最新期末高二数学选修2-2、2-3测试题(含答案)

合集下载

高二数学理科选修2-2、2-3综合练习题(含答案)

高二数学理科选修2-2、2-3综合练习题(含答案)

高二理科选修2-2、2-3综合练习题一、选择题1.已知|z |=3,且z +3i 是纯虚数,则z =( )A .-3iB .3iC .±3i D.4i 2.函数y=x 2cosx 的导数为( ) (A) y ′=2xcosx -x 2sinx(B) y ′=2xcosx+x 2sinx (C) y ′=x 2cosx -2xsinx(D) y ′=xcosx -x 2sinx3.若x 为自然数,且x<55,则(55-x)(56–x)…(68–x )( 69–x )= ( )A 、x x A --5569B 、1569x A -C 、1555x A -D 、1455x A -4.一边长为6的正方形铁片,铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒,为使方盒的容积最大,x 应取( ) .A 、1B 、2C 、3D 、45、工人制造机器零件尺寸在正常情况下,服从正态分布2(,)N μσ.在一次正常实验中,取1000个零件时,不属于(3,3)μσμσ-+这个尺寸范围的零件个数可能为( ) A .3个 B .6个 C .7个 D .10个 6、用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( )A.假设至少有一个钝角 B .假设至少有两个钝角C.假设没有一个钝角D.假设没有一个钝角或至少有两个钝角7.4名学生被中大、华工、华师录取,若每所大学至少要录取1名,则共有不同的录取方法( ).A 、72种B 、36种C 、24种D 、12种8、随机变量ξ服从二项分布ξ~()p n B ,,且,200,300==ξξD E 则p 等于( )A. 32B. 31C. 1D. 09.若4)31(22+-=⎰dx x a ,且naxx )1(+的展开式中第3项的二项式系数是15,则展开式中所有项系数之和为( ) A .164-B .132C .164 D .112810.给出以下命题:⑴若 ,则f(x)>0; ⑵ ; ⑶f(x)的原函数为F(x),且F(x)是以T 为周期的函数,则 ; 其中正确命题的个数为( )(A)1 (B)2 (C)3 (D)0 二、填空题11、已知函数f(x) =32(6)1x ax a x ++++在R 上有极值,则实数a 的取值范围是 .12.观察下式1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,……,则可得出一般性结论:________13.已知X 的分布列如图,且,则a 的值为____14.对于二项式(1-x)1999,有下列四个命题:①展开式中T 1000= -C 19991000x999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项; ④当x=2000时,(1-x)1999除以2000的余数是1.其中正确命题的序号是__________. (把你认为正确的命题序号都填上)15.设)(x f 是定义在R 上的可导函数,且满足0)()('>+x xf x f .则不等式)1(1)1(2-->+x f x x f 的解集为____________.20sin 4xdx =⎰π()0ba f x dx >⎰0()()aa TTf x dx f x dx +=⎰⎰三、解答题16.(12分)已知1z i a b =+,,为实数.(1)若234z z ω=+-,求ω;(2)若2211z az b i z z ++=--+,求a ,b 的值.17、(12分) 20()(28)(0)xF x t t dt x =+->⎰.(1)求()F x 的单调区间; (2)求函数()F x 在[13],上的最值.18、(12分)已知数列{}n a 的前n 项和*1()n n S na n =-∈N .(1)计算1a ,2a ,3a ,4a ;(2)猜想n a 的表达式,并用数学归纳法证明你的结论.19、(12分)某次有奖竞猜活动中,主持人准备了A 、B 两个相互独立的问题, 并且宣布:观众答对问题A 可获奖金a 元,答对问题B 可获奖金2a 元;先答哪个题由观众自由选择;只有第一个问题答对,才能再答第二个问题,否则终止答题.设某幸运观众答对问题A 、B 的概率分别为31、14.你觉得他应先回答哪个问题才能使获得奖金的期望较大?说明理由.20、(13分)某宾馆有50个房间供游客居住,当每个房间定价为每天180元时,房间会全部住满;房间单价增加10元,就会有一个房间空闲,如果游客居住房间,宾馆每间每天需花费20元的各种维护费用。

