基于PID控制的两轮自平衡小车设计(附有程序)
两轮自平衡小车双闭环PID控制设计

两轮⾃平衡⼩车双闭环PID控制设计两轮⾃平衡⼩车的研究意义1.1两轮平衡车的研究意义两轮平衡车是⼀种能够感知环境,并且能够进⾏分析判断然后进⾏⾏为控制的多功能的系统,是移动机器⼈的⼀种。
在运动控制领域中,为了研究控制算法,建⽴两轮平衡车去验证控制算法也是⾮常有⽤的,这使得在研究⾃动控制领域理论时,两轮平衡车也被作为课题,被⼴泛研究。
对于两轮平衡车模型的建⽴、分析以及控制算法的研究是课题的研究重点和难点。
设计的两轮平衡车实现前进、后退、转弯等功能是系统研究的⽬的,之后要对车⼦是否能够爬坡、越野等功能进⾏测试。
⼀个⾼度不稳定,其动⼒学模型呈现多变量、系统参数耦合、时变、不确定的⾮线性是两轮平衡车两轮车研究内容的难点,其运动学中的⾮完整性约束要求其控制任务的多重性,也就是说要在平衡状态下完成指定的控制任务,如在复杂路况环境下实现移动跟踪任务,这给系统设计带来了极⼤的挑战。
因此可以说两路平衡车是⼀个相对⽐较复杂的控制系统,这给控制⽅法提出了很⾼的要求,对控制理论⽅法提出来很⼤的挑战,是控制⽅法实现的典型平台,得到该领域专家的极⼤重视,成为具有挑战性的控制领域的课题之⼀。
两轮平衡车是⼀个复杂系统的实验装置,其控制算法复杂、参数变化⼤,是理论研究、实验仿真的理想平台。
在平衡车系统中进⾏解賴控制、不确定系统控制、⾃适应控制、⾮线性系统控制等控制⽅法的研究,具有物理意义明显、⽅便观察的特点,并且平衡车从造价来说不是很贵,占地⾯积⼩,是很好的实验⼯具,另外建⽴在此基础上的平衡系统的研究,能够适应复杂环境的导航、巡视等,在⼯业⽣产和社会⽣中具有⾮常⼤的应⽤潜⼒。
两轮平衡车所使⽤的控制⽅法主要有:状态回馈控制、PID控制、最优控制、极点回馈控制等,这些控制⽅法被称为传统控制⽅法。
1.2 本⽂研究内容(1)两轮⾃平衡⼩车的简单控制系统设计。
(2)基于倒⽴摆模型的两轮⾃平衡⼩车的数学建模。
(3)利⽤MATLAB⼯具进⾏两轮⾃平衡⼩车的系统控制⽅法分析。
基于卡尔曼滤波和PID控制的两轮自平衡车

基于卡尔曼滤波和PID控制的两轮自平衡车【摘要】针对两轮自平衡车的稳定和运动过程中的控制问题,我们在信号处理的过程中引入卡尔曼滤波对信号进行处理并且采用传统的pid控制,将控制过程分为三个部分,即站立、直线运动和转向。
由于车体运动分为这三个部分,并且这三个部分必须几乎同时控制,所以采用分时控制每一部分的方法,该方法被成功应用于“飞思卡尔”智能车大赛,并且取得良好效果。
【关键词】倒立摆系统;自平衡车;卡尔曼滤波;pid控制引言倒立摆系统是控制系统的一个重要的分支和典型的应用。
实际上它可以理解成在计算机的控制下,通过对系统各种状态参数的实时分析,使系统在水平方向或垂直方向上的位移和角度(角速度)的偏移量控制在允许的范围以内,从而使系统保持平衡。
自平衡车就是以倒立摆系统为工作原理的成品,两轮自平衡智能小车直立行走是要求仿照两轮自平衡电动车的行进模式,让车模以两个后轮驱动进行直立行走。
近年来,两轮自平衡电动车以其行走灵活、便利、节能等特点得到了很大的发展。
国内外有很多这方面的研究,也有相应的产品。
相对于传统的四轮行走的车模竞赛模式,车模直立行走在硬件设计、控制软件开发以及现场调试等方面提出了更高的要求。
实物图如下:一、系统构成整个模型车分为两个部分组成,即硬件电路和软件两部分。
硬件电路主要由加速度计、陀螺仪、微控制器、编码器、线性ccd、电机驱动电路组成。
由微处理器对陀螺仪、滤波电路和加速度计构成的传感器组进行高速a/d采样后,通过卡尔曼滤波器对传感器数据进行补偿和信息融合,得到准确的姿态角度信号,此角度信号再通过pid控制器运算,输出给电子调速器转换成pwm 信号,进而对电机进行控制。
系统结构框图如下图所示:二、卡尔曼滤波加速度计用于测量物体的线性加速度,加速度计的输出值与倾角呈非线性关系,随着倾角的增加而表现为正弦函数变化。
因此对加速度计的输出进行反正弦函数处理,才能得到其倾角值。
测量数据噪声与带宽的平方根成正比,即噪声会随带宽的增加而增加。
基于PID控制器的两轮自平衡小车设计

