基于单片机的步进电机驱动控制
基于单片机的步进电机器控制设计

摘要本文应用单片机AT89C51和脉冲分配器PMM8713,步进电机驱动器,光电隔离器4N25等,构建了步进电机控制器和驱动器为一体的步进电机控制系统。
通过AT89C51和脉冲分配器PMM8713完成步进电机的各种运行控制方式,实现步进电机在3相6拍的工作方式下的正反转控制和加减速控制。
并通过步进电机丝杠连动,带动XY工作台的直线运动,实现从起点A点到预定点B点的位移控制。
整个系统采用模块化设计,结构简单,可靠,通过人机交互换接口可实现各功能设置,操作简单,易于掌握。
该系统可应用于步进电机在机电一体化控制等大多数场合。
关键词:步进电机单片机控制目录绪论 (1)1、步进电机及其发展 (1)1.1步进电机在我国的发展应用及前景 (2)1.2本文研究内容 (2)2、步进电机的分类、结构、工作原理及特性 (2)2.1步进电机的概念 (2)2.2步进电机的特点 (3)2.3步进电机的结构及工作原理 (3)2.4步进电机的常用术语 (4)3、步进电机的单片机控制 (5)3.1步进电机控制系统组成 (5)3.2步进电机控制系统原理 (6)3.3脉冲分配 (6)3.4步进电机与微型机的接口电路 (8)4、步进电机的运行控制 (9)4.1步进电机的速度控制 (9)4.2步进电机的位置控制 (9)4.3步进电机的加减速控制 (10)5、步进电机的程序设计 (11)5.1程序框图 (11)结论 (13)致谢辞 (13)参考文献 (13)绪论步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
基于单片机的步进电机控制系统设计方案

D10-基于单片机旳步进电机控制系统一、理解什么是步进电机以及其工作原理步进电机是数字控制电机,步进电机旳运转是由电脉冲信号控制旳,其角位移量或线位移量与脉冲数成正比,每个一种脉冲,步进电机就转动一种角度(不距角)或前进、倒退一步。
步进电机旋转旳角度由输入旳电脉冲数确定,因此,也有人称步进电机为数字/角度转换器。
步进电机旳各相绕组按合适旳时序通电,就能使步进电机转动。
当某一相绕组通电时,对应旳磁极产生磁场,并与转子形成磁路,这时,假如定子和转子旳小齿没有对齐,在磁场旳作用下,由于磁通具有力图走磁阻最小途径旳特点,则转子将转动一定旳角度,使转子与定子旳齿互相对齐,由此可见,错齿是促使电机旋转旳原因。
二、步进电机旳特点(1)步进电机旳角位移与输入脉冲数严格成正比,因此当它转一转后,没有合计误差,具有良好旳跟随性。
(2)由步进电机与驱动电路构成旳开环数控系统,既非常以便、廉价,也非常可靠。
同步,它也可以有角度反馈环节构成高性能旳闭环数控系统。
(3)步进电机旳动态响应快,易于启停、正反转及变速。
(4)速度可在相称宽旳范围内平滑调整,低速下仍能保证获得很大旳转矩,因此一般可以不用减速器而直接驱动负载。
(5)步进电机只能通过脉冲电源供电才能运行,它不能直接用交流电源或直流电源。
(6)步进电机自身旳噪声和振动比较大,带惯性负载旳能力强。
三、步进电机旳控制步进电机旳控制重要包括换相次序旳控制、速度控制、速度控制、加减速控制等,控制系统就是运用单片机旳功能实现以上控制旳系统,即本次设计旳目旳。
四、示意图五、硬件设计计划本设计旳硬件电路只要包括控制电路、最小系统、驱动电路、显示电路四大部分。
最小系统只要是为了使单片机正常工作。
控制电路只要由开关和按键构成,由操作者根据对应旳工作需要进行操作。
显示电路重要是为了显示电机旳工作状态和转速。
驱动电路重要是对单片机输出旳脉冲进行功率放大,从而驱动电机转动。
