2020高二数学下学期期末考试试题

合集下载

2020-2021学年山东省德州市高二(下)期末数学试卷

2020-2021学年山东省德州市高二(下)期末数学试卷

2020-2021学年山东省德州市高二(下)期末数学试卷试题数:22,总分:1501.(单选题,5分)已知集合A= {x|y=√x−2},B={x|lnx<1},则A∩B=()A.(2,e)B.[2,e)C.(e,+∞)D.∅2.(单选题,5分)命题“∃x>0,xx2+1>0”的否定是()A.∀x>0,xx2+1>0B.∃x>0,xx2+1<0C.∀x>0,xx2+1≤0D.∃x>0,xx2+1≤03.(单选题,5分)已知a>0>b且a2>b2,那么下列不等式中,成立的是()A. 1a <1bB.a3<ab2C.a2b<b3D.a+b<04.(单选题,5分)在等比数列{a n}中,a2,a10是方程x2-6x+4=0的两根,则a3a9a6=()A.2B.-2C.-2或2D.3± √55.(单选题,5分)设函数f(x)= x−1x+1,则下列函数中为奇函数的是()A.f(x-1)-1B.f(x-1)+1C.f(x+1)-1D.f(x+1)+16.(单选题,5分)已知正实数a,b满足a+b=3,则4a +1b的最小值为()A.1B.3C. 32 D.97.(单选题,5分)已知函数f (x )的图象如图所示,则f (x )的解析式可能是( )A. f (x )=(12+1e x −1)•sinx B.f (x )=(12+1e x −1)•|cosx | C.f (x )=(12+1e x −1)•cosx D.f (x )=(12+1e x −1)•|sinx |8.(单选题,5分)设f'(x )为奇函数f (x )(x∈R )的导函数,f (-2)=0,当x >0时,xf'(x )-3f (x )<0,则使得f (x )>0成立的x 取值范围是( ) A.(-∞,-2)∪(2,+∞) B.(-2,0)∪(2,+∞) C.(-2,0)∪(0,2) D.(-∞,-2)∪(0,2)9.(多选题,5分)已知函数f (x )= {log 2(x −1),x >12x ,x ≤1 ,则下面结论成立的是( )A.f (2)=4B. f (f (32))=12 C.f (f (1))=0 D.若f (a )=2,则a=110.(多选题,5分)已知定义域为R 的奇函数f (x )满足f (x+1)=-f (x ),且f (x )=x 2-x (0<x≤1),则下列结论一定正确的是( ) A. f (232)=−14B.f (-1-x )=f (x )C.函数f (x )的图象关于点(-1,0)对称D.f (x )在区间 (−12,12) 上是单调函数11.(多选题,5分)“斐波那契数列”由十三世纪意大利数学家列昂纳多•斐波那契发现,因为斐波那契以兔子繁殖为例子而引人,故又称该数列为“兔子数列”,它在现代物理、准晶体结构、化学.等领域都有直接的应用.斐波那契数列{a n }满足:a 1=1,a 2=1,a n =a n-1+a n-2(n≥3,n∈N*),记其前n 项和为S n ,则下列结论成立的是( ) A.S 8=54B.a 1+a 3+a 5+a 7+⋯+a 2019=a 2020C.a 2+a 4+a 6+a 8+⋯+a 2020=a 2021D.S 2020+S 2019-S 2018-S 2017=a 202212.(多选题,5分)我们把有限集合A 中的元素个数用card (A )来表示,并规定card (∅)=0,例如A={1,2,3},则card (A )=3.现在,我们定义A*B= {card (A )−card (B ),card (A )≥card (B )card (B )−card (A ),card (A )<card (B ) ,已知集合A={x|e x +x 2-2=0},B={x|(lnx-ax )(x 2-aex+1)=0},且A*B=1,则实数a 不可能在以下哪个范围内( ) A. (−2e ,−1e ) B. (0,1e ) C. (1e ,2e ) D. (2e,+∞)13.(填空题,5分)不等式|2x-1|<a 的解集为(0,1),则方程x 2-(2a-1)x-2=0的两根之和为 ___ .14.(填空题,5分)已知函数f (x )满足 f (x )=f′(π4)cosx −sinx ,则 f′(π4) =___ . 15.(填空题,5分)已知不等式 (4x +y )(1x +a y)≥9 对任意正实数x ,y 恒成立,则正实数a 的取值范围是 ___ .16.(填空题,5分)已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第i 行,第j 列的数记为a i ,j ,例如a 3,2=9,a 4,2=15,a 5,4=23,由此可得a 8,5=___ ,若a i ,j =2021,则i-j=___ .17.(问答题,10分)已知集合A= {x|x−32−x >0} ,B={x|2m <x <m+3}. (1)当m=0时,求(∁R A )∩B ;(2)请在 ① 充分不必要条件 ② 必要不充分条件这两个条件中任选一个,补充到下面的问题中,并解决问题.若x∈A 是x∈B 的______条件,试判断m 是否存在,若存在,求出m 的取值范围,若不存在,说明理由.18.(问答题,12分)已知数列{a n }满足a 1=1,a n+1= {a n +2,n 奇数a n +1,n 偶数 .(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式; (2)求{a n }的前10项和.19.(问答题,12分)已知函数f (x )=x 2e x -ax 2-4ax . (1)若a=0,求y=f (x )在x=1处的切线方程;(2)已知函数y=f (x )在x=1处有极值,求函数的单调递增区间.20.(问答题,12分)科技创新是企业发展的源动力,是一个企业能够实现健康持续发展的重要基础.某科技企业2020年最新研发了一款电子设备,通过市场分析,生产此类设备每年需要投人固定成本200万,每生产x (百台)电子设备,需另投人成本R (x )万元,且R (x )= {12x 2+30x +150,(10<x <64)72x +1800x−60−920,(64≤x <120) ,由市场调研可知,每台设备售价0.7万元,且生产的设备当年能全部售完.(1)求出2020年的利润W (x )(万元)关于年产量x (百台)的函数关系式,(利润=销售额一成本);(2)2020年产量为多少百台时,企业所获利润最大?最大利润是多少?21.(问答题,12分)已知数列{a n}的前n项和为S n,且a1=1,a n+1=S n+1.(1)求数列{a n}的通项公式;(2)设b n= a n(S n+2)(S n+1+2),数列{b n}前n项和为T n,求证:T n<16.22.(问答题,12分)已知函数f(x)=lnx+ 2−ax-1-a(a∈R).(1)讨论函数f(x)的单调性;(2)若f(x)>0在(0,+∞)恒成立,求整数a的最大值.2020-2021学年山东省德州市高二(下)期末数学试卷参考答案与试题解析试题数:22,总分:1501.(单选题,5分)已知集合A= {x|y=√x−2},B={x|lnx<1},则A∩B=()A.(2,e)B.[2,e)C.(e,+∞)D.∅【正确答案】:B【解析】:先利用函数的定义以及指数不等式的解法求出集合A,B,再由集合交集的定义求解即可.【解答】:解:因为A= {x|y=√x−2}={x|x≥2},B={x|lnx<1}={x|0<x<e},所以A∩B={x|2≤x<e}.故选:B.【点评】:本题考查了集合的运算,主要考查了集合交集的求解,解题的关键是掌握交集的定义,属于基础题.2.(单选题,5分)命题“∃x>0,xx2+1>0”的否定是()A.∀x>0,xx2+1>0B.∃x>0,xx2+1<0C.∀x>0,xx2+1≤0D.∃x>0,xx2+1≤0【正确答案】:C【解析】:由含有量词的命题的否定方法:先改变量词,然后再否定结论,求解即可.【解答】:解:由含有量词的命题的否定方法:先改变量词,然后再否定结论,可得命题“∃x>0,xx2+1>0”的否定是“∀x>0,xx2+1≤0”.【点评】:本题考查了含有量词的命题的否定,要掌握其否定方法:先改变量词,然后再否定结论,属于基础题.3.(单选题,5分)已知a>0>b且a2>b2,那么下列不等式中,成立的是()A. 1a <1bB.a3<ab2C.a2b<b3D.a+b<0【正确答案】:C【解析】:A选项,利用a,b的正负判断即可;B、C选项,利用不等式a2>b2两边同乘a,b判断;D选项,利用不等式开方性质判断.【解答】:解:因为a2>b2,所以|a|>|b|,又a>0>b,所以a>-b,即a+b>0,所以D选项错误;A选项:因为a>0>b,所以1a >0>1b,所以A选项错误;B选项:因为a2>b2,a>0,所以a3>ab2,所以B选项错误;C选项:因为a2>b2,b<0,所以a2b<b3,所以C选项正确.故选:C.【点评】:本题考查不等式的基本性质,属于基础题.4.(单选题,5分)在等比数列{a n}中,a2,a10是方程x2-6x+4=0的两根,则a3a9a6=()A.2B.-2C.-2或2D.3± √5【正确答案】:A【解析】:根据一元二次方根跟与系数的关系可得2a10=4,再根据等比数列的性质可得a2a10=a3a9=a 62 =4,从而可得a6=2,所以a3a9a6 = a62a6=a6可求.【解答】:解:由a2,a10是方程x2-6x+4=0的两根,得a2a10=4,又{a n}是等比数列,所以a2a10=a3a9=a 62 =4,解得a6=2或a6=-2(舍去),所以a3a9a6 = a62a6故选:A .【点评】:本题考查等比数列的性质,运用到一元二次方程的根与系数的关系,考查学生逻辑推理和运算求解的能力,属于基础题.5.(单选题,5分)设函数f (x )= x−1x+1 ,则下列函数中为奇函数的是( ) A.f (x-1)-1 B.f (x-1)+1 C.f (x+1)-1 D.f (x+1)+1 【正确答案】:A【解析】:根据题意,先分析f (x )的对称性,结合函数平移变换的规律依次分析选项,判断选项中函数的对称中心,分析可得答案.【解答】:解:根据题意,函数f (x )= x−1x+1 = x+1−2x+1 =- 2x+1+1,则f (x )的图象关于点(-1,1)对称, 依次分析选项:对于A ,f (x-1)-1,由函数f (x )的图象向右平移1个单位,向下平移一个单位得到,即f (x-1)-1的图象关于(0,0)对称,是奇函数,A 正确; 对于B ,f (x-1)+1,由函数f (x )的图象向右平移1个单位,向上平移一个单位得到,即f (x-1)+1的图象关于(0,2)对称,不是奇函数,B 错误; 对于C ,f (x+1)-1,由函数f (x )的图象向左平移1个单位,向下平移一个单位得到,即f (x+1)-1的图象关于(-2,0)对称,不是奇函数,C 错误; 对于D ,f (x+1)+1,由函数f (x )的图象向左平移1个单位,向上平移一个单位得到,即f (x+1)+1的图象关于(-2,2)对称,不是奇函数,D 错误; 故选:A .【点评】:本题考查函数奇偶性的判断以及性质的应用,涉及函数解析式的计算,属于基础题. 6.(单选题,5分)已知正实数a ,b 满足a+b=3,则 4a +1b 的最小值为( ) A.1 B.3 C. 32D.9【正确答案】:B【解析】:由a+b=3可得13(a+b)=1,所以4a+ 1b= 13(a+b)(4a+ 1b)= 13(5+ ab+ 4ba)≥ 13(5+2 √ab•4ba)再进一步分析之后即可得出4a+1b的最小值.【解答】:解:由a+b=3,得13(a+b)=1,又a>0,b>0,所以4a + 1b= 13(a+b)(4a+ 1b)= 13(5+ ab+ 4ba)≥ 13(5+2 √ab•4ba)=3,当且仅当ab = 4ba,a=2b,即a=2、b=1时,等号成立,所以4a+1b的最小值为3.故选:B.【点评】:本题主要考查基本不等式的运用,考查学生的推理论证和运算求解能力,属于基础题.7.(单选题,5分)已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A. f(x)=(12+1e x−1)•sinxB. f(x)=(12+1e x−1)•|cosx|C. f(x)=(12+1e x−1)•cosxD. f(x)=(12+1e x−1)•|sinx|【正确答案】:B【解析】:利用f(0)的值排除选项A,D,利用当x∈(π2,3π2)时,f(x)的值排除选项C,即可得到答案.