基于PID控制器的两轮自平衡小车设计

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业设计

基于PID控制器的两轮自平衡小车设计

摘要

两轮自平衡小车具有体积小、结构简单、运动灵活的特点,适用于狭小和危险的工作空间,在安防和军事上有广泛的应用前景。两轮自平衡小车是一种两轮左右平衡布置的,像传统倒立摆一样,本身是一种自然不稳定体,其动力学方程具有多变量、非线性、强耦合、时变、参数不确定性等特性,需要施加强有力的控制手段才能使其保持平衡。

本文在总结和归纳国内外对两轮自平衡小车的研究现状,提出了自己的两轮自平衡小车软硬件设计方案,小车硬件采用陀螺仪和加速度传感器检测车身的重力方向的倾斜角度和车身轮轴方向上的旋转加速度,数据通过控制器处理后,控制电机调整小车状态,使小车保持平衡。由于陀螺仪存在温漂和积分误差,加速度传感器动态响应较慢,不能有效可靠的反应车身的状态,所以软件使用互补滤波算法将陀螺仪和加速度传感器数据融合,结合陀螺仪的快速的动态响应特性和加速度传感器的长时间稳定特性,得到一个优化的角度近似值。

文中最后通过实验验证了自平衡小车软硬件控制方案的可行性。

关键词:自平衡互补滤波数据融合倒立摆

Two-wheeledSelf-balancingRobot

MaXuedong

(CollegeofEngineering,SouthChinaAgriculturalUniversity,Guangzhou510642,China) Abstract:Thetwo-wheeledself-balancingrobotissmallinmechanism,withsimplest

ructureandcanmakeflexiblemotion,目录

华南农业大学本科生毕业设计成绩评定表

1前言

研究意义

应用意义。自平衡车巧妙地利用地心引力使其自身保持平衡,并使得重力本身成为运动动能的提供者,载重越大,行驶动能也就越大,具有环保的特点(胡春亮等,2007)。驾驶者不必担心掌握平衡,车体自身的平衡稳定性,使得原本由于平衡能力障碍而无法骑自行车的人群也同样可以驾驭。车身小巧,转弯灵活,可以在狭窄、大转角的工作场合作业。自平衡车的种种优点使其可以作为一种快速、环保、安全、舒适、小巧灵活的绿色交通工具,是未来汽车和自行车的替代品,其市场的广阔性与经济效益不言而喻。

理论研究意义。自平衡车,在重力作用下车体姿态本征不稳定,需要电机的控制来维持姿态的平衡,通过电机驱动转动车轮,传感器、软件、微处理器及车体机械装置整体协调控制电动车平衡,是集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合复杂非线性系统,其控制难度大,控制算法复杂,给控制理论提出了很大的挑战,具有较强的理论研究价值。

国内外研究现状

美国、日本、瑞士等国家在研究自平衡车领域起步较早,目前已经达到了先进的水平。国内的一些高校以及科研机构也对其有所研究,并取得了一定的成绩。

国外研究成果

美国Lego公司SteveHassenplug设计了两轮自平衡传感式机器人Legway。实现了电机差动驱动方式,遥控操作,可以向前,向后和转弯时保持平衡,可以实现U型回转和零半径转弯。Legway是第一个自平衡机器人。采用了模块化的结构设计,安装和拆卸都很方便。

日本村田制作所的科学家研发了骑独轮车的机器人“村田顽童”和“村田婉童”。保持左右平衡通过转动机器人体内配备的惯性轮来实现。

瑞士联邦工学院的工业电子实验室为模拟人类行走设计并制造了一个基于倒立摆理论的两轮小车,该小车使用DSP控制,车架上方附有重物模拟实际车中的驾驶员,该小车使用陀螺仪和电机编码器得到的信息来稳定系统。

国内研究成果

哈尔滨工业大学设计的HITBot两轮自平衡小车,采用Accodometry方法,通过融合码盘和加速度级数据对位置进行估计,有效解决了两轮自平衡小车在运行过程中遇到打滑、越障、碰撞等异常事件而导致的位置估计失败的问题,解决了非系统测程法误差对机器人位置估计的影响,降低了加速度级固有漂移的不利影响,提高了两轮自平衡车的定位精度。