(1)控制电路根据步进电机旳工作原理可以懂得,步进电机转速旳控制重要是通过控制通入电机旳脉冲频率,从而控制电机旳转速。
基于单片机的步进电机控制设计毕业论文

基于单片机的步进电机控制设计毕业论文摘要:步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,广泛应用在各种自动化控制系统。
本设计以AT89C51单片机为核心,对步进电机进行控制,通过按键实现步进电机正转、反转、加速、减速,并使用LED显示电机速度。
经过PROTEUS仿真和硬件焊接,结果表明,系统实现了要求。
该电路简单,可靠性强,运行稳定。
关键词:AT89C51;ULN2003;LED;步进电机单片机具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点,广泛应用于仪器仪表中,结合不同类型的传感器,可实现诸如电压、功率、频率、湿度、温度、流量、速度、厚度、角度、长度、硬度、元素、压力等物理量的测量。
采用单片机控制使得仪器仪表数字化、智能化、微型化,且功能比起采用电子或数字电路更加强大。
例如精密的测量设备(功率计,示波器,各种分析仪)。
同时用单片机还可以构成形式多样的控制系统、数据采集系统。
例如工厂流水线的智能化管理,电梯智能化控制、各种报警系统,与计算机联网构成二级控制系统等。
目前,单片机正朝着高性能和多品种方向发展趋势将是进一步向着CMOS化、低功耗大容量、高性能、低价格和外围电路内装化等几个方面发展。
综合所述,单片机已成为计算机发展和应用的一个重要方面。
另一方面,单片机应用的重要意义还在于,它从根本上改变了传统的控制系统设计思想和设计方法。
从前必须由模拟电路或数字电路实现的大部分功能,现在已能用单片机通过软件方法来实现了。
这种软件代替硬件的控制技术也称为微控制技术,是传统控制技术的一次革命[2]。
步进电机作为执行元件,是机电一体化的关键产品之一,随着工业自动化的发展,步进电机的应用也越来越广泛,广泛应用在各种自动化控制系统中。
步进电机是一种用于开环控制的驱动元件。
它是用电脉冲信号进行控制,将电脉冲信号转换成相应的角位移或线位移的微电动机。
基于单片机的步进电机控制电路设计

基于单片机的步进电机控制电路设计
步进电机是一种应用广泛的电机,它的控制方式是通过逐步改变电流来驱动电机转动。
基于单片机的步进电机控制电路设计可以使步进电机的控制更加精确、方便和自动化。
下面将介绍一下如何设计一台基于单片机的步进电机控制电路。
首先,我们需要选择合适的单片机。
对于步进电机控制,需要一个I/O口数目足够的单片机,并且要求计算速度快、性能稳定。
常用的单片机有AT89C51、AVR、PIC、STM32等,其
中STM32拥有强大的计算能力和外设支持,非常适合用于步
进电机控制电路的设计。
接下来,我们需要考虑步进电机的驱动方式。
步进电机可以采用全步进或半步进两种方式驱动。
全步进控制方式会让电机一步步转动,步距为180度,转速慢但精确度高,而半步进控制方式可以让电机先半步,再进入全步进控制,提高了转速同时又保持了较高的精度。
最后,我们需要设计电路连接和代码编写。
在电路连接方面,需要将单片机输出引脚和驱动芯片的控制引脚相连,同时将驱动芯片输出端和电机的相应引脚相连。
在代码编写方面,需要根据所选单片机的指令集来编写步进电机控制引脚输出的程序,实现步进电机转速和方向的控制。
综上所述,基于单片机的步进电机控制电路设计需要选取合适的单片机,选择合适的步进电机驱动方式,并根据电路连接和
代码编写来实现电机的精确控制。
这样设计出的步进电机控制电路可以应用于各种机械设备控制,使之更加智能化和自动化。