【解答】:解:对于A,当x=0时,f(0)=0,不符合图象,故选项A错误;对于D,当x=0时,f(0)=0,不符合图象,故选项D错误;对于C,当x>0时,e x>1,故1e x−1>0,所以12+1e x−1>0,则当x∈(π2,3π2)时,cosx<0,故f(x)<0,不符合图象,故选项C错误;令g(x)=12+1e x−1,则g(-x)=-g(x),则g(x)为奇函数,又y=|cosx|为偶函数,故函数f(x)为奇函数,有可能是图象的解析式.故选:B.【点评】:本题考查了函数图象的识别,解题的关键是掌握识别图象的方法:可以从定义域、值域、函数值的正负、特殊点、特殊值、函数的性质等方面进行判断,考查了直观想象能力与逻辑推理能力,属于基础题.8.(单选题,5分)设f'(x)为奇函数f(x)(x∈R)的导函数,f(-2)=0,当x>0时,xf'(x)-3f(x)<0,则使得f(x)>0成立的x取值范围是()A.(-∞,-2)∪(2,+∞)B.(-2,0)∪(2,+∞)C.(-2,0)∪(0,2)D.(-∞,-2)∪(0,2)【正确答案】:D【解析】:构造函数g(x)=f(x)x3,g(x)是偶函数,结合题意可得g(x)在(0,+∞)上单调递减,再结合f(-2)=0,可得g(-2)=g(2)=0,作出g(x)的草图,利用f(x)>0⇔x3g(x)>0⇔xg(x)>0⇔{x>0g(x)>0或{x<0g(x)<0可求得答案.【解答】:解:构造函数g(x)=f(x)x3,定义域为{x|x≠0},因为f(x)是在R上的奇函数,所以f(0)=0,且g(−x)=f(−x)(−x)3=−f(x)−x3=f(x)x3=g(x),所以g(x)是偶函数,g′(x)=xf′(x)−3f(x)x4,当x>0时,因为xf′(x)-3f(x)<0,所以g′(x)<0,g(x)在(0,+∞)上单调递减,又因为g(x)是偶函数,所以g(x)在(-∞,0)上单调递增,因为f(-2)=0,所以g(-2)=0,所以g(2)=0,作出函数g(x)的大致草图,当x=0时,f (x )=0,所以x=0不是不等式f (x )>0的解; 当x≠0时, f (x )>0⇔x 3g (x )>0⇔xg (x )>0⇔{x >0g (x )>0 或 {x <0g (x )<0, 数形结合可得x <-2或0<x <2. 故选:D .【点评】:本题考查函数的奇偶性与单调性综合,考查导数逆运算构造函数解不等式,考查数形结合的数学思想,属于中档题.9.(多选题,5分)已知函数f (x )= {log 2(x −1),x >12x ,x ≤1 ,则下面结论成立的是( )A.f (2)=4B. f (f (32))=12 C.f (f (1))=0 D.若f (a )=2,则a=1 【正确答案】:BC【解析】:由分段函数的解析式,逐个求得函数值,即可得出答案.【解答】:解:对于A :f (2)=log 2(2-1)=0,故A 错误;对于B :f ( 32 )=log 2( 32 -1)=log 2 12 =-1,f (f ( 32 ))=f (-1)=2-1= 12 ,故B 正确; 对于C :f (1)=2,f (f (1))=f (2)=log 2(2-1)=0,故C 正确; 对于D :当a >1时,令f (a )=2, 得log 2(a-1)=2,解得a=5, 当a≤1时,令f (a )=2, 得2a =2,解得a=1,所以a=1或a=5,故D 错误.故选:BC.【点评】:本题考查分段函数,函数值,属于中档题.10.(多选题,5分)已知定义域为R的奇函数f(x)满足f(x+1)=-f(x),且f(x)=x2-x(0<x≤1),则下列结论一定正确的是()A. f(232)=−14B.f(-1-x)=f(x)C.函数f(x)的图象关于点(-1,0)对称D.f(x)在区间(−12,12)上是单调函数【正确答案】:BCD【解析】:根据题意,依次分析选项是否正确,综合可得答案.【解答】:解:根据题意,依次分析选项:对于A,函数f(x)满足f(x+1)=-f(x),则f(x+2)=-f(x+1)=f(x),函数f(x)是周期为2的周期函数,f(232)=f(12- 12)=f(- 12)=-f(12),而f(12)=- 14,则f(232)=-f(12)= 14,A错误;对于B,f(x)为奇函数,且f(x+1)=-f(x),即f(x)=-f(x+1),则有f(x)=f(-x-1),B正确;对于C,由A的结论,f(x)是周期为2的周期函数,则有f(x-2)=f(x),即f(x-2)=-f (-x),函数f(x)的图象关于点(-1,0)对称,C正确;对于D,在区间(0,12)上,f(x)=x2-x=(x- 12)2- 14,是减函数,且有f(x)<f(0)=0,又由f(x)为奇函数,则在区间(- 12,0)上,f(x)是奇函数且f(x)>f(0)=0,综合可得:f(x)在区间(−12,12)上是单调减函数,D正确;故选:BCD.【点评】:本题考查函数奇偶性的性质以及应用,涉及函数周期性的分析,属于基础题.11.(多选题,5分)“斐波那契数列”由十三世纪意大利数学家列昂纳多•斐波那契发现,因为斐波那契以兔子繁殖为例子而引人,故又称该数列为“兔子数列”,它在现代物理、准晶体结构、化学.等领域都有直接的应用.斐波那契数列{a n}满足:a1=1,a2=1,a n=a n-1+a n-2(n≥3,n∈N*),记其前n项和为S n,则下列结论成立的是()A.S8=54B.a1+a3+a5+a7+⋯+a2019=a2020C.a 2+a 4+a 6+a 8+⋯+a 2020=a 2021D.S 2020+S 2019-S 2018-S 2017=a 2022 【正确答案】:ABD【解析】:由a 1=1,a 2=1,a n =a n-1+a n-2(n≥3,n∈N*)可计算得出a 3,a 4,a 5,a 6,a 7,a 8,直接计算S 8即可;【解答】:解:由a 1=1,a 2=1,a n =a n-1+a n-2(n≥3,n∈N*)得:a 3=2,a 4=3,a 5=5,a 6=8,a 7=13,a 8=21,于是,S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=54,故A 正确;因为a 1+a 3+a 5+a 7+…+a 2019=a 2+(a 4-a 2)+(a 6-a 4)+…+(a 2020-a 2018)=a 2020,故B 正确; 因为a 2+a 4+a 6+a 8+…+a 2020=(a 3-a 1)+(a 5-a 3)+(a 7-a 5)+…+(a 2021-a 2019)=a 2021-1,故C 不正确;因为S 2020+S 2019-S 2018-S 2017=a 2019+a 2018+a 2019+a 2020=a 2020+a 2021=a 2022,故D 正确; 故选:ABD .【点评】:本题考查递推数列与数列的前n 项和,考查学生的逻辑思维能力和计算能力,属中档题.12.(多选题,5分)我们把有限集合A 中的元素个数用card (A )来表示,并规定card (∅)=0,例如A={1,2,3},则card (A )=3.现在,我们定义A*B= {card (A )−card (B ),card (A )≥card (B )card (B )−card (A ),card (A )<card (B ) ,已知集合A={x|e x +x 2-2=0},B={x|(lnx-ax )(x 2-aex+1)=0},且A*B=1,则实数a 不可能在以下哪个范围内( ) A. (−2e,−1e) B. (0,1e ) C. (1e ,2e ) D. (2e ,+∞) 【正确答案】:BCD【解析】:数形结合可得card (A )=2,根据题中定义可得card (B )=1或3,设f (x )=lnx x ,g (x )= 1e (x+ 1x),分析可知直线y=a 与函数f (x ),g (x )在(0,+∞)上的图象共有1个或3个交点,数形结合可得实数a 的取值范围,即可得出答案.【解答】:解:对于集合A,由e x+x2-2=0,可得e x=2-x2,作出函数y=e x与函数y=2-x2的图象如下所示:所以函数y=e x与函数y=2-x2的图象有两个公共点,故card(A)=2,因为A*B=|card(A)-card(B)|=1,所以card(B)=1或3,对于集合B,由(lnx-ax)(x2-aex+1)=0,x>0,由lnx-ax=0,可得a= lnxx,由x2-aex+1=0,可得a= 1e (x+ 1x),设f(x)= lnxx ,g(x)= 1e(x+ 1x),则直线y=a与函数f(x),g(x)在(0,+∞)上的图象共有1个或3个交点,f′(x)= 1−lnxx2,当0<x<e时,f′(x)>0,函数f(x)单调递增,当x>e时,f′(x)<0,函数f(x)单调递减,所以f(x)max=f(e)= 1e,当x>1时,f(x)>0,g′(x)= 1e (1- 1x2)= x2−1ex2,当0<x<1时,g′(x)<0,g(x)单调递减,当x>1时,g′(x)>0,g(x)单调递增,所以g(x)min=g(1)= 2e,作出直线y=a与函数f(x),g(x)在(0,+∞)上的图象,如下图所示:由图象可知,当a≤0,a= 1e 或a= 2e时,直线y=a与函数f(x),g(x)在(0,+∞)上的图象共有1个公共点,故选:BCD.【点评】:本题考查导数的综合应用,解题中注意分类讨论思想的应用,属于中档题.13.(填空题,5分)不等式|2x-1|<a的解集为(0,1),则方程x2-(2a-1)x-2=0的两根之和为 ___ .【正确答案】:[1]1【解析】:将不等式|2x-1|<a去绝对值,可得1−a2<x<1+a2,由于不等式的解集为(0,1),求出a,再结合韦达定理,即可求解.【解答】:解:∵|2x-1|<a,∴-a<2x-1<a,即1−a2<x<1+a2,又∵不等式|2x-1|<a的解集为(0,1),∴ 1−a2=0且1+a2=1,解得a=1,设x1,x2为方程x2-(2a-1)x-2=0的两根,∴由韦达定理,可得x1+x2=2a-1=1.故答案为:1.【点评】:本题主要考查绝对值不等式的求解,以及韦达定理的应用,属于基础题.14.(填空题,5分)已知函数f(x)满足f(x)=f′(π4)cosx−sinx,则f′(π4) =___ .【正确答案】:[1]1- √2【解析】:根据三角函数的求导公式求导得出f′(x)=−f′(π4)sinx−cosx,然后将x换上π4即可得出f′(π4)的值.【解答】:解:∵ f′(x)=−f′(π4)sinx−cosx,∴ f′(π4)=−√22f′(π4)−√22,解得f′(π4)=−1√2+1=1−√2.故答案为:1−√2.【点评】:本题考查了三角函数的求导公式,已知函数求值的方法,考查了计算能力,属于基础题.15.(填空题,5分)已知不等式(4x+y)(1x +ay)≥9对任意正实数x,y恒成立,则正实数a的取值范围是 ___ .【正确答案】:[1][1,+∞)【解析】:由x>0,y>0可得(4x+y)(1x + ay)=4+a+ yx+ 4axy≥4+a+2 √yx•4axy=4+a+4√a,又不等式(4x+y)(1x +ay)≥9对任意正实数x,y恒成立,所以4+a+4 √a≥9,从而解出a的取值范围即可.【解答】:解:由x>0,y>0,得(4x+y)(1x + ay)=4+a+ yx+ 4axy≥4+a+2 √yx•4axy=4+a+4 √a,当且仅当yx = 4axy,即y=2 √a x时等号成立,又不等式(4x+y)(1x+ay)≥9对任意正实数x,y恒成立,所以4+a+4 √a≥9,即a+4 √a -5≥0,解得√a≥1或√a≤-5(舍去),所以a≥1.故答案为:[1,+∞).【点评】:本题主要考查基本不等式的运用,考查学生推理论证和运算求解能力,属于基础题.16.(填空题,5分)已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第i行,第j列的数记为a i,j,例如a3,2=9,a4,2=15,a5,4=23,由此可得a8,5=___ ,若a i,j=2021,则i-j=___ .