本科毕业设计基于PID控制器的两轮自平衡小车设计摘要两轮自平衡小车具有体积小、结构简单、运动灵活的特点,适用于狭小和危险的工作空间,在安防和军事上有广泛的应用前景。
两轮自平衡小车是一种两轮左右平衡布置的,像传统倒立摆一样,本身是一种自然不稳定体,其动力学方程具有多变量、非线性、强耦合、时变、参数不确定性等特性,需要施加强有力的控制手段才能使其保持平衡。
本文在总结和归纳国内外对两轮自平衡小车的研究现状,提出了自己的两轮自平衡小车软硬件设计方案,小车硬件采用陀螺仪和加速度传感器检测车身的重力方向的倾斜角度和车身轮轴方向上的旋转加速度,数据通过控制器处理后,控制电机调整小车状态,使小车保持平衡。
由于陀螺仪存在温漂和积分误差,加速度传感器动态响应较慢,不能有效可靠的反应车身的状态,所以软件使用互补滤波算法将陀螺仪和加速度传感器数据融合,结合陀螺仪的快速的动态响应特性和加速度传感器的长时间稳定特性,得到一个优化的角度近似值。
文中最后通过实验验证了自平衡小车软硬件控制方案的可行性。
关键词:自平衡互补滤波数据融合倒立摆Two-wheeledSelf-balancingRobotMaXuedong(CollegeofEngineering,SouthChinaAgriculturalUniversity,Guangzhou510642,China) Abstract:Thetwo-wheeledself-balancingrobotissmallinmechanism,withsimplestructureandcanmakeflexiblemotion,目录华南农业大学本科生毕业设计成绩评定表1前言研究意义应用意义。
自平衡车巧妙地利用地心引力使其自身保持平衡,并使得重力本身成为运动动能的提供者,载重越大,行驶动能也就越大,具有环保的特点(胡春亮等,2007)。
驾驶者不必担心掌握平衡,车体自身的平衡稳定性,使得原本由于平衡能力障碍而无法骑自行车的人群也同样可以驾驭。
基于PID控制的两轮自平衡小车的研究

2021.14科学技术创新基于PID 控制的两轮自平衡小车的研究李志豪司永康屈志扬李建军李高展曲艺晗(河南科技大学机电工程学院,河南洛阳471003)1概述近年来,两轮式自平衡小车的研究在美国、日本、等国都得到了迅速发展。
平衡车能够通过自身的整体协调性操作平衡,而且体积小,容易上手,成为越来越多人的一种代步工具。
平衡车的动力来源是锂电池,没有碳排放,是一种绿色出行方式,能很好的保护环境。
目前,平衡车已经进入越来越多人的视野之中,我们研究的目的是使小车能在正常的环境下正常前进和后退,保证正常的直立运行。
2系统总体结构设计该平衡小车系统采用Arduino 单片机为核心,GY-85九轴IMU 传感器模块负责采集平衡小车的姿态,并将姿态信息传输回Arduino 控制器,控制器得到平衡小车的实时角速度和角度以及小车车轮当前的速度,综合计算出需要输出的控制信号进而准确控制平衡小车两个车轮的直流电动机[1],使平衡小车保持平衡,同时将平衡小车系统所采集到的角度、角速度、车轮速度等通过蓝牙控制模块传送至手机app 上实时显示,以及在小车硬件显示屏上也能显示。
系统总体结构如图1所示。
图1平衡小车系统3系统电路设计该平衡小车系统分别由电源降压模块AMS1117、Arduinouno 、GY-85姿态传感器、电机驱动模块、电机及BT08b 蓝牙控制模块四部分组成,小车的系统集成电路结构如图2。
12v 的电源经过降压模块下降至5v ,为Arduino 控制板提供电源,GY-85读取小车姿态数据再传到Arduino 控制器;电机编码器获得一台电机的转速再通过传感器反馈到Arduino 控制板,Arduino 控制板根据传感器所采集的信息,通过PID 控制算法将PWM 信号输出传至电机驱动模块[2]与此同时,控制器将传感器采集到的小车姿态运动信息通过BT08B 蓝牙模块传送到手机app 上,并且能在显示屏上显示出来。
3.1ArduinoUNO 控制板ArduinoUNO 是基于ATmega328P 的一款微控制器板[3]。
双轮自平衡车的双闭环式PID控制系统设计与实现

双轮自平衡车的双闭环式PID控制系统设计与实现摘要:双轮自平衡车是一种集环境感知、规划决策、自主驾驶等功能为一体的综合性系统。
提出了一种双闭环式PID控制系统实现双轮自平衡车的控制。