高二数学下期期末考试题(选修2-2_选修2-3_)3

高二数学下期期末考试题(选修2-2_选修2-3_)3

高二数学下期期末考试题(选修2-2,选修2-3 )一.选择题(10小题,每小题5分,共50分)1.设复数z=1+i ,则复数2z+z 2的共轭复数为( )A 、1-iB 、1+iC 、-1+iD 、-1-i 2.342(1)(1)(1)n x x x +++++++的展开式中2x 的系数是( )A.33n C +B.32n C + C.321n C +-D.331n C +-3.函数2sin(2)y x x =+导数是( )A.2cos(2)x x +B.22sin(2)x x x +C.2(41)cos(2)x x x ++D.24cos(2)x x + 4.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊂/平面α,直线a ⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误5.已知函数f(x)的导函数f '(x )=ax 2+bx+c 的图像如图所示,则f(x)的图像可能是( )6.某个命题与正整数有关,若当)(*N k k n ∈=时该命题成立,那么可推得当=n 1+k 时该命题也成立,现已知当5=n 时该命题不成立,那么可推得( ) (A )当6=n 时,该命题不成立 (B )当6=n 时,该命题成立 (C )当4=n 时,该命题成立 (D)当4=n 时,该命题不成立A7.正态总体的概率密度函数为2()8()x x f x e-∈=R ,则总体的平均数和标准差分别为( ) A.0,8B .0,4C.0,2 D.0,28.从甲袋中摸出1个红球的概率为13,从乙袋中摸出1个红球的概率为12,从两袋中各摸出一个球,则23等于( ) (A )2个球都不是红球的概率 (B )2个球都是红球的概率 (C )至少有1个红球的概率 (D )2个球中恰有1个红球的概率 9.若随机变量η的分布列如下:则当()0.8P x η<=时,实数x 的取值范围是( ) A.x ≤2B.1≤x ≤2C.1<x ≤2D.1<x <210.给出以下命题: ⑴若()0b af x dx >⎰,则f (x )>0;⑵20sin 4xdx =⎰π;⑶f (x )的原函数为F (x ),且F (x )是以T 为周期的函数,则0()()a a T Tf x dx f x dx +=⎰⎰;其中正确命题的个数为( )(A)1 (B)2 (C)3 (D)0 二.填空题(5小题,每小题5分,共25分) 11.若x <y <0且xy -(x2+y 2)i =2-5i ,则x =_____,y =______.12.任意地向(0,1)上投掷一个点,用x 表示该点坐标,且1A=0,2x x ⎧⎫<<⎨⎬⎩⎭()1B=1,P B 4x x A ⎧⎫<<=⎨⎬⎩⎭则_____。

日照实验高中高二下学期期末复习数学练习二(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习二(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习二(选修2-2和2-3)1.已知i i Z+=+-21,则复数Z=A 、i 31+-B 、i 31-C 、i +3D 、i -32.大熊猫活到十岁的概率是0.8,活到十五岁的概率是0.6,若现有一只大熊猫已经十岁了,则他活到十五岁的概率是 A .0.8 B .0.75 C .0.6 D .0.483.若5250125(1)(1)(1)(1)x a a x a x a x +=+-+-+⋅⋅⋅+-,则0a =BA.1B.32C.-1D.-324.已知随机变量ξ服从正态分布()22N ,a ,且P(ξ<4)=0.8,则P(0<ξ<2)=A.0.6 B.0.4 C.0.3 D.0.25.有A 、B 两个口袋,A 袋装有4个白球,2个黑球;B 袋装有3个白球,4个黑球,从A 袋、B 袋各取2个球交换之后,则A 袋中装有4个白球的概率为(A )352(B )10532(C )1052(D )2186.设函数,)21()(10x x f -=则导函数)(x f '的展开式中2x 项的系数为 A .1440 B.-1440 C.2880 D.-28807.已知函数f(x)=x 2-ax +3在(0,1)上为减函数,函数g(x)=x 2-aln x 在(1,2)上为增函数,则a 的值等于 A .1 B .2 C .0 D. 2则根据表中的数据,计算随机变量2K 的值,并参考有关公式,你认为性别与是否喜爱打篮球之间有关系的把握有 A .97.5% B.99% C . 99.5% D.99.9%9.已知函数f(x)在R 上满足f(x)=2f(2-x)-x 2+8x -8,则曲线y =f(x)在点(1,f(1))处的切线方程是 A .y =2x -1 B .y =x C .y =3x -2 D .y =-2x +310.某人制定了一项旅游计划,从7个旅游城市中选择5个进行游览。

郑 2-2、2-3测试题(含答案)

郑 2-2、2-3测试题(含答案)