【正确答案】:[1]65; [2]20【解析】:根据所给数表得到规律:数表为从1开始的连续奇数蛇形排列形成宝塔形数表,第1组1个奇数,第2组2个奇数…第n 组n 个奇数, 则前n 组共n (n+1)2个奇数,奇数行由大到小排列,偶数行由小到大排列, 第一空:a 8,5代表第八行第5个奇数,由上述规律即可求出答案;第二空:由等差数列的前n 项和公式可得:2021在第n 组中,又2021是从1开始的连续奇数的第1011个奇数,则有 {n (n−1)2<1011n (n+1)2≥1011,解得n=45,即2021在第45组中,由归纳推理可得:前44组共990个数,又第44组中的奇数从右到左,从小到大,则2021为第45组从右到左的第1011-990=21个数,即2021为第45组从左到右的第45-21+1=25个数,得解.【解答】:解:由图表可知:数表为从1开始的连续奇数蛇形排列形成宝塔形数表,第1组1个奇数,第2组2个奇数…第n 组n 个奇数, 则前n 组共n (n+1)2个奇数,奇数行由大到小排列,偶数行由小到大排列, 因为a 8,5代表第八行第5个奇数,而前7组共 7×82=28个数,则第8组的第一个奇数为57,且此行奇数由小到大排列,故第5个奇数为65;设2021在第n 组中,又2021是从1开始的连续奇数的第1011个奇数,则有 {n (n−1)2<1011n (n+1)2≥1011,解得n=45,即2021在第45组中, 则前44组共990个数,又第45组中的奇数从右到左,从小到大,则2021为第45组从右到左的第1011-990=21个数, 即2021为第45组从左到右的第45-21+1=25个数, 即i=45,j=5, 故i-j=45-25=20, 故答案为:65,20.【点评】:本题考查归纳推理,涉及等差数列的前n 项和公式及归纳推理,属中档题. 17.(问答题,10分)已知集合A= {x|x−32−x >0} ,B={x|2m <x <m+3}. (1)当m=0时,求(∁R A )∩B ;(2)请在 ① 充分不必要条件 ② 必要不充分条件这两个条件中任选一个,补充到下面的问题中,并解决问题.若x∈A 是x∈B 的______条件,试判断m 是否存在,若存在,求出m 的取值范围,若不存在,说明理由.【正确答案】:【解析】:(1)当m=0时,求出集合A ,B ,由此能求出C R A∩B .(2)若选条件 ① :x∈A 是x∈B 的充分不必要条件且2m=2与m+3=3不同时成立,由此能求出存在m ,m∈[0,1].若选条件 ② :x∈A 是x∈B 的必要不充分条件,当2m≥m+3,即m≥3时,B=∅,成立.当2m <m+3,即m <3时, {2m ≥2m +3≤3 ,由此能求出结果.【解答】:解:(1)当m=0时,B=(0,3), x−32−x >0 ,等价于(x-2)(x-3)<0, ∴A=(2,3),C R A=(-∞,2]∪[3,+∞), ∴C R A∩B=(0,2]. (2)若选条件 ① :∵x∈A 是x∈B 的充分不必要条件且2m=2与m+3=3不同时成立, 解得0≤m≤1,所以存在m ,m∈[0,1], 若选条件 ② :∵x∈A 是x∈B 的必要不充分条件, 当2m≥m+3,即m≥3时,B=∅,成立.当2m <m+3,即m <3时, {2m ≥2m +3≤3 ,解得m 不存在,∴存在m≥3.【点评】:本题考查补集、交集的求法,考查补集、交集定义等基础知识,考查运算求解能力,是基础题.18.(问答题,12分)已知数列{a n }满足a 1=1,a n+1= {a n +2,n 奇数a n +1,n 偶数 .(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式; (2)求{a n }的前10项和.【正确答案】:【解析】:(1)直接利用分类法和赋值法的应用求出数列的b 1,b 2的值和数列的通项公式; (2)利用分组法的求和的公式的应用求出结果.【解答】:解:(1)设2n 为偶数,2n+1为奇数, 则a 2n+1=a 2n +1,a 2n+2=a 2n+1+2, ∴a 2n+2=a 2n +3, 即b n+1=b n +3, 且b 1=a 2=a 1+2=3,∴{b n }是以3为首项,3为公差的等差数列, ∴b 1=3,b 2=6,b n =3n .(2)当n 为奇数时,a n =a n+1-2,∴{a n }的前10项和为a 1+a 2+...+a 10=(a 1+a 3+...+a 9)+(a 2+a 4+...+a 10)[(a 2-2)+(a 4-2)+...+(a 10-2)]+(a 2+a 4+...+a 10)=2(a 2+a 4+...+a 10)-10, 由(1)可知,a 2+a 4+...+a 10=b 1+b 2+...+b 5= 3×5+5×42×3 =45,∴{a n }的前10项和为2×45-10=80.【点评】:本题考查的知识要点:数列的通项公式的求法及应用,数列的求和,主要考查学生的运算能力和数学思维能力,属于中档题.19.(问答题,12分)已知函数f (x )=x 2e x -ax 2-4ax . (1)若a=0,求y=f (x )在x=1处的切线方程;(2)已知函数y=f (x )在x=1处有极值,求函数的单调递增区间.【正确答案】:【解析】:(1)当a=0时,f (x )=x 2e x ,求导得f'(x ),由导数的几何意义可得k 切=f′(1),又f (1)=e ,即可得出答案.(2)求导得f'(x )=(x 2+2x )e x -2ax-4a ,若函数y=f (x )在x=1处有极值,则f'(1)=0,解得 a =e2 ,进而可得f (x )的解析式,求导,分析f′(x )>0,即可得出答案.【解答】:解:(1)当a=0时,f (x )=x 2e x ,则f'(x )=(x 2+2x )e x , 因此切线斜率k=f'(1)=3e ,又函数图象过点(1,e ),因此切线方程为y-e=3e (x-1),即y=3ex-2e . (2)f'(x )=(x 2+2x )e x -2ax-4a ,函数y=f (x )在x=1处有极值,则f'(1)=0,解得 a =e 2 ,故f'(x )=(x 2+2x )e x -ex-2e=(x+2)(xe x -e ). 设h (x )=xe x ,h'(x )=(x+1)e x , 可知当时x <-1时,h (x )=xe x 为递减函数, 且h (x )<0;x >-1时,h (x )=xe x 为递增函数, 故x=1为xe x =e 的解,且为唯一的解.因此,f'(x )>0时,即x <-2或x >1时,函数单调递增, 因此,函数的单调递增区间为(-∞,-2)和(1,+∞).【点评】:本题考查导数的综合应用,解题中需要理清思路,属于中档题.20.(问答题,12分)科技创新是企业发展的源动力,是一个企业能够实现健康持续发展的重要基础.某科技企业2020年最新研发了一款电子设备,通过市场分析,生产此类设备每年需要投人固定成本200万,每生产x (百台)电子设备,需另投人成本R (x )万元,且R (x )= {12x 2+30x +150,(10<x <64)72x +1800x−60−920,(64≤x <120),由市场调研可知,每台设备售价0.7万元,且生产的设备当年能全部售完.(1)求出2020年的利润W (x )(万元)关于年产量x (百台)的函数关系式,(利润=销售额一成本);(2)2020年产量为多少百台时,企业所获利润最大?最大利润是多少?【正确答案】:【解析】:(1)由题意知销售额为0.7×100x=70x 万元,分两种情况:当10<x <64时,当64≤x <120时,写出W (x )的解析式.(2)分情况:10<x <64,64≤x <120时,求出W (x )的最值,即可得出答案.【解答】:解:(1)由题意知销售额为0.7×100x=70x 万元当10<x <64时, W (x )=70x −(12x 2+30x +150)−200=−12x 2+40x −350 , 当64≤x <120时,W (x )=70x-(72x+ 1800x−60 -920)-200=-2x- 1800x−60 +720,w (x )= {−12x 2+40x −350,(10<x <64)720−2x −1800x−−60,(64≤x <120) . (2)若10<x <64, W (x )=−12(x −40)2+450 ,当x=40时,W (x )max =450万元,若64≤x <120时, W (x )=720−2x −1800x−60 600−2(x −60)−1800x−60 ≤600−2√2(x −60)⋅1800x−60=480 ,当且仅当 2(x −60)=1800x−60 时,即x=90时,W (x )max =480万元.相比较可得,2020年产量为90(百台)时,企业所获利润最大,最大利润是480万元.【点评】:本题考查利用函数知识解决实际问题,属于中档题.21.(问答题,12分)已知数列{a n }的前n 项和为S n ,且a 1=1,a n+1=S n +1.(1)求数列{a n }的通项公式;(2)设b n = a n (S n +2)(S n+1+2) ,数列{b n }前n 项和为T n ,求证:T n < 16.【正确答案】:【解析】:(1)由数列的递推式和等比数列的定义、通项公式,可得所求;(2)运用等比数列的求和公式,求得b n=2n−1(2n+1)(2n+1+1)=12(12n+1−12n+1+1),再由数列的裂项相消求和,结合不等式的性质,即可得证.【解答】:解:(1)当n≥2时,a n=S n-1+1,又a n+1=S n+1,两式相减得a n+1-a n=a n,即a n+1=2a n,又a1=1,a2=a1+1=2,a2a1=2,所以数列{a n}是首项为1,公比是2的等比数列,所以a n=2n−1.(2)证明:S n=1+2+22+⋯+2n−1=1−2n1−2=2n−1,因为b n=2n−1(2n+1)(2n+1+1)=12(12n+1−12n+1+1),所以T n=b1+b2+⋯+b n=12(13−122+1+122+1−123+1+⋯+12n+1−12n+1+1)= 12(13−12n+1+1)=16−12⋅12n+1+1,所以T n<16.【点评】:本题考查数列的递推式的运用,以及等比数列的通项公式和求和公式的运用、数列的裂项相消求和,考查转化思想和运算能力,属于中档题.22.(问答题,12分)已知函数f(x)=lnx+ 2−ax-1-a(a∈R).(1)讨论函数f(x)的单调性;(2)若f(x)>0在(0,+∞)恒成立,求整数a的最大值.【正确答案】:【解析】:(1)求出f(x)的定义域,求出f'(x),通过研究f'(x)的正负,确定函数f (x)的单调性即可;(2)将不等式恒成立转化为a<xlnx+2−xx+1对x∈(0,+∞)恒成立,令g(x)=xlnx+2−xx+1,故a<g(x)min,利用导数以及函数零点的存在性定义,研究函数g(x)的最小值,即可得到a的取值范围,从而得到答案.【解答】:(1)函数f(x)的定义域为(0,+∞).因为f(x)=lnx+2−ax−1−a,所以f′(x)=1x +a−2x2=x+a−2x2.当a-2≥0,即a≥2时,f'(x)>0;当a-2<0,即a<2时,由f'(x)>0,解得x>2-a,令f'(x)<0,解得0<x<2-a,综上可得,当a≥2时,f(x)在(0,+∞)上单调递增;当a<2时,f(x)在(0,2-a)上单调递减,在(2-a,+∞)上单调递增;(2)因为f(x)>0在(0,+∞)恒成立,即lnx+2−ax−1−a>0在(0,+∞)恒成立,所以xlnx+2-x>(1+x)a在(0,+∞)恒成立,所以a<xlnx+2−xx+1对x∈(0,+∞)恒成立,令g(x)=xlnx+2−xx+1,故a<g(x)min,则g′(x)=x+lnx−2(x+1)2,令h(x)=x+lnx-2,则ℎ′(x)=1+1x =x+1x,因为x>0,所以h'(x)>0,则h(x)在(0,+∞)上单调递增,因为h(1)=-1<0,h(2)=ln2>0,所以存在x0∈(1,2)满足h(x0)=0,即x0+lnx0-2=0,当1<x<x0时,h(x)<0,即g'(x)<0,当x>x0时,h(x)>0,即g'(x)>0,所以g(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,故g(x)min=g(x0)=x0lnx0+2−x0x0+1=x0(2−x0)+2−x0x0+1=2−x0,所以a<2-x0,因为1<x0<2,a∈Z,所以a的最大值为0.【点评】:本题考查了利用导数研究函数的单调性问题以及不等式恒成立的求解,利用导数研究不等式恒成立问题的策略为:通常构造新函数或参变量分离,利用导数研究函数的单调性,求出最值从而求得参数的取值范围,属于难题.。