基于51单片机的步进电机控制系统设计

基于51单片机的步进电机控制系统设计步进电机是一种特殊的直流电动机,具有定角度、定位置、高精度等特点,在许多领域得到广泛应用,如机械装置、仪器设备、医疗设备等。
本文将基于51单片机设计一个步进电机控制系统,主要包括硬件设计和软件设计两部分。
一、硬件设计步进电机控制系统的硬件设计主要包括51单片机、外部电源、步进电机驱动模块、以及其他辅助电路。
1.51单片机选择由于步进电机控制需要执行复杂的算法和时序控制,所以需要一个性能较高的单片机。
本设计选择51单片机作为主控芯片,因为51单片机具有丰富的外设接口、强大的计算能力和丰富的资源。
2.外部电源步进电机需要较高的电流供给,因此外部电源选择稳定的直流电源,能够提供足够的电流供电。
电源电压和电流的大小需要根据具体的步进电机来确定。
3.步进电机驱动模块步进电机驱动模块是连接步进电机和51单片机的关键部分,它负责将51单片机输出的脉冲信号转化为对步进电机的驱动信号,控制步进电机准确转动。
常用的步进电机驱动芯片有L297、ULN2003等。
4.其他辅助电路为了保证步进电机控制系统的稳定运行,还需要一些辅助电路,如限流电路、电源滤波电路、保护电路等。
这些电路的设计需要根据具体的应用来确定。
二、软件设计1.系统初始化系统初始化主要包括对51单片机进行外部中断、定时器、串口和IO 口等初始化设置。
根据实际需求还可以进行其他模块的初始化设置。
2.步进电机驱动程序步进电机的驱动程序主要通过脉冲信号来控制电机的转动。
脉冲信号的频率和脉冲宽度决定了电机的转速和运行方向。
脉冲信号可以通过定时器产生,也可以通过外部中断产生。
3.运动控制算法步进电机的运动控制可以采用开环控制或闭环控制。
开环控制简单,但无法保证运动的准确性和稳定性;闭环控制通过对电机转动的反馈信号进行处理来调整脉冲信号的生成,从而实现精确的运动控制。
4.其他功能设计根据具体的应用需求,可以加入其他功能设计,如速度控制、位置控制、加速度控制等。
基于51单片机的步进电机控制系统设计与实现

步进电机工作原理
步进电机是一种基于磁场的控制系统,工作原理是当电流通过定子绕组时,会 产生一个磁场,该磁场会吸引转子铁芯到相应的位置,从而产生一定的角位移。 步进电机的角位移量与输入的脉冲数量成正比,因此,通过控制输入的脉冲数 量和频率,可以实现精确的角位移和速度控制。同时,步进电机具有较高的分 辨率和灵敏度,可以满足各种高精度应用场景的需求。
二、系统设计
1、硬件设计
本系统主要包括51单片机、步进电机、驱动器、按键和LED显示等部分。其中, 51单片机负责接收按键输入并控制步进电机的运动;步进电机用于驱动负载运 动;驱动器负责将51单片机的输出信号放大,以驱动步进电机。LED显示用于 显示当前步进电机的状态。
2、软件设计
软件部分主要包括按键处理、步进电机控制和LED显示等模块。按键处理模块 负责接收用户输入,并根据输入控制步进电机的运动;步进电机控制模块根据 按键输入和当前步进电机的状态,计算出步进电机下一步的运动状态;LED显 示模块则负责实时更新LED显示。
三、系统实现
1、按键输入的实现
为了实现按键输入,我们需要在主程序中定义按键处理函数。当按键被按下时, 函数将读取按键的值,并将其存储在全局变量中。这样,主程序可以根据按键 的值来控制步进电机的转动。
2、显示输出的实现
为了实现显示输出,我们需要使用单片机的输出口来控制显示模块的输入。在 中断服务程序中,我们根据设定的值来更新显示模块的输出,以反映步进电机 的实时转动状态。