高二数学选修2-2、2-3测试题参考数据: P (χ2≥x 0)0.500.400.250.150.100.050.025 0.010 0.0050.001x 00.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828一、选择题:(本大题共8小题,每小题5分,共40分) 1.已知f(x)=22x x +,则'(0)f =( )A . 0B . -4C . -2D . 2 2.如果复数(2m +i)(1+mi)是实数,则实数m=( ) A . 1 B . -1 C .2 D . -23. 某科研机构为了研究中年人秃发与心脏病的是否有关,随机调查了一些中年人情况,具体数据如下表:根据表中数据得到45532075025)300545020(7752⨯⨯⨯⨯-⨯⨯=k ≈15.968 因为K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为 .A 、0.1B 、0.05C 、0.01D 、0.001 4.曲线y=2x 与直线y-x-2=0围成图形的面积是( ) A .133 B . 136 C . 73 D . 925.在一个盒子中有大小一样的20个球,其中10个红球,10个白球,则在第一个人摸出1个红球的条件下,第二个人摸出1个白球的概率为( )A. 1019B. 519 C . 12 D. 19206.某次市教学质量检测,甲、乙、丙三科考试成绩的直方图如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由图中曲线可得下列说法中正确的一个是( ) A . 甲科总体的标准差最小 B . 乙科总体的标准差及平均数都居中 C . 丙科总体的平均数最小 D . 甲、乙、丙的总体的平均数不相同7. 从图中的9个顶点中任取3个点作为一组,其中可构成三角形的组数是( ) A .88 B .84 C .80 D .76第7题图 第6题图 8. 若从集合P 到集合Q={a,b,c}所有不同的映射共有81个,则从集合Q 到集合P 可作的不同的映射共有( )A .32个B .27个C .81个D .64个9.在一次试验中,测得()x y ,的四组值分别是(12)(23)(34)(45)A B C D ,,,,,,,,则y 与x 之间的回归直线方程为( A ) A. 1y x =+B. 2y x =+ C.21y x =+D. 1y x =-10、某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为( ) A.2258 B.21 C.83D.4311、若函数3()3f x x x =-在区间2(12,)a a -上有最小值,则实数a 的取值范围是( ) A .(1,11)-B .(1,4)-C .(1,2]-D .(1,2)-12.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是701.根据这位负责人的话可以推断出参加面试的人数为( ) A .21B .35C .42D .70二、填空题:(本大题共6小题,每小题5分,共30分)13.定义运算a c b d =ad-bc ,若复数x 满足 22xi 32i-=2x ,则x= . 14.已知函数f(x)=32(6)1x ax a x ++++在R 上有极值,则实数a 的取值范围是15.若(2x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 5+a 3+a 1=_____1094 ________.16. 为了保证信息安全传输,有一种称为秘密密钥密码系统(Private Key Cryptosystem ),其加密、解密原理如下图: 现在加密密钥为)2(log +=x y a ,如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.问:若接受方接到密文为“4”,则解密后得明文为 .心脏病 无心脏病 秃发 20 300 不秃发5450甲乙丙 解密密钥密码 加密密钥密码 明文 密文 密文 发送明文试题答题卡一、选择题:二、填空题:13.,14. ,15. , 16. ,三、解答题。

日照实验高中高二下学期期末复习数学练习三(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习三(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习三(选修2-2和2-3)1)复数i ii i --+1)1(23等于 A .1B .-1C .i D . i -2) 观察按下列顺序排列的等式:9011⨯+=,91211⨯+=,92321⨯+=,93431⨯+=,…,猜想第()n n +∈N 个等式应为A .9(1)109n n n ++=+B .9(1)109n n n -+=-C .9(1)101n n n +-=-D .9(1)(1)1010n n n -+-=- 3)如果物体做2)1(2)(t t S -=的直线运动,则其在s t 4=时的瞬时速度为: A . 12 B 。