潍坊市高二数学下学期期末考试试题含解析

潍坊市高二数学下学期期末考试试题含解析
5。 老师想要了解全班50位同学的成绩状况,为此随机抽查了10位学生某次考试的数学与物理成绩,结果列表如下:
学生










平均
标准差
数学
88
62
物理
75
63
若这10位同学的成绩能反映全班的成绩状况,且全班成绩服从正态分布,用实线表示全班数学成绩分布曲线,虚线表示全班物理成绩分布曲线,则下列正确的是( )
∴ 面 ,又 面 ,即有 ,故B正确
选项C中,点 运动到 中点时,即在△ 中 、 均为中位线
∴Q为中位线的交点
∴根据中位线的性质有: ,故C错误
选项D中,由于 ,直线 与 所成角即为 与 所成角:
结合下图分析知:点 在 上运动时
当 在 或 上时, 最大为45°
当 在 中点上时, 最小为
∴ 不可能是30°,故D正确
故选:B
【点睛】本题主要考查利用棱柱侧面展开图求解距离最值问题,意在考查学生对该知识的理解掌握水平.
8. 在桌面上有一个正四面体 .任意选取和桌面接触的平面的三边的其中一条边,以此边为轴将正四面体翻转至另一个平面,称为一次操作.如图,现底面为 ,且每次翻转后正四面体均在桌面上,则操作3次后,平面 再度与桌面接触的概率为( )
二、多项选择题:
9。 已知复数 的共轭复数为 ,且 ,则下列结论正确的是( )
A。 B。 虚部为 C。 D.
【答案】ACD
【解析】
【分析】
先利用题目条件可求得 ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.
【详解】由 可得, ,所以 , 虚部为 ;

西安中学高二数学下学期期末考试试题理含解析

西安中学高二数学下学期期末考试试题理含解析
【详解】(1)由题意,函数 ,可得
当 时, 。
当 时,原不等式等价于 ,解得 ,∴ ;
②当 时,原不等式等价于 ,
=2(2 1
≥3+4 7.
当且仅当x ,y=4取得最小值7.
故选C.
【点睛】本题考查基本不等式的运用:求最值,注意乘1法和满足的条件:一正二定三等,考查运算能力,属于中档题.
11。 已知函数 ,则不等式 的解集为( )
A。 B. C。 D.
【答案】C
【解析】
【分析】
根据条件先判断函数是偶函数,然后求函数的导数,判断函数在 , 上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可.
所以 ,
令 所以函数g(x)在(0,+∞)上单调递增,
由题得
所以函数g(x)是奇函数,所以函数在R上单调递增.
因为对 ,不等式 恒成立,
所以 ,
因为a〉0,所以当x≤0时,显然成立。
当x>0时, ,
所以 ,所以函数h(x)在(0,1)单调递减,在(1,+∞)单调递增。
所以 ,
所以a<e,
所以正整数 的最大值为2.
14。 设 .若曲线 与直线 所围成封闭图形的面积为 ,则 ______。
【答案】:
【解析】
试题分析:因为,曲线 与直线 所围成封闭图形的面积为 ,所以, = = ,解得, .评:简单题,利用定积分的几何意义,将面积计算问题,转化成定积分计算.
15. 直线 与曲线 相切,则 的值为________.
A. 己申年B. 己酉年C. 庚酉年D。 庚申年
【答案】B
【解析】
【分析】
由题意可得数列天干是以10为等差的等差数列,地支是以12为公差的等差数列,以1949年的天干和地支分别为首项,即可求出答案.