针对传统的PID控制算法的缺陷,该系统引入了双闭环式PID改进平衡车的控制算法。
同时对平衡车的硬件系统与软件控制系统进行了设计、实现与分析。
实验表明:所提出的控制系统是有效可行的,提高了平衡车的稳定性和动态响应性。
关键词:双轮自平衡车;PID控制算法;双闭环式PID控制系统传统的PID控制算法在平衡车控制系统中的应用存在很大的缺陷。
在传统的PID控制器中,积分控制环节的引入是为了消除被控量的静态误差,以提高控制精度;在平衡车控制系统中,由于平衡车在启动过程或车体在较差的路况中运行,车体倾角会发生大幅度地变化,平衡车系统在较短的时间内会产生较大的输出偏差。
此时,PlD控制器中的积分控制环节会导致系统产生较大的超调,甚至导致平衡车产生较大的震荡。
除此之外,传统的PID控制器忽略了平衡车中两个电机的性能差异,对两个电机采用同一个PID控制器,容易引起车体产生震荡。
本文提出了一种双闭环式PID控制系统,其避免了PID控制器中的积分环节在平衡车的倾角发生大幅度地变化的情况下引起的超调和震荡,解决平衡车两个电机性能差异对平衡车控制系统的干扰,提高了平衡车控制系统的稳定性。
1平衡车的优势及机械结构1.1平衡车的优势l、转向半径小,小巧灵活,适合在原地频繁转向和狭小空间的场合下使用;2、结构简单,由于可以通过直接控制电机驱动来完成启动、加速、匀速、减速等动作,省略刹车和离合等装置,使得整车结构设计更为简单。
3、绿色环保,可以作为短途代步工具,用于上下班或者出去购物游玩,可以穿梭与人流密集的闹市区,减少城市道路交通行驶车辆,既可以解决交通堵塞问题,又可以减少碳的排放,做到环保出行。
1.2机械结构本文研制的平衡车高57.8cm,宽41.5cm,两轮直径为8cm。
基于PID控制器的两轮自平衡小车设计

基于PID控制器的两轮自平衡小车设计一、引言在自动控制领域中,PID控制器是一种常用的控制器。
它通过对系统输出进行反馈,来调节系统的输入,使系统的输出尽可能接近预期值。
本文将基于PID控制器设计一个两轮自平衡小车。
二、系统模型两轮自平衡小车是由两个驱动电机控制的,通过控制电机的转速来实现小车的前进、后退、转向等功能。
小车的整体结构是一个倒立摆,通过控制电机的转速,使其保持垂直状态。
系统的输入是电机转速,输出是小车的倾斜角度。
三、PID控制器PID控制器由比例(P)、积分(I)和微分(D)三个部分组成。
这三个部分根据误差来计算控制信号,实现对系统的控制。
1.比例控制部分:比例控制器根据误差的大小来计算控制信号。
误差是指系统输出与期望输出之间的差异。
比例控制器的计算公式为u_p=K_p*e(t),其中u_p是比例输出,K_p是比例增益,e(t)是误差。
2. 积分控制部分:积分控制器根据误差的累积值来计算控制信号。
积分控制器的计算公式为u_i = K_i * ∫e(t)dt,其中u_i是积分输出,K_i是积分增益,∫e(t)dt是误差的累积值。
3. 微分控制部分:微分控制器根据误差的变化率来计算控制信号。
微分控制器的计算公式为u_d = K_d * de(t)/dt,其中u_d是微分输出,K_d是微分增益,de(t)/dt是误差的变化率。
PID控制器的输出信号为u(t)=u_p+u_i+u_d,其中u(t)是控制信号。
四、设计与实现在设计两轮自平衡小车的PID控制器时,需要根据系统的特性来选择合适的参数。
通常可以通过试验或仿真来获得系统的模型,进而进行参数调节。
1.参数调节:首先,可以将系统的转角作为输入信号,通过试验或仿真来获得小车的倾斜角度与转角的关系。
然后,可以根据比例、积分和微分控制部分的特性,来选择合适的增益参数。
比例增益越大,系统的响应速度越快,但可能会引起震荡;积分增益可以消除静态误差,但可能会引起过冲;微分增益可以减小震荡,但可能会引起超调。
基于单片机的两轮自平衡车控制系统设计

基于单片机的两轮自平衡车控制系统设计文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]基于单片机的两轮自平衡车控制系统设计摘要两轮自平衡车是一种高度不稳定的两轮机器人,就像传统的倒立摆一样,本质不稳定是两轮小车的特性,必须施加有效的控制手段才能使其稳定。