12- C. 4 D. 4- 4).函数))0(,0(cos sin )(f x x x f 在点+=处的切线方程为A .01=+-y xB .01=--y xC .01=-+y xD .01=++y x5).两曲线22y x x =-+,224y x x =-所围成图形的面积S 等于A.4-B.0C.2D.46)随机变量X 的概率分布列为)1()(+==n n an X P ,(1,2,3,4n =) 其中a 为常数,则)2521(<<X P 的值为( )A :23 B :34 C :45 D :567)二项式3032a a ⎛⎫- ⎪⎝⎭的展开式的常数项为第( )项 A : 17 B :18 C :19 D :208)某学习小组男女生共8人,现从男生中选2人,女生中选1人,分别去做3种不同的工作,共有90种不同的选法, 则男女生人数为( )A : 2,6B :3,5C :5,3D :6,2 9)已知函数()()()()f x x a x b x c =---,且()()1f a f b ''==,则()f c '等于A .12-B .12C .1-D .110)某机械加工零件由两道工序组成,第一道的废品率为a ,第二道的废品率为b ,假定这道工序出废品是彼此无关的,那么产品的合格率为( )A : ab-a-b+1B :1-a-bC :1-abD :1-2ab 11)若复数(a 2-3a +2)+(a-1)i 是纯虚数,则实数a 的值为_______. 12)设随机变量X ~),2(p B ,Y ~),3(p B ,若43)1(=≥X P ,则=≥)1(Y P13)若函数24()1xf x x =+在区间(21)m m +,上是单调递增函数,则实数m 的取值范围是 .14)在10个球中有6个红球,4个白球(各不相同),不放回的依次摸出2个球,在第一次摸出红球的条件下,第2次也摸出红球的概率是_________.15)一袋中装有5个白球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现2次停止,用X 表示取球的次数,则==)3(X P ___________.16)若复数1i z =+,求实数a b ,使2)2(2z a z b az +=+成立.(其中z 为z 的共轭复数) 17)已知函数322()1f x x mx m x =+-+(m 为常数,且m >0)有极大值9. (1)求m 的值;(2)若斜率为-5的直线是曲线()y f x =的切线,求此直线方程. 18)在数列{}n a 中,113a =,且前n 项的算术平均数等于第n 项的21n -倍()n +∈N . (1)写出此数列的前5项;(2)归纳猜想{}n a 的通项公式,并用数学归纳法证明.19)某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a 件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为x ()01x <<,那么月平均销售量减少的百分率为2x .记改进工艺后,旅游部门销售该纪念品的月平均利润是y (元). (1)写出y 与x 的函数关系式;(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.20)射击比赛中,每位射手射击队10次,每次一发,击中目标得3分,未击中目标得0分,每射击一次,凡参赛者加2分,已知小李击中目标的概率为0.8.(1)设X 为小李击中目标的次数,求X 的概率分布; (2)求小李在比赛中的得分的数学期望与方差. 21)已知函数23()ln(23)2f x x x =+-. (1)求()f x 在[0,1]上的极值;(2)若对任意11[,],63x ∈不等式ln ln[()3]0x f x x a '-+-<恒成立,求实数a 的取值范围; (3)若关于x 的方程b x x f +-=2)(在[0,1]上恰有两个零点,求实数b 的取值范围.日照实验高中高二下学期期末复习数学练习三(选修2-2和2-3)ABAAD DCBAA 11) 2 12) 8713) 01≤<-m 14) 95 15) 2564516:42a b =-⎧⎨=⎩,,或21.a b =-⎧⎨=-⎩,17:解:(Ⅰ) f’(x )=3x 2+2mx -m 2=(x +m )(3x -m )=0,则x =-m 或x =31m , 当x 变化时,f’(x )与f (x )的变化情况如下表:x (-∞,-m )-m (-m,m 31) m 31 (m 31,+∞) f’(x ) + 0 - 0 + f (x )极大值极小值从而可知,当x =-m 时,函数f (x )取得极大值9, 即f (-m )=-m 3+m 3+m 3+1=9,∴m =2. (Ⅱ)由(Ⅰ)知,f (x )=x 3+2x 2-4x +1, 依题意知f’(x )=3x 2+4x -4=-5,∴x =-1或x =-31. 又f (-1)=6,f (-31)=2768, 所以切线方程为y -6=-5(x +1),或y -2768=-5(x +31), 即5x +y -1=0,或135x +27y -23=0.18:解:(1)由已知113a =,123n a a a a n ++++(21)n n a =-,分别取2345n =,,,,得2111153515a a ===⨯,312111()145735a a a =+==⨯,4123111()277963a a a a =++==⨯,51234111()4491199a a a a a =+++==⨯;所以数列的前5项是:113a =,215a =,3135a =,4163a =,5199a =;(2)由(1)中的分析可以猜想1(21)(21)n a n n =-+.下面用数学归纳法证明:①当1n =时,猜想显然成立. ②假设当n k =时猜想成立,即1(21)(21)k a k k =-+.那么由已知,得12311(21)1k k k a a a a a k a k +++++++=++,即21231(23)k k a a a a k k a +++++=+.所以221(2)(23)k k k k a k k a +-=+,即21(21)(23)k k k a k a +-=+,又由归纳假设,得11(21)(23)(21)(21)k k k a k k +-=+-+,所以11(21)(23)k a k k +=++,即当1n k =+时,公式也成立.当①和②知,对一切n +∈N ,都有1(21)(21)n a n n =-+成立.19:解: (Ⅰ)改进工艺后,每件产品的销售价为()201x +,月平均销售量为()21a x -件,则月平均利润()()2120115y a x x =-⋅+-⎡⎤⎣⎦(元), ∴y 与x 的函数关系式为()235144y a x x x =+-- ()01x << . (Ⅱ)由()2542120y a x x '=--=得112x =,23x =-(舍), 当102x <<时0y '>;112x <<时0y '<, ∴函数()235144y a x x x =+-- ()01x <<在12x =取得最大值. 故改进工艺后,产品的销售价为12012⎛⎫+ ⎪⎝⎭30=元时,旅游部门销售该纪念品的月平均利润最大.20:(1)X 的概率分布为X O 1…10 P0.21019100.20.8c ⨯…0.810(2)设小李在比赛中的得分为Y,由(1)知满足二项分布),B (X 8.010服从于所以 E(Y)=E(3X+2)=3E(X)+2=3100.82⨯⨯+=26,D(Y)= D(3X+2)=9D(X) =9100.80.2⨯⨯⨯=14.4, 21.解:(1)由已知,()f x 的定义域为2(,)3-+∞, 23)13)(1(33323)(+-+-=-+='x x x x x x f ,令1310)(-==='x x x f 或得(舍去)2分 ∵10,()0,()3x f x f x '≤<>当时单调递增;当)(,0)(,131x f x f x <'≤<时单调递减.∴11()ln 3()[0,1]36f f x =-为函数在上的极大值. ……………………………4分(2)由(1)知,3()323f x x x'+=+,而ln ln[()3]0x f x x a '-+-<∴3ln ln 23a x x>-+, ① …………………………………………5分设332ln 323ln ln )(2x x x x x h +=+-=,即11()[,]63a h x x >∈在上恒成立,∵223126()(26)23323x h x x x x x x +'=⋅+=++,显然'2(31)()0(32)x h x x x +=>+,…7分 ∴11()[,]63h x 在上单调递增,要使不等式①成立,当且仅当11(),ln 33a h a >>即. ……………………………………………8分(3)由23()2ln(23)20.2f x x b x x x b =-+⇒+-+-= 令xx x x x b x x x x 329723323)(,223)32ln()(22+-=+-+='-+-+=ϕϕ则, 当]37,0[)(,0)(,]37,0[在于是时x x x ϕϕ>'∈上递增;当]1,37[)(,0)(,]1,37[在于是时x x x ϕϕ<'∈上递减. …………………10分而)1()37(),0()37(ϕϕϕϕ>>,∴()2()0[0,1]f x x b x φ=-+=即在恰有两个零点等价于⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-+=>-+-+=≤-=0215ln )1(067267)72ln()37(02ln )0(b b b ϕϕϕ ……………………12分 ∴ 1727ln 5ln(27)263b +≤<+-+,所以,所求实数b 的取值范围是1727[ln 5,ln(27))263++-+. ………………14分。