山东省济南市2020-2021学年高二下学期期末数学试题

山东省济南市2020-2021学年高二下学期期末数学试题
因为 关于 为正相关,则 ,所以,相关系数 变大,D对.
故选:BCD.
12.ACD
【分析】
由已知得出 ,化简变形后可判断A选项的正误;取 可判断B选项的正误;利用构造函数法证明CD选项中的不等式,可判断CD选项的正误.
【详解】
由 可得 ,可知直线 与函数 在 上的图象有两个交点,
,当 时, ,此时函数 单调递增,
附:若随机变量 ,则 .
A.甲生产线硼硅玻璃膨胀系数范围在 的概率约为0.6827
B.甲生产线所产硼硅玻璃的膨胀系数比乙生产线所产硼硅玻璃的膨胀系数数值更集中
C.若用于疫苗药瓶的硼硅玻璃膨胀系数不能超过5.则乙生产线生产的硼硅玻璃符合标准的概率更大
D.乙生产线所产的砌硅玻璃膨胀系数小于4.5的概率与大于4.8的概率相等
3
5
7
9
6.5
5
4
2.5
得到经验回归方程为 ,则()
A. , B. , C. , D. ,
4.甲、乙、丙、丁、戊五个人站成一排,甲乙不相邻的排列方法有()
A.12种B.48种C.72种D.120种
5.目前国家为进一步优化生育政策,实施一对夫妻可以生育三个子女政策.假定生男孩和生女孩是等可能的,现随机选择一个有三个小孩的家庭,如果已经知道这个家庭有女孩,那么在此条件下该家庭也有男孩的概率是()
12.已知函数 , 为常数,若函数 有两个零点 、 ,则下列说法正确的是()
A. B. C. D.
三、填空题
13.已知随机变量 的分布如下表,则 ______.
0
1
14.为调查某企业年利润 (单位:万元)和它的年研究费用 (单位:万元)的相关性,收集了5组成对数据 ,如下表所示:

2020年四川省绵阳市科学城第一中学高二数学理下学期期末试卷含解析

2020年四川省绵阳市科学城第一中学高二数学理下学期期末试卷含解析

2020年四川省绵阳市科学城第一中学高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 不等式表示的平面区域在直线的( )A.左上方B.左下方C.右上方D.右下方参考答案:C2. 双曲线两条渐近线互相垂直,那么它的离心率为 -()A. B. C. 2 D.参考答案:A3. 阅读下列程序:输入x;if x<0, then y =;else if x >0, then y =;else y=0;输出y.如果输入x=-2,则输出结果y 为( )A.-5 B.--5 C. 3+ D. 3-参考答案:D4. 焦点为直线-2-4=0与坐标轴的交点的抛物线的标准方程是()(A) =16 (B) =-8 或 =16(C) = 8 (D) =8 或 =-16参考答案:B5. 设R,则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:B6. 若函数有两个零点,则的取值范围()A. B. C. D.参考答案:A7. 已知定义在R上的奇函数f(x),当x≥0时,f(x)单调递增,若不等式f(﹣4t)>f(2mt2+m)对任意实数t恒成立,则实数m的取值范围是()A.(﹣∞,﹣)B.(﹣,0)C.(﹣∞,0)∪(,+∞)D.(﹣∞,﹣)∪(,+∞)参考答案:A8. 已知集合A={3m+2n|m>n且m,n∈N},若将集合A中的数按从小到大排成数列{a n},则有a1=31+2×0=3,a2=32+2×0=9,a3=32+2×1=11,a4=33=27,…,依此类推,将数列依次排成如图所示的三角形数阵,则第六行第三个数为( )a1a2a3a4a5a6…A.247 B.735C.733 D.731参考答案:C该三角形数阵中,每一行所排的数成等差数列,因此前5行已经排了15个数,∴第六行第三个数是数列中的第18项,∵a1=31+2×0=3,a2=32+2×0=9,a3=32+2×1=11,a4=33=27,…∴a18=36+2×2=733,故选C.9. 已知全集,集合,集合,则下图中阴部分所表示的集合是:A. B.C. D.参考答案:A略10. 有一段“三段论”推理是这样的:对于可导函数f(x),如果f′(x0)=0,那么x=x0是函数f (x)的极值点,因为函数f(x)=x3在x=0处的导数值f′(x0)=0,所以,x=0是函数f(x)=x3的极值点.以上推理中( )A.大前提错误B.小前提错误C.推理形式错误D.结论正确参考答案:A考点:演绎推理的基本方法.专题:计算题;推理和证明.分析:在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提”错误,也可能是推理形式错误,我们分析的其大前提的形式:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不难得到结论.解答:解:大前提是:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f'(x0)=0,且满足当x>x0时和当x<x0时的导函数值异号时,那么x=x0是函数f(x)的极值点,∴大前提错误,故选A.点评:本题考查的知识点是演绎推理的基本方法,演绎推理是一种必然性推理,演绎推理的前提与结论之间有蕴涵关系.因而,只要前提是真实的,推理的形式是正确的,那么结论必定是真实的,但错误的前提可能导致错误的结论.二、填空题:本大题共7小题,每小题4分,共28分11. 已知数据a1,a2,…,a n的方差为4,则数据2a1,2a2,…,2a n的方差为.参考答案:16【考点】极差、方差与标准差.【分析】根据数据x1,x2,…,x n的平均数与方差,即可求出数据ax1+b,ax2+b,…,ax n+b的平均数和方差.【解答】解:设数据x1,x2,…,x n的平均数为,方差为s2;则数据ax1+b,ax2+b,…,ax n+b的平均数是a+b,方差为a2s2;当a=2时,数据2a1,2a2,…,2a n的方差为22×4=16.故答案为:16.12. 某处有水龙头3个,调查表明每个水龙头被打开的可能性是0.1,随机变量X表示同时被打开的水龙头的个数,则_______(用数字作答).参考答案:0.027【分析】根据二项分布概率计算公式计算出的值.【详解】由于每个龙头被打开的概率为,根据二项分布概率计算公式有.【点睛】本小题主要考查二项分布的概率计算,考查运算求解能力,属于基础题.13. 设,则。

四川省广安市烈面中学2020年高二数学理下学期期末试题含解析

四川省广安市烈面中学2020年高二数学理下学期期末试题含解析

四川省广安市烈面中学2020年高二数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1.参考答案:C2. 函数y=f(x)在定义域(-,3)内的图像如图所示.记y=f(x)的导函数为y=f¢(x),则不等式f¢(x)≤0的解集为()A.[-,1]∪[2,3) B.[-1,]∪[,]C.[-,]∪[1,2)D.(-,-]∪[,]∪[,3)参考答案:A因为函数y=f(x)在区间[-,1]和[2,3)内单调递减,所以不等式f¢(x)≤0的解集为[-,1]∪[2,3)。

3. 设x,y满足约束条件,则z=2x﹣y的最大值为( )A.10 B.8 C.3 D.2参考答案:B考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.点评:本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.4. 设随机变量x~B(n,p),若Ex=2.4,Dx=1.44则()A.n=4,p=0.6 B.n=6,p=0.4 C.n=8,p=0.3 D.n=24,p=0.1参考答案:B【考点】二项分布与n次独立重复试验的模型.【分析】根据x~B(n,p),Ex=2.4,Dx=1.44,建立方程组,即可求得n,p的值.【解答】解:∵随机变量x~B(n,p),Ex=2.4,Dx=1.44,∴∴n=6,p=0.4故选B.5. 函数的定义域是()A. B.C. D.参考答案:D【分析】由函数有意义,得到,即可求解,得到答案.【详解】由题意,函数有意义,满足,解得,即函数的定义域为,故选D.【点睛】本题主要考查了函数的定义域的求解,其中解答中根据函数的解析式有意义,列出相应的不等式组是解答的关键,着重考查了推理与运算能力,属于基础题.6. 已知函数,则()A. B. C. D.参考答案:D【分析】根据函数解析式求得,分别将和代入函数解析式和导函数解析式,进而求得结果. 【详解】由题意知:,本题正确选项:D【点睛】本题考查函数值和导数值的求解问题,属于基础题.7. 为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y对x()A.y=x-1 B.y=x +1 C .y =88+x D .y =176参考答案:C略8. 在中,,若一个椭圆经过A ,B 两点,它的一个焦点为点C ,另一个焦点在边AB上,则这个椭圆的离心率为()A.B.C.D.参考答案:C设另一焦点为D中,,又,在中焦距则故选C9. 已知复数则,复数Z的虚部为()A.-3i B.3i C.3 D.-3 参考答案:D略10. 数列的首项为,为等差数列且,若,,则()A.B.C.D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11. 若椭圆两焦点为F1(﹣4,0),F2(4,0)点P在椭圆上,且△PF1F2的面积的最大值为12,则此椭圆的方程是.参考答案:考点:椭圆的标准方程;椭圆的简单性质.专题:计算题.分析:先设P点坐标为(x,y),表示出△PF1F2的面积,要使三角形面积最大,只需|y|取最大,因为P点在椭圆上,所以当P在y轴上,此时|y|最大,故可求.解答:解:设P点坐标为(x,y),则,显然当|y|取最大时,三角形面积最大.因为P点在椭圆上,所以当P在y轴上,此时|y|最大,所以P点的坐标为(0,±3),所以b=3.∵a2=b2+c2,所以a=5∴椭圆方程为.故答案为点评:本题的考点是椭圆的标准方程,主要考查待定系数法求椭圆的方程,关键是利用△PF1F2的面积取最大值时,只需|y|取最大12. 某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据:由资料显示对呈线性相关关系。

上海市华东师范大学第二附属中学2020-2021学年高二下学期期末数学试题(解析版)

上海市华东师范大学第二附属中学2020-2021学年高二下学期期末数学试题(解析版)
详解:由公理4可知A正确;
若l⊥m,l⊥n,则m∥n或m与n相交或异面,故B错误;
若点A、B不在直线l上,且到l的距离相等,则直线AB∥l或AB与l异面,故C错误;
若三条直线l,m,n两两相交,且不共点,则直线l,m,n共面,故D错误.
故选A.
点睛:本题考查命题的真假判断与应用,着重考查空间中直线与直线之间的位置关系,掌握空间直线的位置关系是判断的基础,对于这种题目的判断一般是利用课本中的定理和性质进行排除,判断.还可以画出样图进行判断,利用常见的立体图形,将点线面放入特殊图形,进行直观判断.

因为

综上所述, 中最小角为 ,故选B.
【点睛】(1)求直线与平面所成的角的一般步骤:
①找直线与平面所成的角,即通过找直线在平面上的射影来完成;
②计算,要把直线与平面所成的角转化到一个三角形中求解.
(2)作二面角 平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.
【答案】
【解析】
【分析】由已知中球O的半径为1,线段 的长度为 ,求得 ,求出弧AB的长度,即可得出答案.
【详解】解:因为球O的半径为1,A、B是球面上两点,线段 的长度为 ,
在 中, ,
又 ,则 ,
所以A、B两点的球面距离为 .
故答案为: .
5.正方体 中,异面直线 和 所成角的大小为________
所以 取 ,得 .
易知平面 的法向量为 .
由二面角 是锐角,得 .
所以二面角 的余弦值为 .
(3)解:假设存在满足条件的点 .
因为 在线段 上, , ,故可设 ,其中 .