基于单片机的步进电机控制系统需要硬件部分主要包括单片机、步进电机、驱 动器、按键和显示模块等。其中,单片机作为系统的核心,负责处理按键输入、 控制步进电机转动以及显示输出等功能。步进电机选用四相八拍步进电机,驱 动器选择适合该电机的驱动器,按键用于输入设定值,显示模块用于显示当前 步进电机的转动状态。
基于单片机AT89C52的步进电机的控制器设计

基于单片机AT89C52的步进电机的控制器设计步进电机是一种非常常见的电机类型,由于其具有精准定位、适应高速运动以及控制简单等特点,被广泛应用于各种自动化设备中。
本文将从步进电机的工作原理、控制方式以及基于单片机AT89C52的步进电机控制器设计等方面展开阐述。
首先,我们来了解步进电机的工作原理。
步进电机是一种特殊的同步电动机,它具有内置的磁化轭,在没有外部励磁的情况下也能自动旋转。
步进电机的旋转是由控制电流方向和大小来实现的。
通常情况下,步进电机每转动一定角度,称为“步距角”,它可以是1.8度、0.9度、0.45度等,不同的步距角决定了电机的分辨率。
步进电机的控制方式主要有全步进和半步进两种。
全步进是指每次控制信号脉冲后,电机转动一个步距角。
而半步进则是在全步进基础上,在脉冲信号中引入一半步距角的微调。
控制信号脉冲可以是脉冲序列或者方波信号。
基于单片机AT89C52的步进电机控制器设计主要包括控制信号发生器的设计和步进电机驱动电路的设计。
控制信号发生器负责产生相应的控制信号脉冲,而步进电机驱动电路将这些脉冲信号转化为电流信号驱动步进电机。
控制信号发生器的设计可以采用定时器/计数器模块来实现。
AT89C52芯片具有可编程的定时器/计数器,可以用来产生控制信号的脉冲。
通过设置定时器的工作方式和计数值,可以实现不同频率、占空比的控制脉冲。
步进电机驱动电路的设计主要包括功率级驱动电路和电流控制电路。
功率级驱动电路负责将控制信号转化为足够大的电流驱动步进电机,通常采用功率放大器来实现。
电流控制电路则用来控制驱动电流的大小,使步进电机能够顺畅工作。
电流控制电路通常采用可调电阻、电流检测电阻和比较器等元件组成。
在步进电机控制器设计中,还需要考虑到步进电机的特性和应用需求。
例如,步进电机的电源电压、额定电流、阻抗、扭矩等参数需要与驱动电路匹配。
此外,还需要考虑到步进电机的机械结构、位置传感器、防重叠措施等因素。
单片机课程设计单片机控制步进电机

单片机课程设计单片机控制步进电机单片机课程设计:单片机控制步进电机单片机(Microcontroller)是一种集成了中央处理器、存储器和输入/输出接口的微型计算机。
而步进电机(Stepper Motor)是一种将电脉冲信号转换为机械角位移的电磁设备。
在单片机课程设计中,控制步进电机是一项常见的任务。
本文将介绍如何使用单片机来控制步进电机,并展示一个基于单片机的课程设计实例。
一、步进电机的原理及特点步进电机是一种将电脉冲信号转换为机械位移的设备,其主要特点包括精密定位、易控制、低成本、没有超额负荷等。
步进电机通常由定子和转子组成,定子上的绕组通电产生磁场,而通过改变绕组通电的顺序和时序,可以实现步进电机的运动控制。
二、单片机控制步进电机的原理为了实现对步进电机的控制,我们需要使用单片机来产生相应的控制信号。
步进电机通常由一个驱动器和若干相继续组成。
单片机通过发出适当的信号给驱动器,进而控制电机的运动。
具体而言,单片机需要控制步进电机的相序、步数和速度。
1. 步进电机的相序控制步进电机的相序控制是通过依次激活不同相继的绕组,实现转子的转动。
单片机通过输出对应的高低电平信号给驱动器,从而控制绕组的激活顺序。
常见的步进电机驱动方式包括全步进和半步进。