数学选修2-2 2-3复习题(一)

数学选修2-2 2-3复习题(一)

2-2 2-3综合试题(一)一.选择题(10小题,每小题5分,共50分)1.一个物体的位移s (米)和与时间t (秒)的关系为242s t t =-+,则该物体在4秒末的瞬时速度是 ( )A .12米/秒B .8米/秒C .6米/秒D .8米/秒2.用反证法证明命题 “自然数a 、b 、c 中恰有一个偶数”时,需假设原命题不成立,下列正确的是( )A 、a 、b 、c 都是奇数B 、a 、b 、c 都是偶数C 、a 、b 、c 中或都是奇数或至少有两个偶数D 、a 、b 、c 中至少有两个偶数 3. 测得四组),(y x 的值)2,1()3,2()4,3()5,4(则y 与x 之间的回归直线方程为( ) (A )1+=x y (B )2+=x y (C ) 12+=x y (D ) 1-=x y4.将一个各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,从这些小正方体中任取一个,其中恰好有2面涂有颜色的概率是 ( ) A .916B .2764 C .38 D .11325.下列两个变量之间的关系哪个不是函数关系( )A .角度和它的正弦值B .正方形边长和面积C .正n 边形边数和顶点角度之和D .人的年龄和身高 6.下面几种推理中是演绎推理....的为( )A .由金、银、铜、铁可导电,猜想:金属都可导电;B .猜想数列111,,,122334⋅⋅⋅⨯⨯⨯的通项公式为1(1)n a n n =+()n N +∈;C .半径为r 圆的面积2S r π=,则单位圆的面积S π=;D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-=7.从6名学生中,选出4人分别从事A 、B 、C 、D 四项不同的工作,若其中,甲、乙两人不能从事工作A ,则不同的选派方案共有 ( )A .96种B .180种C .240种D .280种8.若X 是离散型随机变量,()()1221,33P X x P X x ====,且12x x <,又已知49EX =,2DX =,则12x x +=( )(A )53 或1 (B )59 (C )179 (D )1399.如图所示,在一个边长为1的正方形AOBC 内,曲线2y x =和曲线y =围成一个叶形图(阴影部分), 向正方形AOBC 内随机投一点(该点落在正方 形AOBC 内任何一点是等可能的),则所投的点 落在叶形图内部的概率是( ) (A )12 (B )13 (C )14 (D )1610.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是( ) A.在1t 时刻,甲车在乙车前面 B.1t 时刻后,甲车在乙车后面 C.在0t 时刻,两车的位置相同 D.0t 时刻后,乙车在甲车前面二.填空题(5小题,每小题5分,共25分) 11. 复数ii i )1)(1(+-在复平面中所对应的点到原点的距离是_______;____________________12.设随机变量X~N (2,4),则D (21X )的值等于 。