2020-2021学年湖北省部分省级示范高中高二下学期期末数学试题(解析版)

2020-2021学年湖北省部分省级示范高中高二下学期期末数学试题(解析版)

2020-2021学年湖北省部分省级示范高中高二下学期期末数学试题一、单选题1.设全集为R ,集合{}02A x x =<<,{}1B x x =≥,则()R A B = A .{}01x x <≤ B .{}01x x <<C .{}12x x ≤<D .{}02x x <<【答案】B【详解】分析:由题意首先求得R C B ,然后进行交集运算即可求得最终结果. 详解:由题意可得:{}|1R C B x x =<, 结合交集的定义可得:(){}01R A C B x =<<.本题选择B 选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.2.若复数z 满足()13i 1i z +=-(i 为虚数单位),则z 所对应的复平面内的点位于复平面的( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【分析】利用复数的除法法则计算得到12i 55z =--,得到答案.【详解】()13i 1i z +=-,故()()()()1i 13i 1i 24i 12i 13i 13i 13i 1055z -----====--++-,故对应点在第三象限. 故选:C.3.已知函数()21xf +的定义域为()3,5,则函数()21f x +的定义域为( )A .()1,2B .()9,33C .()4,16D .()3,5【答案】C【分析】计算()219,33x+∈,根据抽象函数定义域得到92133x <+<,解得答案.【详解】当()3,5x ∈时,()219,33x+∈,故92133x <+<,解得416x <<.故选:C.4.中国古代的“礼、乐、射、御、书、数”合称“六艺”.某校国学社开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课相邻排课,则“六艺”课程讲座排课顺序共有( ) A .12种 B .24种 C .36种 D .48种【答案】C【分析】先排“数”,然后排“射”和“御”,再排剩下的三门,由此计算出正确答案. 【详解】先排“数”,然后排“射”和“御”,方法有()1226+⨯=种,再排剩下的三门,方法数有336A =种,故总的方法数有6636⨯=种. 故选:C5.2021年3月20日,“沉睡三千年,一醒惊天下”的三星堆遗址向世人展示了其重大考古新发现——6个三星堆文化“祭祀坑”现已出土500余件重要文物.为推测文物年代,考古学者通常用碳14测年法推算,碳14测年法是根据碳14的衰变程度来计算出样品的大概年代的一种测量方法.2021年,考古专家对某次考古的文物样本上提取的遗存材料进行碳14年代测定,检测出碳14的残留量约为初始量的68%,已知碳14的半衰期(放射性物质质量衰减一半所用的时间)是5730年,且属于指数型衰减.以此推算出该文物大致年代是( )(参考数据:log 19034.7≈-,log 34881≈-) A .公元前1400年到公元前1300年 B .公元前1300年到公元前1200年 C .公元前1200年到公元前1100年 D .公元前1100年到公元前1000年【答案】C【分析】设样本中碳14初始值为k ,衰减率为p ,经过x 年后,残留量为y ,可得函数关系式()1xy k p =-,根据半衰期可构造方程求得1p -,由此得到函数关系式,根据(68%xkk =可求得x ,由此可推断出年代.【详解】设样本中碳14初始值为k ,衰减率为p ,经过x 年后,残留量为y ,则()1xy k p =-,碳14的半衰期是5730年,()5730112k p k ∴-=,1p ∴-=,(xy k ∴=;由(68%xkk =得:()log 0.68log log 34881219034.73188x ==-=--⨯-≈,2021年之前的3188年大致是公元前1167年,即大致年代为公元前1200年到公元前1100年之间. 故选:C.6.在平行四边形ABCD 中,113,2,,D,32AB AD AP AB AQ A ====若CP C 12,Q ⋅=则ADC ∠=A .56πB .34π C .23π D .2π 【答案】C【解析】由23CP CB BP AD AB =+=--,12CQ CD DQ AB AD =+=--,利用平面向量的数量积运算,先求得,3BAD π∠=利用平行四边形的性质可得结果.【详解】如图所示,平行四边形ABCD 中, 3,2AB AD ==, 11,32AP AB AQ AD ==, 23CP CB BP AD AB ∴=+=--, 12CQ CD DQ AB AD =+=--, 因为12CP CQ ⋅=,所以2132CP CQ AD AB AB AD ⎛⎫⎛⎫⋅=--⋅-- ⎪ ⎪⎝⎭⎝⎭22214323AB AD AB AD =++⋅222143232cos 12323BAD =⨯+⨯+⨯⨯⨯∠=, 1cos 2BAD ∠=,,3BAD π∴∠= 所以233ADC πππ∠=-=,故选C. 【点睛】本题主要考查向量的几何运算以及平面向量数量积的运算法则,属于中档题. 向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).7.在研究某高中高三年级学生的性别与是否喜欢某学科的关系时,总共调查了N 个学生(100m,N m *=∈N ),其中男女学生各半,男生中60%表示喜欢该学科,其余表示不喜欢;女生中40%表示喜欢该学科,其余表示不喜欢.若有99.9%把握认为性别与是否喜欢该学科有关,则可以推测N 的最小值为( )附22()()()()()n ad bc K a b c d a c b d -=++++,)2kA .400B .300C .200D .100【答案】B【分析】根据题目列出22⨯列联表,再根据列联表的数据计算2K 值,进而得到关于m 的关系式,求解即可.【详解】由题可知,男女各50m 人,列联表如下:()22224100900400=450505050m m m K m m-=⨯⨯⨯,有99.9%把握认为性别与是否喜欢该学科有关,410.828m ∴>,解得 2.707m >,m *∈N ,3m ∴≥,min 300N ∴=.故选:B8.过抛物线2:2(0)C y px p =>焦点的直线与抛物线C 交于,A B 两点,其中||8AB =,AD DB =,圆225:02C x y y '+-=,若抛物线C 与圆C '交于,P Q 两点,且||PQ =则点D 的横坐标为( )A .2B .3C .4D .5【答案】B【分析】设(0,0),(,),0P Q m n m >,先求得(1,2)Q ,因此可得抛物线C 的方程为24y x =,设1122(,),(,)A x y B x y ,由焦点弦长公式得到126x x +=,进而得到点D 的横坐标. 【详解】易知圆C '过原点,设(0,0),(,),0P Q m n m >,由||5PQ =,可得225m n +=,又2252m n n +=,联立可解得1,2m n ==. 将(1,2)Q 代入22y px =中,解得2p =,∴抛物线C 的方程为24y x =, 设1122(,),(,)A x y B x y ,则121212222p p AB AF BF x x x x p x x ⎛⎫⎛⎫=+=+++=++=++ ⎪ ⎪⎝⎭⎝⎭由8AB =可得126x x +=.由AD DB =可知,点D 是AB 的中点,因此,点D 的横坐标为1232x x +=. 故选:B.【点睛】结论点睛:抛物线焦点弦长公式:若AB 是过抛物线22(0)y px p =>焦点的弦,设1122(,),(,)A x y B x y ,则12AB x x p =++. 二、多选题9.已知数列{}n a 中,111,2,n n n a a a n N *+==∈,则下列说法正确的是( )A . 44a =B . {}2n a 是等比数列C . 12212n n n a a ---=D . 12122n n n a a +-+=【答案】ABC【分析】根据已知条件判断出数列{}n a 的奇数项和偶数项,分别是以2为公比的等比数列,由此对选项逐一分析,从而确定正确选项.【详解】依题意1*1N 1,2,n n n a a a n +=⋅=∈,所以122a a ⋅=,则22a =,1122n n n a a +++=⋅,11221222n n n n n n n na a aa a a +++++⋅=⇒=⋅,所以数列{}n a 的奇数项和偶数项,分别是以2为公比的等比数列. 111221222,122n n n n n n a a ----=⨯==⨯=.所以2424a ==,A 、B 正确.11221222n n n n n a a ----=-=,C 正确. 112212232n n n n n a a ---+=+=⨯,D 错误.故选:ABC10.已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭在区间[]0,π上恰能取到2次最大值,且最多有4个零点,则下列说法中正确的有( ) A .()f x 在()0,π上恰能取到2次最小值B .ω的取值范围为825,36⎡⎫⎪⎢⎣⎭C .()f x 在0,6π⎛⎫⎪⎝⎭上一定有极值D .()f x 在0,3π⎛⎫ ⎪⎝⎭上不单调【答案】BD【分析】当[]0,x π∈时,,666x πππωωπ⎡⎤-∈--⎢⎥⎣⎦,然后由条件可得62ππωπ-≥,46πωππ-<,解出ω的范围,然后注意判断即可.【详解】当[]0,x π∈时,,666x πππωωπ⎡⎤-∈--⎢⎥⎣⎦由函数()f x 在区间[]0,π上恰能取到2次最大值可得562ππωπ-≥由()f x 最多有4个零点可得46πωππ-<,所以可得82536ω≤<, 故B 正确, 当83ω=时,()f x 在()0,π上只能取到1次最小值,故A 错误当0,6x π⎛⎫∈ ⎪⎝⎭时,,6666x ππππωω⎛⎫-∈-- ⎪⎝⎭,当83ω=时,662πππω-<,()f x 无极值,故C 错误当0,3x π⎛⎫∈ ⎪⎝⎭时,,6636x ππππωω⎛⎫-∈-- ⎪⎝⎭因为8363362πππππω-≥⨯->,所以()f x 在0,3π⎛⎫⎪⎝⎭上不单调,故D 正确故选:BD【点睛】方法点睛:在处理正弦型函数的有关问题时,常把x ωϕ+当成整体处理. 11.已知偶函数()f x 满足:(2)(2)f x f x +=-,且当0≤x ≤2时,()22x f x =-,则下列说法正确的是( )A .-2≤x ≤0时,1()22xf x ⎛⎫=- ⎪⎝⎭B .点(1,0)是f (x )图象的一个对称中心C .f (x )在区间[-10,10]上有10个零点D .对任意12,x x ,都有()()122f x f x - 【答案】AC【分析】由偶函数的定义得解析式,判断A ,由[0,2]上的解析式判断B ,已知条件得2x =是一条对称轴,这样函数()f x 是周期函数,周期为4,利用周期性可判断零点个数,判断C ,由最值判断D .【详解】因为()f x 是偶函数,所以20x -≤≤时,1()()2222xx f x f x -⎛⎫=-=-=- ⎪⎝⎭,A正确;在[0,2]上,()22x f x =-不关于(1,0)对称,因此(1,0)不是()f x 的一个对称中心,B 错; 由220x -=得1x =,因此在[2,2]-上,()f x 有两个零点, 又(2)(2)f x f x +=-,所以2x =是函数图象的一条对称轴,(4)(2(2))()()f x f x f x f x +=-+=-=,所以()f x 是周期函数,周期为4,因此()f x 在[10,6],[6,2],[2,6],[6,10]----上各有2个零点,在[10,10]-上共有10个零点,C 正确;由周期性知2max ()222f x =-=,0min ()221f x =-=-,max min ()()32f x f x -=>,D 错.故选:AC .【点睛】思路点睛:本题考查函数的奇偶性、对称性与周期性,解题关键是由两个对称性得出函数具有周期性,因此只要在一个周期内确定函数的零点,从而可得函数的性质可得整个定义域上函数的性质.12.截角四面体是一种半正八面体,可由四面体经过适当的截角,即截去四面体的四个顶点所产生的多面体.如图,将棱长为3的正四面体沿棱的三等分点作平行于底面的截面得到所有棱长均为1的截角四面体,则( )A .该截角四面体一共有12条棱B .该截角四面体一共有8个面C .该截角四面体的表面积为3D 232【答案】BCD【分析】确定截角四面体是由4个边长为1的正三角形,4个边长为1的正六边形构成,然后分别求解四面体的表面积,体积即可判断选项.【详解】对于AB ,可知截角四面体是由4个边长为1的正三角形,4个边长为1的正六边形构成,故该截角四面体一共有8个面,18条棱,故A 错误,B 正确; 对于C ,边长为1的正三角形的面积133112S =⨯⨯,边长为1的正六边形的面积13336112S =⨯⨯⨯=,故该截角四面体的表面积为33344=73S =+故C正确;对于D ,棱长为1的正四面体的高2236132h ⎛⎫=-⨯= ⎪ ⎪⎝⎭四面体的体积为13613633311232=4331122V ⨯⨯⨯⨯⨯⨯=⨯故D 正确. 故选:BCD【点睛】关键点点睛:本题考查多面体的表面积及体积求法,解题的关键是审清题意,清楚截角四面体的定义及构成,考查学生的空间想象能力与运算求解能力,属于较难题. 三、填空题13.某圆柱两个底面面积之和等于其侧面面积,则该圆柱底面半径与高的比值为________. 【答案】1【分析】设圆柱底面半径为r ,高为h ,求出底面积的侧面积,即可得结论. 【详解】设圆柱底面半径为r ,高为h ,由题意222r rh ππ=,所以r h =,即1rh=. 故答案为:1.14.若12nx x ⎛⎫- ⎪⎝⎭的展开式中只有第5项的二项式系数最大,则展开式中常数项为______.(用数字作答) 【答案】358【分析】由二项式系数的性质,求出n ,再写出二项展开式的通项,由通项中x 的指数为0即可得解.【详解】12nx x ⎛⎫- ⎪⎝⎭的展开式中只有第5项的二项式系数最大,则由二项式系数性质知:展开式共有9项,则n =8,81()2x x -展开式的通项为88218811()()(,8)22r rr r r r r T C x C x r N r x --+=⋅-=-∈≤, 展开式中常数项,必有820r -=,即4r =,所以展开式中常数项为44581135()702168T C =-=⋅=. 故答案为:35815.