本文提出了一种两轮自平衡小车的设计方案,采用重力加速度陀螺仪传感器MPU-6050检测小车姿态,使用互补滤波完成陀螺仪数据与加速度计数据的数据融合。
系统选用STC公司的8位单片机STC12C5A60S2为主控制器,根据从传感器中获取的数据,经过PID算法处理后,输出控制信号至电机驱动芯片TB6612FNG,以控制小车的两个电机,来使小车保持平衡状态。
整个系统制作完成后,小车可以在无人干预的条件下实现自主平衡,并且在引入适量干扰的情况下小车能够自主调整并迅速恢复至稳定状态。
通过蓝牙,还可以控制小车前进,后退,左右转。
关键词:两轮自平衡小车加速度计陀螺仪数据融合滤波 PID算法Design of Control System of Two-Wheel Self-Balance Vehicle based onMicrocontrollerAbstractTwo-wheel self-balance vehicle is a kind of highly unstable two-wheel robot. The characteristic of two-wheel vehicle is the nature of the instability as traditional inverted pendulum, and effective control must be exerted if we need to make it stable. This paper presents a design scheme of two-wheel self-balance vehicle. We need using gravityaccelerometer gyroscope sensor MPU6050 for the inclination angle of vehicle, and using complementary filter for the data fusion of gyroscope and accelerometer. We choose an 8-bit microcontroller named STC12C5A60S2 from STC Company as main controller of the control system. The main controller output control signal, which is based on the data from the sensors, to the motor drive chip named TB6612FNG forcontrolling two motors of vehicle, and keeping the vehicle in balance. After the completion of the control system, the vehicle can achieve autonomous balance under the conditions of unmanned intervention, the vehicle can adjust automatically and restored to a stable statequickly in the case of giving appropriate interference as well. In addition, we can control the vehicle forward, backward and turn around. Key words: Two-Wheel Self-Balance Vehicle; Accelerometer; Gyroscope; Data fusion;Complementary filter; PID algorithm1 绪论自平衡小车的研究背景近几年来,随着电子技术的发展与进步,移动机器人的研究不断深入,成为目前机器人研究领域的一个重要组成部分,并且其应用领域日益广泛,其所需适应的环境和执行的任务也更复杂,这就对移动机器人提出了更高的要求。
两轮自平衡小车的设计与实现