高二数学下期期末理科考试题(选修2-2,选修2-3 )

高二数学下期期末理科考试题(选修2-2,选修2-3 )

高二数学下期期末理科考试题(选修2-2,选修2-3 )一、选择题(本大题共10小题,每小题5分,共50分)1、复数Z=2+i 在复平面内的对应点在( )A 第一象限B 第二象限C 第三象限D 第四象限2、定积分dx x +⎰1110的值为( ) A 1 B ln2 C2122- D 212ln 21- 3、10)1(xx +展开式中的常数项为( ) A 第5项 B 第6项 C 第5项或第6项 D 不存在4、设随机变量ξ服从B (21,6),则P (ξ=3)的值是( ) A 165 B 163 C 85 D 83 5、曲线232+-=x x y 上的任意一点P 处切线的斜率的取值范围是( )A ⎪⎪⎭⎫⎢⎣⎡+∞,33B ⎪⎪⎭⎫ ⎝⎛+∞,33C ()+∞-,3D [)+∞-,36、某班一天上午安排语、数、外、体四门课,其中体育课不能排在每一、每四节,则不同排法的种数为( )A 24B 22C 20D 127、将骰子(骰子为正方体,六个面分别标有数字1,2...,6)先后抛掷2次,则向上的点数之和为5的概率是( )A 154B 92C 91D 181 8、设函数()y f x =在定义域内可导,()y f x =的图象如图1所示,则导函数()y f x '=可能为( )9、某个命题与正整数有关,若当n=k(*N k ∈)时该命题成立,那么可推得当n=k+1时该命题也成立,现已知当n=5时该命题不成立,那么可推得( )A 当n=6时,该命题不成立B 当n=6时,该命题成立C 当n=4时,该命题成立D 当n=4时,该命题不成立x y O 图1 x y O A x y O Bx y O C y OD x10、等比数列}{n a 中,4,281==a a ,函数))...()(()(821a x a x a x x x f ---=,则=)0(,f ( )A 62B 92C 122D 152二、填空题(本大题共5小题,每小题5分,共25分)11、已知231010-=x x C C ,则x= 。

高二数学选修2-2与2-3综合试卷含答案

高二数学选修2-2与2-3综合试卷含答案

一选择题1:若()()22132i x x x -+++是纯虚数,则实数x 的值是 。

A. 1- B.1 C. 1± D. 以上都不对2:复数z =i1+i在复平面上对应的点位于 。

A .第一象限B .第二象限C .第三象限D .第四象限 3:若220(3)10,x k dx k +==⎰则 。

A.1B.2C.3D.4 4:函数f(x)=(x -3)e x 的单调递增区间是 。

A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)5:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 。

A.280种 B.240种 C.180种 D.96种6:有四位司机、四个售票员组成四个小组,每组有一位司机和一位售票员,则不同的分组方案共有 。

A.88A 种 B.48A 种C.44A ·44A 种D.44A 种7:从甲袋中摸出1个红球的概率为13,从乙袋中摸出1个红球的概率为12,从两袋中各摸出一个球,则23等于 。