深圳职业技术学院等设计的两轮自平衡小车Opyanbot,应用最优控制与两轮差动等控制方法设计了控制器,提出了针对两轮自平衡机器人平衡和行进的新策略。为了提高两轮自平衡机器人的控制效果,利用基于DSP数字电路的全数字智能伺服驱动单元IPM100分别精确控制左右轮电机,并利用上位机实时控制机器人的运动状态,提高了控制精度、可靠度和集成度,得到了很好的控制效果。

本文的研究内容

本文研究内容有两轮自平衡小车的姿态检测算法,PID控制算法两方面。姿态检测算法通过互补滤波器融合姿态传感器(加速度传感器和陀螺仪传感器)数据,得到小车准确稳定的姿态信息,PID调节器则利用这些姿态信息,输出电机控制信号,控制电机的转动,使小车得以平衡。

2两轮平衡车的平衡原理

平衡车的机械结构

图1平衡车机械结构

现有的自平衡车结构种类繁多,但都归根于图1的基本结构,因此,本设计将使用图1的结构,车体由三层组成,从上到下依次是电池层,主控层,电机驱动层,电池层用于放置给整个系统供电的6V锂电池,主控层由主控芯片最小系统和传感器模块组成,电机驱动层接受单片机信号,并控制电机。每个层都是功能模块的电路路板之间用铜柱固定,电机外壳与电机驱动电路板固定,电机转轴与两只轮胎相连。

两轮车倾倒原因的受力分析

两轮车是一个高度不稳定系统,在重力作用下车体姿态本征不稳定,致使在没有外加调控下必然倾倒的现象(张三川,2011)。其受力如图2所示。

图2平衡车受力分析图

理想状态下,当M(车体重力)的方向与H(车轮支持力)的方向相差180°时,系统此时受力平衡,可以达到稳定不倒的状态,θ角度为0°。但自然界存在各式各样的干扰,θ角度总不为0,只要产生θ角,即使角度很小,M的方向与H的方向亦产生了角度,合力不为0,根据牛顿运动定律可知,θ角度将越来越大,直至车体倾倒在地上。平衡的方法

从以上分析可得,导致车体倾倒的最大因素是θ角度的产生,因此,欲使小车平衡,需要消除θ或者将θ角度控制在一个足够小的范围内。其整体控制环路图3所示。

图3小车平衡原理流程图

消除θ角度的有效方法,是通过电机的转动,带动车体下部的移动,以保持与车体上部在一水平垂直线上。

3系统方案分析与选择论证

系统方案设计

主控芯片方案

方案一:采用意法半导体(ST)公司的STM32单片机作为主控芯片。此芯片是以ARM的Cortex-M系列为内核的单片机,相对其他单片机,外设丰富,主频高,价格便宜,有专门的软件库,操作简单,调试方便,低功耗。强型系列时钟频率达到72MHz,是同类产品中性能最高的产品;基本型时钟频率为36MHz,以16位产品的价格得到比16位产品大幅提升的性能,是16位产品用户的最佳选择。

方案二:采用ATMEL公司的AVR单片机AVR单片机硬件结构采取8位机与16位机的折中策略,即采用局部寄存器存堆(32个寄存器文件)和单体高速输入/输出的方案(即输入捕获寄存器、输出比较匹配寄存器及相应控制逻辑)。提高了指令执行速度(1Mips/MHz),克服了瓶颈现象,增强了功能。其中的一款单片机型号为Atmega128,有64个引脚,最高可达到16M主频,IIC,UART,SPI接口都比较丰富,但价格高。

方案三:采用宏晶科技有限公司的STC12C5A60S2增强型51单片机作为主控芯片。此芯片内置ADC(模数转换)和IIC总线接口,且内部时钟不分频,可达到1MPS。性价比低。

考虑到此系统的复杂度,需要与传感器进行IIC通讯,输出灵活可控制的PWM信号,以及进行大量的数学运算。从性能和价格上综合考虑选择方案一,即用STM32作

相关文档
最新文档