个D. 5个 6.93191993+的个位数字是( )A .2B .4C .6D .8二.填空题7.化简:(1)33331)31(b a ab +-=_______;(2)()()322223aa a +⋅=_______.8.直接写出结果:(1)()_____n=233n n n a b ; (2)1011x y =()5_____y ⋅;(3)若2,3n n a b ==,则6n=______. 9. 501420031[()]3_____3-⨯=.10.若23,25,290a b c ===,用a ,b 表示c 可以表示为 . 11.已知5544332,3,5,6a b c d ====,那么a 、b 、c 、d 从小到大的顺序是 .12.若整数a 、b 、c 满足50189827258abc⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,则a = ,b = ,c = .三.解答题13.若2530x y +-=,求432x y⋅的值.14.已知1,1x y >>,218157,m n n m n x x x y y y ----⋅=⋅=,求m n 、的值. 15. 已知200080,200025==y x ,则=+yx 11 . 【答案与解析】 一.选择题1. 【答案】B ; 【解析】()326xx =;459x x x ⋅=;()236x x --=-.2. 【答案】A ; 【解析】()()255210100aa a a -+-=-=.3. 【答案】D ; 【解析】()33339aaa ⨯==;()222()()n nn x n xxn ⎧⎪-=⎨-⎪⎩为偶数为奇数;()326yy -=-.4. 【答案】C ; 【解析】()1333n n xx ++=;()314n n x x +=;()2212n n nnx x ++=.5. 【答案】B ;【解析】①②④错误. 6. 【答案】C ;【解析】93191993+的个位数字等于931993+的个位数字.∵93246469(9)9819=⋅=⋅;1944343(3)3(81)27=⋅=⋅.∴931993+的个位数字等于9+7的个位数字.则93191993+的个位数字是6.二.填空题 7. 【答案】33827a b ;628a ;【解析】33333333311198()33272727ab a b a b a b a b -+=-+=; ()()3222266632728aa a a a a +⋅=+=.8. 【答案】233a b ;22x y ;ab ;【解析】(3)()62323nn n nab =⨯=⋅=.9. 【答案】13; 【解析】2004200350142003200311111[()]33333333⎛⎫⎛⎫-⨯=⨯=⨯⋅= ⎪⎪⎝⎭⎝⎭. 10.【答案】21c a b =++;【解析】()2221903252222221ca b a b c a b ++=⨯⨯=⋅⋅==++ ∴∴11.【答案】a d b c <<<; 【解析】()()()()11111111511411311211232,381,5125,636a b c d ========.12.【答案】a =6,b =6,c =3;【解析】22232232233235018925233235227258352abca ab b ca b c b c a a b a b c +-+--⋅⋅⎛⎫⎛⎫⎛⎫⋅⋅=⋅⋅=⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭336223062203a b c a b c a b a b c +-==⎧⎧⎪⎪+-==⎨⎨⎪⎪-==⎩⎩∴∴.三.解答题13.【解析】解:()()25252543222222xyx y x y x y+⋅=⋅=⋅=∵2530x y +-=, ∴253x y += ∴原式=328=. 14.【解析】 解:∵218157,m nn m n x x x y y y ----⋅=⋅= ∴1847,m n m n xx y y +--+==∴18m n +-=且47m n -+= ∴m =6,n =315.【解析】解:∵252000,802000,20002580x y ===⨯∴()()2525200025802580252000yyx xy y y y y ===⨯=⨯=⨯;252525200025xyx yy +⋅==⨯∴2525xyx y +=;∴xy x y =+,111x y x y xy++==幂的运算(基础)【学习目标】1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方); 3. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算. 【要点梳理】要点一、同底数幂的乘法性质+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂的运算性质培优训练
一.例题解析
例1、若52
=m ,62=n ,求n m 22+
例2、已知y x y x x a a a a
+==+求,25,5的值.
例3、若
3521221))(b a b a b a n n n m =-++(,则求m +n 的值.
例4、已知,710,510,310===c b a 试把105写成底数是10的幂的形式.
例5、已知2x +5y -3=0,求y x 324•的值.
例6、比较大小:
(1)4488,5366,6
244 (2)61
413192781,,
例7、已知272=a 6=9b ,求2a 2+2ab 的值.
二、训练题
1、计算:2
332)()(a a -+-= .
2、若2m =5,2n =6,则2 = .
3、计算:9910022)()(-+-= 。

4、如果(a n b m+1)3=a 9b 15,则m= ,n= 。

5、当x =-6,y=6-1时,则x 4n+1y 4n+3= 。

6、下列等式中正确的个数是( )
(1)a 5+a 5=a 10,(2)(-a )6·(-a )3·a=a 10,(3)-a 4·(-a )5=a 20,(4)25+25=26。

A 、0
B 、1
C 、2
D 、3
7、有下列等式:(1)a 2m =(a 2)m ,(2)a 2m =(-a m )2,(3)a 2m =(a m )2,(4)a 2m =(-a 2)m 。

其中正确的有( )个
A 、1
B 、2
C 、3
D 、4
8、计算:
(1)(-a -b )5(a+b )6 (2)(a -b )(a+b )(a -b )2(b -a )3(a+b )
(3) [-(-23)3]6+[-(-83)2]3 (4)24422
()()a a a +⋅
(5)2
33342)(a a a a a +⋅+⋅ (6) (a -b )2m -1·(b -a )2m ·(a -b )2m+1
(7)()()2
22320173232
12y y x x ⎛⎫--•-•- ⎪⎝⎭
9、用简便方法计算:
10、(1)已知y x y x x a a a
a +==+求,25,5的值.
(2)若n m n n m x x x
++==求,2,162的值.
(3)若的值求n m m n b a b b a
+=2,)(1593
(4)如果的值求12),0(020*******++≠=+a a
a a a 。

(5)已知x 2·x 3a ·x
6a+1·x a =x 53
,求a 的值。

11、解答题
(1)、已知3
2x+1·4x =1512-9x ·4x+1,求x 的值。

(2)、已知3
3x+5-27x+1
=648,求x 的值。

(3)、若 ,求(ab )2n 的值。

12、若a 、b 、c 都是正数,且a 2=2,b 3=3,c 4
=4,比较a 、b 、c 的大小。

13、已知 ,比较X 与Y 的大小。

14、已知(x -y )·(x -y )3·(x -y )m =(x -y )12,求(4m 2+2m+1)-2(2m 2-m -5)的值.
1
,32n n
a b ==99
99909911,99
X Y ==
15、当x 是最小质数的倒数时,求(-x)2·x -x(-x)2+x 2·(-x 2)+1的值.
16、计算: (1)
(2)、 2-22-23-24-25-26-27-28-29+210
11111248162
n ++++。

相关文档
最新文档