A. 2个球都不是红球的概率B.2个球都是红球的概率 C. 至少有1个红球的概率 D.2个球中恰有1个红球的概率 8:已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为 。

A. 1.234y x =+ B. 1.235y x =+ C. 1.230.08y x =+ D.0.08 1.23y x =+ 9:正态总体的概率密度函数为2()8()x x f x -∈=R ,则总体的平均数和标准差分别为 。

A.0,8 B .0,4 C.0,2 D.0,210:已知f(x)=x 3+bx 2+cx +d 在区间[-1,2]上是减函数,那么b +c 。

A .有最大值152B .有最大值-152C .有最小值152D .有最小值-152二:填空题11:由直线21=x ,x=2,曲线xy 1=及x 轴所围图形的面积是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学选修2-2、2-3期末检测试题命题:伊宏斌 命题人:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题,共50分)一.选择题(本大题共10小题,每小题5分,共50分)1.过函数x y sin =图象上点O (0,0),作切线,则切线方程为 ( ) A .x y = B .0=y C .1+=x y D .1+-=x y 2.设()121222104321x a x a x a a x x x ++++=+++ ,则=0a ( )A .256B .0C .1-D .13.定义运算a cad bc b d =-,则ii 12(i 是虚数单位)为 ( ) A .3 B .3- C .12-i D .22+i4.任何进制数均可转换为十进制数,如八进制()8507413转换成十进制数,是这样转换的:()1676913818487808550741323458=+⨯+⨯+⨯+⨯+⨯=,十六进制数1444706165164163162)6,5,4,3,2(23416=+⨯+⨯+⨯+⨯=,那么将二进制数()21101转换成十进制数,这个十进制数是 ( )A .12B .13C .14D .155.用数学归纳法证明:“两两相交且不共点的n 条直线把平面分为)(n f 部分,则2)1(1)(++=n n n f 。

”在证明第二步归纳递推的过程中,用到)()1(k f k f =++ 。

( ) A .1-k B .k C .1+k D .2)1(+k k6.记函数)()2(x fy =表示对函数)(x f y =连续两次求导,即先对)(x f y =求导得)('x f y =,再对)('x f y =求导得)()2(x fy =,下列函数中满足)()()2(x f x f=的是( )A.x x f =)(B.x x f sin )(=C.xe xf =)( D.x x f ln )(=7.甲、乙速度v 与时间t 的关系如下图,)(b a 是b t =时的加速度,)(b S 是从0=t 到b t =的路程,则)(b a 甲与)(b a 乙,)(b S 甲与)(b S 乙的大小关系是 ( )A .)()(b a b a 乙甲>,)()(b S b S 乙甲>B .)()(b a b a 乙甲<,)()(b S b S 乙甲<C .)()(b a b a 乙甲<,)()(b S b S 乙甲>D .)()(b a b a 乙甲<,)()(b S b S 乙甲< 8.如图,蚂蚁从A 沿着长方体的棱以 的方向行走至B ,不同的行走路线有( )A .6条B .7条C .8条D .9条9、等比数列{a }n 中,120143,9a a ==,122014(x)(x a )(x a )....(x )f x a =---,'(x)f 为函数(x)f 的导函数,则'(0)f =( )A 0B 10073C 20163D 3021310.设{}10,9,8,7,6,5,4,3,2,1=M ,由M 到M 上的一一映射中,有7个数字和自身对应的映射个数是 ( )A .120B .240C .710 D .360B第8题图第Ⅱ卷(非选择题 共100分)二.填空题(本大题4个小题,每小题5分,共25分) 11(15)如果5025001250(12)(1)(1)(1)x a a x a x a x +=+-+-++-,那么1349a a a +++= .12.设复数z 满足条件1z =,那么z i 取最大值时的复数z 为 . 13,02321=+-a a a 0334321=-+-a a a a类似上三行,第四行的结论为__________________________。

14.已知长轴长为a 2,短轴长为b 2椭圆的面积为ab π,则dx x ⎰--332912= 。

15.为了保证信息安全传输,有一种称为秘密密钥密码系统(Private Key Cryptosystem),其加密、解密原理如下图:现在加密密钥为log (1)a y x =+,如上所示,明文“7”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“7”.问:若接受方接到密文为“4”,则解密后得明文为 .三.解答题(本大题6个小题,共75分)16.(12分)如图,阴影部分区域是由函数x y cos =图象,直线π==x y ,1围成,求这阴影部分区域面积。