两轮自平衡小车的设计与实现一、本文概述随着科技的飞速发展,智能化、自主化已经成为现代机器人技术的重要发展方向。
两轮自平衡小车作为一种典型的动态稳定控制机器人,其设计与实现技术对于推动机器人技术的进步具有重要意义。
本文旨在深入探讨两轮自平衡小车的设计理念、实现方法以及关键技术,为相关领域的研究者和爱好者提供有益的参考。
本文将首先介绍两轮自平衡小车的基本概念和原理,阐述其动态稳定控制的基本思想。
随后,将详细介绍两轮自平衡小车的硬件设计,包括电机驱动、传感器选型、控制器设计等关键部分,并阐述各部件之间的协同工作原理。
在此基础上,本文将重点探讨两轮自平衡小车的软件实现,包括平衡控制算法、运动控制算法以及人机交互界面设计等。
本文还将对两轮自平衡小车的性能优化和实际应用进行深入分析,探讨如何提高其稳定性、响应速度以及续航能力等问题。
本文将对两轮自平衡小车的发展趋势和前景进行展望,为相关领域的研究和发展提供有益的参考。
通过本文的阐述,读者可以全面了解两轮自平衡小车的设计与实现过程,掌握其关键技术和应用方法,为推动机器人技术的发展做出贡献。
二、两轮自平衡小车的基本原理两轮自平衡小车,又称作双轮自稳车或双轮倒立摆,是一种基于动态稳定技术设计的个人交通工具。
其基本原理主要涉及到力学、控制理论以及传感器技术。
两轮自平衡小车的稳定性主要依赖于其独特的力学结构。
与传统三轮或四轮的设计不同,双轮自平衡小车只有两个支撑点,这意味着它必须通过动态调整自身姿态来维持稳定。
这种动态调整的过程类似于杂技演员走钢丝,需要精确的平衡和快速的反应。
实现自平衡的关键在于控制理论的应用。
两轮自平衡小车通常搭载有先进的控制系统,该系统通过传感器实时监测小车的姿态(如倾斜角度、加速度等),并根据这些信息计算出必要的调整量。
控制系统随后会向电机发送指令,调整小车的运动状态,以保持平衡。
传感器在两轮自平衡小车中扮演着至关重要的角色。
常见的传感器包括陀螺仪、加速度计和角度传感器等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于PID控制两轮自平衡小车设计目录1.方案设计论证 (3)1.1单片机的选择与论证 (3)1.2显示模块的选择与论证 (3)1.3按键模块的选择与论证 (4)1.5电机模块的选择与论证 (5)2.硬件设计 (5)2.1微控制模块设计与分析.................................................................. 错误!未定义书签。
2.2传感器模块设计与分析.................................................................. 错误!未定义书签。
2.3显示器模块设计与分析.................................................................. 错误!未定义书签。
2.4按键模块设计与分析...................................................................... 错误!未定义书签。
2.5电源模块设计与分析...................................................................... 错误!未定义书签。
3.特色创新 (5)4.总结 (7)参考文献 (8)两轮自平衡小车设计摘要:以Kinetis_K60微处理器单片机作为控制核心,通过PID算法,利用陀螺仪,摄像头、加速度计、编码器和液晶显示器等元件,设计了此两轮自平衡控制小车,实现了小车的自动平衡。
该系统的创新主要体现在可以自动循迹,实时的显示周围环境的温度及小车行驶速度,以便用户可以了解当时的温度和小车的速度。
该系统的主要特点是方便,快捷,环保。