已知定义域为R 的函数()f x 恒满足()()()22f x f x f x +=-=,且()f x 在()0,1内单调递减,写出一个满足条件的函数解析式()f x =________. 【答案】cos x π(答案不唯一)【分析】根据函数的对称性、周期性、单调性写出符合题意的()f x . 【详解】定义域为R 的函数()f x 恒满足()()()22f x f x f x +=-=, 所以()f x 的对称轴为1x =和2x =,且()f x 是以2为周期的周期函数, 结合()f x 在()0,1内单调递减,可得()f x =cos x π符合题意. 故答案为:cos x π(答案不唯一)16.在对表面为曲面的工件进行磨削时应当选用尺寸适当的圆形砂轮,如果砂轮半径太大,则磨削时工件与砂轮接触处附近的那部分会磨去太多.现有一工件,其截面内表面是一长轴长为4,离心率为12的椭圆,在对其内表面进行抛光时,所选用砂轮的半径最大为________.【答案】321.5【分析】根据实轴长和离心率得到椭圆方程为22143x y +=,设圆方程为()2222x r y r -++=,根据椭圆的圆相切得到0∆=,计算得到答案.【详解】24a =,2a =,离心率12c e a ==,故1c =,b = 不妨设椭圆方程为:22143x y +=, 设圆半径为r ,椭圆与圆相切于左顶点或者右顶点时r 有最大值, 圆方程为:()2222x r y r -++=,联立方程:()222221432x y x r y r⎧+=⎪⎨⎪-++=⎩, 消去y 得到()21227404x r x r +-+-=,()()224274230r r r ∆=--+=-=,解得32r =. 故答案为:32.四、解答题17.在①sin cos a A a C =-,②(2)sin (2)sin 2sin a b A b a B c C -+-=这两个条件中任选一个,补充在下列问题中,并解答.已知ABC 的角A B C ,,对边分别为,,,a b c c =_____. (I )求C ∠;(Ⅱ)求ABC 面积的最大值. 【答案】(I )3π;(Ⅱ【分析】(I )选①,先利用正弦定理化简可得sinA sinAcosC -,进而得到1cosC -=,结合C 的范围即可求得3C π=;选②,先利用正弦定理可得(2a ﹣b )a +(2b ﹣a )b =2c 2,再利用余弦定理可得12cosC =,结合C 的范围即可求得3C π=;(Ⅱ)由余弦定理可得223a b ab +-=,再利用基本不等式可得3ab ≤,进而求得△ABC 面积的最大值.【详解】解:(I )选①,∵a acosc =-,∴sinA sinAcosC =-,∵sin A ≠0,1cosC -=,即162sin C π⎛⎫-= ⎪⎝⎭,又0<C <π,∴5666C πππ--<<,故66C ππ-=,即3C π=;选②,∵(2a ﹣b )sin A +(2b ﹣a )sin B =2c sin C , ∴(2a ﹣b )a +(2b ﹣a )b =2c 2,即a 2+b 2﹣c 2=ab , ∴222122a b c cosC ab +-==,∵0<C <π, ∴3C π=;(Ⅱ)由(I )可知,3C π=,在△ABC 中,由余弦定理得222cos 3a b ab C +-=,即223a b ab +-=, ∴2232a b ab ab +=+≥∴3ab ≤,当且仅当那个a =b 时取等号,∴11sin 322ABC S ab C =≤⨯=△△ABC 18.已知等差数列{}n a 和等比数列{}n b 满足,12a =,11b =,23a b =,342a b =-. (1)求{}n a 和{}n b 的通项公式;(2)若数列{}n c 满足n n n c a b =,求{}n c 的前n 项之和n S .【答案】(1)2n a n =,12n n b -=(2)()1122n n S n +=-⨯+【分析】(1)根据等差数列和等比数列公式得到方程组,解得答案.(2)计算2nn c n =⋅,利用错位相减法计算得到答案.(1)23a b =,即22d q +=,342a b =-,即3222d q +=-,解得2q,2d =,故()2122n a n n =+-⨯=,11122n n n b --=⨯=.(2)1222n n n n n c a b n n -==⨯=⋅,212222n n S n =⨯+⨯+⋅⋅⋅+⨯,则231212222n n S n +=⨯+⨯+⋅⋅⋅+⨯,两式相减得到:2111112122222222212n n n n n n n S n n n ++++--=⨯++⋅⋅⋅+-⨯=-⨯=--⨯-,故()1122n n S n +=-⨯+.19.为做好精准扶贫工作,农科所经实地考察,发现某贫困村的土地适合种植药材A ,村民可以通过种植药材A 增加收入,达到脱贫标准.通过大量考察研究得到如下统计数据:药材A 的收购价格处于上涨趋势,最近五年的价格如下表: 年份 2016 2017 2018 2019 2020 年份编号x 1 2 3 4 5 单价y (元/公斤) 1820232529药材A 的亩产量在2020年的频率分布直方图如下:(1)若药材A 的单价y (单位:元/公斤)与年份编号x 间具有线性相关关系,请求出y 关于x 的回归直线方程,并估计2021年药材A 的单价;(2)利用上述频率分布直方图估计药材A 的平均亩产量(同组数据以该数据所在区间的中点值为代表);(3)称亩产量不高于390公斤的田地为“待改良田”,将频率视为概率,现农科所研究员从这个村的地中随机选取3块面积为1亩的田地进行试验,记其中“待改良田”的个数为X ,求随机变量X 的数学期望.参考公式:回归直线方程ˆˆˆybx a =+,其中1221ˆni ii nii x y nxyb xnx ==-=-∑∑,ˆˆay bx =-. 【答案】(1) 2.7149ˆ.yx =+,单价为31.1元/公斤;(2)401公斤;(3)0.9. 【分析】(1)先求出年号x ,单价y 的平均数,利用最小二乘法得回归直线方程,再由此预测得解;(2)求出频率分布直方图中各组的频率,再求出它与所对各组区间中点值的积而得解;(3)随机变量X 服从二项分布,由二项分布的期望公式求解即得. 【详解】(1)3x =,23y =,51522222222151182203234255295323ˆ 2.712345535i ii i i x y x ybx x==-⋅+⋅+⋅+⋅+⋅-⋅⋅===++++-⨯-∑∑,ˆˆ23 2.7314.9ay b x =-⋅=-⋅=,故回归直线方程为 2.7149ˆ.y x =+, 当6x =时,ˆ31.1y=,从而2021年药材A 的单价估计为31.1元/公斤; (2)组距为20,自左向右各组的频率依次为0.1,0.2,0.35,0.25,0.1,则A 药材的平均亩产量为3600.13800.24000.354200.254400.1401⨯+⨯+⨯+⨯+⨯=公斤;(3)称亩产量不高于390公斤的频率为0.3,由此估计称亩产量不高于390公斤的概率为0.3,因3块地中,任取一块地有“待改良田”和非“待改良田”两个不同结果,则随机变量()3,0.3XB ,故数学期望()30.30.9E X =⨯=.20.如图,ABC 是边长为2的等边三角形,平面ACDE ⊥平面ABC ,且AC DC DE AE ===,60ACD ∠=︒,//DF BC ,1DF =.(1)求证://EF 平面ABC ;(2)求平面ABC 与平面BEF 所成锐二面角的余弦值. 【答案】(1)证明见解析;(213. 【分析】(1)根据四边形ACDE 是菱形,得到//AC DE ,证得//DE 平面ABC ,再由//DF BC ,证得//DF 平面ABC ,进而得到平面//DEF 平面ABC ,即可证得//EF 平面ABC ;(2)取AC 中点O ,连接OB ,OD ,分别以OB ,OC ,CD 所在直线为x 轴、y 轴、z 轴建立空间坐标系,求得平面BEF 和ABC 的一个法向量,结合向量的夹角公式,即可求解.【详解】(1)因为AC DC DE AE ===,所以四边形ACDE 是菱形, 所以//AC DE ,且DE ⊄平面ABC ,所以//DE 平面ABC . 又因为//DF BC ,DF ⊄平面ABC ,所以//DF 平面ABC , 因为DFDE D =,且,DF DE ⊂平面DEF ,所以平面//DEF 平面ABC ,又因为EF ⊂平面DEF ,所以//EF 平面ABC .(2)取AC 中点O ,连接OB ,OD ,分别以OB ,OC ,CD 所在直线为x 轴、y 轴、z 轴建立空间坐标系,如图所示,则(0,1,0)B D C ,可得(3,1,0)CB =-,由131,0222DF CB ⎛⎫==- ⎪ ⎪⎝⎭,可得12F -⎝, 又由(0,2,0)DE CA ==-,可得(0,E -, 所以33(3,2,3),,,022BE EF ⎛⎫=--= ⎪⎪⎝⎭, 设平面BEF 的法向量为(,,)n x yz =,则00EF n BE n ⎧⋅=⎨⋅=⎩,可得20302y x y ⎧-=+=,取x =1y =-,所以3,n ⎛=- ⎭, 又由平面ABC 的一个法向量为(0,0,1)m =, 所以33cos,m n <>==所以平面ABC 与平面BEF .【点睛】利用空间向量计算二面角的常用方法:1、法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小;2、方向向量法:分别在二面角的两个半平面内找到与棱垂直且垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.21.已知函数()()2e 14 2.xf x m x x x =+---(1)若1m =,试求曲线()y f x =在点()()0,0f 处的切线方程; (2)讨论()f x 的单调性. 【答案】(1)21y x =-- (2)答案见解析【分析】(1)求导得到导函数,计算()02f '=-,()01f =-,得到切线方程.(2)求导得到()()()2e 2xf x x m '+-=,考虑0m ≤,202e m <<,22e m =,22e m >四种情况,根据导数的正负得到函数的单调性. (1)()()2e 142x f x x x x =+---,()()e 224x f x x x '=+--,()2204f '=-=-,()01f =-,故切线方程为:21y x =--. (2)()()2e 142x f x m x x x =+---,故()()()()e 2242e 2x x f x m x x x m =+'=+---,当0m ≤时,2e 0x m -<,当2x <-时,()0f x '>,当2x >-时,()0f x '<,故函数在(),2-∞-上单调递增,在()2,-+∞上单调递减;当0m >时,2e 0x m -=得到2ln x m=, 当22e m >时,2ln2m <-,当2,ln x m ⎛⎫∈-∞ ⎪⎝⎭和()2,x ∈-+∞时,()0f x '>,函数单调递增,当x ∈2ln ,2m ⎛⎫- ⎪⎝⎭,时,()0f x '<,函数单调递减;当22e m =时,2ln 2m=-, ()0f x '≥恒成立,函数在R 单调递增;当22e m <时,2ln2m >-,当(),2x ∞∈--和2ln ,x m ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,函数单调递增,当x ∈22,ln m ⎛⎫- ⎪⎝⎭时,()0f x '<,函数单调递减;综上所述:当0m ≤时,函数在(),2-∞-上单调递增,在()2,-+∞上单调递减;当202e m <<时,函数在(),2-∞-和2ln ,m ⎛⎫+∞ ⎪⎝⎭上单调递增, 在22,ln m ⎛⎫- ⎪⎝⎭上单调递减;当22e m =时,函数在R 上单调递增;当22e m >时,函数在2,ln m ⎛⎫-∞ ⎪⎝⎭和()2,-+∞上单调递增, 在2ln ,2m ⎛⎫- ⎪⎝⎭上单调递减.22.已知椭圆2222:1(0)x y E a b a b +=>>上任一点到两个焦点12,F F 的距离之和为轴长为4.动点M 在双曲线22142x y -=(顶点除外)上运动,直线1MF 和2MF 与椭圆E 的交点分别为AB 、和CD 、. (1)求椭圆E 的方程;(2)证明:||||AB CD +为定值,并求出此定值.【答案】(1)22184x y +=;(2)证明见解析,【分析】(1)根据题意得2a =,24b =,进而得答案; (2)由题设()()000,2M x y x ≠±,故1212MF MF k k ⋅=,进而设直线1MF 的方程为2x my =-,直线2MF 的方程为2x ny =+,且2mn =,再联立方程,结合弦长公式得)2212m AB m +=+,)2212n CD n +=+,再化简整理即可得答案.【详解】解:(1)由题意可知2a =,24b =,则a =2b =,∴椭圆E 的方程为22184x y +=(2)设()()000,2M x y x ≠±,则2200142x y -=,由题意椭圆E 的两个焦点1F ,2F 刚好是双曲线的两个顶点, 不妨取()12,0F -,()22,0F ,则()12220000220000141222442MF MF x y y y kk x x x x -⋅=⋅===+---. 故设直线1MF 的方程为2x my =-,直线2MF 的方程为2x ny =+, 则12112MF MF k k mn ⋅==,∴2mn =, 联立()22222244028x my m y my x y =-⎧⇒+--=⎨+=⎩ 设()11,A x y ,()22,B x y ,12242m y y m +=+,12242y y m =-+)212212m AB y m +=-=+,同理)2212n CD n +=+,∴))22222222222211233422224m n m n m n AB CD m n m n m n ++++++=+=+++++2222331232282m n m n ++===++∴AB CD +为定值,且定值为【点睛】本题考查椭圆的方程求解,椭圆中的定值问题,考查运算求解能力,是中档题.本题解题的关键在于发现12112MF MF k k mn ⋅==,进而设出直线1MF 的方程为2x my =-,直线2MF 的方程为2x ny =+,与椭圆联立,并结合弦长公式计算得)2212m AB m +=+,)2212n CD n +=+,再化简整理即可求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