解密密钥密码加密密钥密码明文密文密文发送明文17.(12分)据研究,甲磁盘受到病毒感染,感染的量y(单位: 比特数)与时间x(单位:秒)的函数关系是xe y =,乙磁盘受到病毒感染,感染的量y(单位: 比特数)与时间x(单位:秒)的函数关系是2x y =,显然当1≥x 时,甲磁盘受到病毒感染增长率比乙磁盘受到病毒感染增长率大.试根据上述事实提炼一个不等式,并证明之.18.(12分)(1)抛掷一颗骰子两次,定义随机变量⎩⎨⎧=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点面的点数数不等于第二次向上一当第一次向上一面的点ξ试写出随机变量ξ的分布列(用表格格式);(2)抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,求第二次掷得向上一面点数也是偶数的概率.19.(12分)已知函数x x x x f 1232)(23--= (1)求x x x x f 1232)(23--=的极值;(2)请填好下表(在答卷),并画出x x x x f 1232)(23--=的图象(不必写出作图步骤); (3)设函数a x x x x g +--=1232)(23的图象与x 轴有两个交点,求a 的值。

20.(13分)编辑一个运算程序:21@1=,q n m =@,2)1@(+=+q n m . (1)设n a n @1=,求432,,a a a ; (2)由(1)猜想n a 的通项公式; (3)用数学归纳法证明你的猜想。

21(本小题满分14分)在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回...地先后抽得两张卡片的标号分别为x 、y ,记1x y x ξ=-+-. (Ⅰ)求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率; (Ⅱ)求随机变量ξ的分布列、数学期望及方差.答案二.填空题(本大题5个小题,每小题5分,共25分上) 11.501(51)2- 12.12i + 13. 0510105654321=-+-+-a a a a a a14. π3 15. 15三.解答题(本大题6个小题,共75分,必需写出必要的文字说明、推理过程或计算步骤,把答案填写在答题卡...上)16.(12分)如图,阴影部分区域是由函数x y cos =图象,直线π==x y ,1求这阴影部分区域面积。

解法一:所求图形面积为⎰-π)cos 1(dx x ----------(5分))sin (πx x -=-----------------(9分)π=------------------------------(12分)解法二:所求面积是以长为π,宽为了2的矩形的面积的一半,所以所求的面积为π。

--------------------------------------(10分)17.(12分)据研究,甲磁盘受到病毒感染,感染的量y(单位: 比特数)与时间x(单位:秒)的函数关系是xe y =,乙磁盘受到病毒感染,感染的量y(单位: 比特数)与时间x(单位:秒)的函数关系是2x y =,显然当1≥x 时,甲磁盘受到病毒感染增长率比乙磁盘受到病毒感染增长率大.试根据上述事实提炼一个不等式,并证明之.解:因为甲磁盘受到感染的感染增长率是xe y =的导数xe y =',乙磁盘受到病毒感染增长率为2x y =的导数x y 2'=又因为当1≥x 时,甲磁盘受到病毒感染增长率比乙磁盘受到病毒感染增长率大)1(2≥>∴x x e x ------------------------------------(8分)下面证明:x e x2>∴x e x f x 2)(-=设,1≥x ,022)('>->-=∴e e x f x ,所以,2)(x e x f x -=∴在[)+∞,1上是增函数, 0)1()(>>∴f x f 即)1(2≥>∴x x e x.-----------------------(12分) 18.(13分)(1)抛掷一颗骰子两次,定义随机变量⎩⎨⎧=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点面的点数数不等于第二次向上一当第一次向上一面的点ξ试写出随机变量ξ的分布列(用表格格式);(2)抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,求第二次掷得向上一面点数也是偶数的概率.解(1)解法1:当第一次向上的面的点数等于第二次向上的面点数时,有6种情况,所以61366)0(===ξP ,由互斥事件概率公式得, 65)0(1)1(==-==ξξP P -------(5分)解法2:65363036)1(26====A P ξ (2)设第一次掷得向上一面点数是偶数的事件为A,第二次掷得向上一面点数是偶数的事件为B,在第一次掷得向上一面点数是偶数的条件下,第二次掷得向上一面点数也是偶数的概率为21189)()()()()(====A n AB n A P AB P A B P 或213618369)()()(===A P AB P A B P ------------(13分)19.(15分)已知函数x x x x f 1232)(23--= (1)求x x x x f 1232)(23--=的极值;(2)请填好下表,并画出x x x x f 1232)(23--=的图象(不必写出作图步骤); (3)设函数a x x x x g +--=1232)(23的图象与x 轴有两个交点,求a 的值。

解:(1))2)(1(61266)(2'-+=--=x x x x x f ,令0)('=x f 得2,121=-=x x -(2分)--------------------------------------------------------------------------------------------------------(4分) 由表知,当1-=x 时)(x f 有极大值7, 当2=x 时)(x f 有极小值-20。

相关文档
最新文档