关键词:Kinetis_K60微处理器,PID,陀螺仪,加速度计,液晶显示器Abstract:We use Kinetis_K60 micro processor control with micro controller as thecore,through the PID algorithm, using gyroscopes, cameras, accelerometers, encoders and LCD monitors and other components,designed the two-wheeled self-balancing control car to achieve as elf-balancing car.Innovation is mainly reflected in the system can automatically tracking, real-time display of temperature and speed of the car with the surrounding environment,so that users can under stand the prevailing temperature and the speed of the car.The main features of the system is easy, fast and environmentally friendly.Keyword:Kinetis_K60 micro processor PID algorithm accelerometers就目前市场上的小车来说,结构过于普通,而且大部分是通过四轮同时着地行走的,同时不够智能和人性化,所以我们设计了两轮自平衡控制小车。
1.方案设计论证1.1单片机的选择与论证方案一:凌阳公司的16位单片机。
该单片机是16位控制器,具有体积小、驱动能力强、可靠性高、功耗低、结构简单、具有语音处理、运算速度快等优点,但凌阳公司的单片机编程规则与传统的单片机大不相同,并且IO口数量相对于其他单片机来说较少。
方案二:ATMEL公司的AT89s52作为系统的控制器。
AT89s52单片机软件编程灵活,自由度大,可用软件编程实现各种算法和逻辑控制,成本低,被各个领域广泛应用。
但是51系列单片机RAM、ROM等资源少,外围模块少,指令周期长。
方案三:Kinetis_K60微处理器。
Kinetis_K60微处理器,它具有144个I/O管脚,此处理器具有高速的处理速度和丰富的I/O管脚,可以作为整个小车的控制核心。
经过综合考虑,我们选择方案三。
1.2显示模块的选择与论证方案一:采用LED数码管显示。
LED数码管显示虽然具有亮度高,醒目,价格便宜,寿命长;但是只能显示0~9的数字和一些简单的字符,电路复杂,占用资源较多且信息量小。
方案二:用12864液晶显示。
其优点是能显示更多的字符,功耗低,体积小,且有着良好的人机界面,能够实时的反映出系统当前的状态。
方案三:采用Nokia5110液晶显示。
此液晶具备成本低的特点,但是由于屏幕本身大小的限制,显示的内容相对较少。
比较以上三种方案,选择方案二,使用12864液晶作为显示界面。
1.3按键模块的选择与论证方案一:采用普通的电路开关设计电路。
使用普通的电路开关来作为系统工作模式的选择键可以提高系统的硬件稳定性,而且对于开关位置的放置也没有要求,但是对于一个系统来说,如每一个步骤的进行都需要一个开关的话,就会提高控制部分设计的复杂性,同时占用单片机的多个IO口,造成资源的浪费。
方案二:采用带有提示功能的3*4贴片式键盘设计电路。
矩阵键盘的设计原理是为了减少I/O口的占用,通常将按键排列成矩阵形式,在矩阵键盘中每条水平线和垂直线在交叉处不直接相连,而是通过一个按键相连接,这样在由N条水平线和M条垂直线最多可以有N *M 个按键,大大的减少了对于芯片I/O的占用。
通过对矩阵键盘的稳定性测试,发现具有很好的稳定性。
经过比较,我们采用方案二不但设计简单,运行稳定,精度高,而且能够提示使用者进行相应地操作。
1.4传感器模块的选择与论证考虑如何使系统精确运行。
这里我们要电机的停转精度等问题,为此我们考虑了以下几种传感器:方案一:采用光电开关。
它是利用被检测物对光束的遮挡或反射,由同步回路选通电路,从而检测物体有无的。
光电开关将输入电流在发射器上转换为光信号射出,接收器再根据接收到的光线的强弱或有无对目标物体进行探测。
但是光电开光受光线的影响很大,在一个相对密封的系统中,光电开关不容易进行检测。
方案二:采用行程开关。