2. 步进电机的步数控制步进电机的步数控制是通过控制单片机输出的脉冲数,来实现电机的旋转角度。
根据电机的分辨率和精度需求,我们可以设定单片机输出的脉冲数,从而控制电机的步进角度。
3. 步进电机的速度控制步进电机的速度控制是通过调节单片机输出脉冲信号的频率来实现的。
频率越高,电机转动的速度越快;频率越低,则电机转动的速度越慢。
单片机可以通过定时器等方式产生相应的脉冲频率来控制步进电机的转速。
三、基于单片机的步进电机控制课程设计实例下面将展示一个基于单片机的步进电机控制课程设计实例,该设计基于C语言编程,使用Keil软件进行开发。
设计要求:设计一个步进电机控制系统,使步进电机以设定的转速顺时针旋转一定圈数,并能逆时针旋转一定圈数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机的步进电机驱动控制
一、步进电机概述
1.步进电机的定义
步进电机指的是以数字脉冲信号作为电机线或教位移的控制信号,并以数字脉冲频率对电机的转速进行控制的动力控制系统。
在负载正常范围的情况下,步进电机的运行状态只和数字脉冲发生器提供的信号的频率和脉冲占空比有关,一般情况下,电机的状态不受负载的影响。
电机的运行角度只和每次所给予的脉冲信号强度有关,而电机的运行速度也只和脉冲信号的频率有直接关
系。
这种采用弱点控制强电的控制方式使得步进电机在速度、位移等控制领域有着普通电机不能比拟的优势。
2.驱动控制系统框图
步进电机控制系统有着精确控制、运行稳定的特性,这一其他电机不能比拟的优势使得步进电机得到了广泛的应用。
而一般对步进电机控制系统的驱动必须要包含脉冲信
号发生部分,功放部分和驱动控制部分等几个模块电路,我们根据这些通过的模块电路,可将步进电机控制系统的通用框图绘制如下:
在上图的步进电机驱动控制系统方框图中,控制步进电机运行状态的脉冲信号一
般由集成芯片产生,可以是单片机、等智能芯片,也可以是一般的数字电路集成芯片。
信号分配环节则要根据步进电机的型号来选择,如四相步进电机有四相四拍和四相
八拍种信号分配的方式;两相步进电机有两相四拍和八拍等脉冲加载形式。
功放部分
在驱动环节上显得尤为重要。
动态平均电流是步进电机转矩大小的决定因素,前提条件
是电机的速度。
电机力矩与平均电流成正比,驱动系统对电机的反电势消弱越多,则平
均电流就越大。
我们一般可以用恒压和恒压串电阻的方法来驱动,或者在条件允许的情况下我们可以用高低压驱动、恒流和细分数等方法来驱动实际的应用过程种,多采用数字集成驱
动芯片作为步进电机的驱动手段。
二、现阶段国内外步进电机驱动的常用方式
1.变频器控制方式
使用变频器对步进电机进行驱动控制时,可以很好的解决步进电机在启动和停止时
容易失步的问题,提高了系统的控制精度。
但是变频器的应用成本较高,结构和操作也
比较复杂,无形中提高步进电机的控制难度。
2.PLC控制方式
使用ABB、西门子、欧姆龙等国际知名生产制造商研发的系列产品可以
实现对步进电机的理想化控制,但是基于核心的步进电机控制系统成本高昂,且
难以实现精确控制,在本系统中不太适合。
3.单片机控制方式
随着嵌入式系统在工业控制领域中的广泛应用,以单片机特别是系列单片机
作为控制核心的步进电机控制电路在生产生活领域得到了普及,单片机有着大规模数字
集成电路和高成本控制芯片难以比拟的控制优势:体积小、价格便宜、通用性的接口以
及编程简易。
这些优势使得单片机在各行各业的应用都达到了一个新的高度。
由于步进电机是典型的脉冲控制运转设备,而系列单片机以其口多,体积
小,成本低廉,外围电路连接方便,可编程控制等综合优势越来越多的被引入到步进电
机控制系统中使用,逐渐成为国内外控制步进电机的主流方式。
本文所设计的步进电机驱动控制系统也是以单片机为核心的嵌入式开发控制
系统。
三、系统硬件设计说明
首先,在系统核心控制芯片的选择上,我们目前釆用AT89C51单片机。
它是一种低功耗电压、高性能的位单片机,它采用CMOS和高密度非易失性存储器技术,而且其输出引脚和指令系统都可以和MCS-51系统兼容,片内ROM允许在系统内改编程序或者用其他编程器件进行编程。
内部包含256字节RAM,4个8位并行I/O口,多个中断源,2个中断优先级,2个定时计数器,因此,89C51单片机是一种功能强大,速度快速,灵活性高而且价格便宜的控制芯片,完全可以满足本系统的设计需求。
管脚介绍略。
其次,由于单片机输出的脉冲信号非常微弱,不能直接用于驱动步进电机运行,因
此需要采用功率驱动芯片。
根据上文所述的硬件典型电路模块的设计思路,我们在本系
统的设计中采用集成达林顿管ICULN2003N作为系统的功率驱动芯片,该芯片是目前步
进电机控制系统中驱动电机运行最常见的芯片。
再次,考虑到要对系统进行精确控制,因此需要采用人机对话的方式进行,具体来
来说,需要采用按键控制实现。
在设计中采用个独立按键完成对系统步进电机运行的
控制。
独立按键的设计可以很好的节约系统端子,同时在软件编程中也更易操作,
达到了设计的初衷。
在实际编程时,我们采用按键扫描的方式进行按键程序的编写。
最后,通过液晶显示模块显示参数。
系统设计需要解决实时监控的问题,同时需要
建立可操作的人机通讯液晶显示界面,具体来说,本系统的液晶显示模块采用了能够显
示中文字库的液晶显示器件。
由于该系统需要两个电源输入,于是我们需要稳压。
四、步进电机的定位控制
1.位移控制
绘图仪、打印机等的运动是利用步进电机进行直线位移控制,通常将步进电机与滚珠丝杆相结合,从而将角度转动转换为直线位移,以实现精确定位控制。
设丝杆螺距l=2.4mm,若步进电机采用三相六拍方式,步距角A=1.5°,转动一周需240个步进脉冲,脉冲当量D=2.4/240=0.01,若需位移30mm,则需3000个步进脉冲。
2.定位换向
在往复运动的数控系统中,不仅需要位移控制,有时需根据定位要求控制步进
电机换向,实现定位换向通常有两种方法。
(1) 软件定位:对运动行程固定的定位换向,可通过准确地控制步进脉冲数,
当达到预定值时,用软件改变步进电机的通电顺序实现换向。
(2) 硬件跟踪:对定位位置不确定的数控系统,采用位移传感器(如行程开关、
霍尔接近开关等)根据检测到的位置信号确定换向。
3. 步进电机速度控制
对于步进电机的速度控制系统,从起点到终点的运行速度都有一定的要求。
对于步进电机的速度控制系为了解决这个问题,一般采取一个“加速—恒速—减速—停止”的过程。
用单片机实现步进电机的变加速度控制,实际上就是控制发脉冲的频率,升速时使脉冲频率增高,减速时使脉冲频率降低。
本系统中使用定时器中断来控制步进电机的频率,变加速度控制就是根据当时的情况,不断地改变定时器的初值。
本系统在实际设计中有以下特点:速度转换时间比较短。
为了缩短速度转换的时间,在软件编写时采取了建立数据表的方法,根据变频加速或减速的各个段间的阶梯频率建立一个连续的数据表,通过转换程序将其转换为定时器的初值表。
通过不同情况下,系统计算出应使用的频率,调用相应的定时器初值,控制电机的运行。
定时器初值的计算是在定时中断外实现的,不会占用中断时间,从而保证电机的高速运行。
五、程序设计
基于Keil编程软件利用C51语言进行编写。
参考文献:
1.单片机的步进电机驱动控制系统的设计与实现_汪姝,中国知网,2012
2. 步进电机定位控制技术的研究_周艳秋,中国知网,2009。