行程开关是一种根据运动部件的行程位置而切换电路的电器,它的作用原理与按钮类似。
当动物接近静物时,开关的连杆驱动开关的接点引起闭合的接点分断或者断开的接点闭合。
由开关接点开、合状态的改变去控制电路和机构的动作。
行程开关的作用范围很广,不受限制,而且固定简单,原理简单。
方案三:采用超声波传感器。
超声波是利用像物体发送超声波,采集返回的信号,进而根据发送信号和接收信号的时间差来计算与对面物体的距离。
但是通过资料了解到,超声波的工作状态很严格,对温度的要求很高,而且采集信号容易受到光线的影响。
方案四:采用摄像头ov7620。
而道路的获取则是采用OV7620摄像头来采集,处理器把摄像头采集到的信息转换成二进制的数字信息,通过对颜色深浅的判断,转换成不同的二进制信息,再送给处理器处理。
通过比较方案,我们选择了摄像头作为主要传感器。
1.5电机模块的选择与论证方案一:采用三相异步交流电动机。
三相异步交流发电机的工作原理是直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。
三相异步交流发电机的控制精确度很高,但是由于电机只能使用交流电,而且价格昂贵,我们决定使用直流电机。
方案二:采用GW31ZY-24直流减速电机。
直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。
24系列的电机,电机长,力矩大,齿轮减速箱长,转速慢,稳定性高。
并且工作电压范围大,工作时电压稳定。
很适合做办公桌的动力系统。
方案三:采用freescale官方提供的直流电机。
DC7.2 RS-540马达,转速20000r/min,内装散热风扇,最大功率118W,是车模完成竞赛任务的有力保障。
通过比较方案,我们选择了RS-540电机作为主要的的受控部件2.硬件设计1.控制模块本两轮平衡代步车采用的Kinetis_K60微处理器,它具有144个I/O管脚,此处理器具有高速的处理速度和丰富的I/O管脚,可以作为整个小车的控制核心。
2.角度测量模块而小车的平衡则是利用陀螺仪与加速度传感器的融合来获得小车的与竖直方向的倾角,融合的的过程中是采用了卡尔曼滤波和中值滤波法来对AD采集到的数据进行滤波,使得数据形成的波形更加的平滑,使获得的信息更加的准确。
3.信息采集模块而道路的获取则是采用OV7620摄像头来采集,处理器把摄像头采集到的信息转换成二进制的数字信息,通过对颜色深浅的判断,转换成不同的二进制信息,再送给处理器处理。
4.电机与速度测量模块速度的测量主要是用到光码盘进行测速,把测到的速度信息与原设定的速度进行比较,由处理器进行算法处理,利用经典的PID算法和对电机的闭环控制,使得电机有更快的响应速度和实时的反馈,把处理后的信息送给电机,小车的控制原理图如下所示:5.电机驱动模块而电机驱动采用四片BTS7971芯片搭建而成的两个全桥电机驱动,它可以驱动两个电机的前进后退和转弯,使小车反应更加的灵敏,使小车适应一些复杂的地形,为人们提供了极大的方便,电流的最大可以达到43A,为小车提供充足的动力。
6.显示模块小车上装有温度传感器,可以测量当前环境下的温度,光码盘可以测量当前小车的速度,然后显示到12864的液晶屏幕上,反应给用户。
3.总结经过两个多月的努力学习,“两轮子平衡小车”终于得以按时顺利的完成了。
这次设计涉及的内容广,知识面大,做完之后自己在很多方面都有了进一步的了解与掌握,受益匪浅,当然在制作的过程中也遇到了很多困难,不过我们都一一克服了。
在这个过程中我们深刻的体会到了共同协作和团队精神的重要性,提高了自己解决问题的能力。
通过本次设计,使我初步掌握了工程设计的程序和方法,既丰富了自己的专业知识,又取得了一定的工作经验,为以后的走向工作岗位打下坚实的基础。
参考文献[1]黄智伟等.《全国大学生电子设计竞赛训练教程》.北京:电子工业出版社,2010[2]魏永广.《现代传感技术》.哈尔滨:东北大学出版社,2001[3]电子测量电路,吴丽华,童子权,张剑主编,哈尔滨工业大学出版社[4]张迎新,等.单片机微型计算机原理,应用及接口技术,[M].修订版.北京:国防工业出版社,2004.[5] 王毅平,张振容,晋明武.2000年.单片机原理及实用技术[M].北人民邮电出版社.32-65。