...【2019最新】精选高二数学下学期期末考试试题高 二 数 学(理)考试时间:120分钟 试卷满分150分一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个)1. 抛物线的准线方程是( )218y x =-A .B .C .D .132x =-2y =-132y =2y = 2.设命题,则为 ( ) 2:0 , log 23p x x x ∀><+p ⌝ A . B .20 , log 23x x x ∀>+≥20 , log 23x x x ∃><+C .D .20 , log 23x x x ∃>+≥20 , log 23x x x ∀<+≥3. 已知命题;命题若,则.下列命题为真命题的是 ( )2:,10P x R x x $?+?q 22a b <a b <A. B. C. D. p q Ùp q ØÙp q ØÙp q 刎Ù4. 设函数的导函数为,且,则 ( )()f x ()f x '2()2(1)f x x xf '=+(1)f '-=A .B .C .D .06-3-2-5. 过双曲线C:的右焦点作直线l 交该双曲线于两点,则满足的直线l 有( )2213y x -=B A ,6AB = A. 1条 B. 2条 C. 3条 D.4条6. 函数,,若对, ,()3123f x x x =-+()3xg x m =-[]11,5x ∀∈-[]20,2x ∃∈()()12f x g x ≥,则实数 的最小值是 ( )mA.11B.12C.13D.147.如图,三棱锥的底面 是等腰直角三角形,,侧面与底面垂直,已知其正视图的面积为3,则其侧视图的面积为( )V ABC -ABC AB BC =VACA .B .C .D .2232343243 8.若关于的不等式对任意恒成立,则的取值范围是 ( )x 0x e ax -≥(0,)x ∈+∞aA .B .C .D .[]0,e (,0]-∞[,)e +∞(,]e -∞9.如图,的二面角的棱上有两点,直线分别在这个二面角的两个半平面内,且都垂直于. 已知,则的长为 ( )060,A B ,AC BD AB 4,6,8AB AC BD ===CDA .B .7C .D .10. 椭圆上的一点关于原点的对称点为,为它的右焦点, 若,则的面积是( )221164x y +=A B F AF BF ⊥AFB ∆A .4 B. 2 C.111.已知椭圆与双曲线的焦点重合,分别为的离心率,则( )2212:1(1)x C y m m +=>()01:2222>=-n y nx C12,e e 12,C C A. 且 B. 且 m n >121e e >m n >121e e < C. 且 D. 且m n <121e e >m n <121e e <12. 已知函数有两个极值点,则实数a 的取值范围是( )()(ln )f x x x ax =-A. B. C. D.1(,)2-∞1(0,)2(0,1)(,1)-∞ 二、填空题(本大题共4小题,每小题5分,共20分) 13.复数的共轭复数是__________.()()141i i z i--=+14.由直线,曲线及轴围成的图形的面积是 .01x x ==,x y e =x 15. 已知,设函数的图象在点处的切线为,则在轴上的截距为_________________.a R Î()ln f x ax x =-(1,(1))f16.已知抛物线的焦点为,准线与轴的交点为,点在抛物线上,且2:4y x G =F x K P ΓPK ,则△的面积为________. PKF三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知在直角坐标系中,直线的参数方程为,(为参数),以坐标原点为 极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.xOy l ⎩⎨⎧=-=ty t x 33t x C 03cos 42=+-θρρ (1)求直线的普通方程和曲线的直角坐标方程;l C(2)设点是曲线上的一个动点,求它到直线的距离的取值范围. 18.(本小题满分12分)已知函数.()2f x x a a =-+ (1)当时,求不等式的解集;3a =()6+f x x ≤(2)设函数.,,求的取值范围.()23g x x =-x ∀∈R ()()5f x g x +≥a19.(本小题满分12分)已知命题,命题“曲线表示焦点在轴上的椭圆”,命题“曲线表示双曲线”()21:,2102p x R x m x ∃∈+-+≤:q 222:128x y C m m +=+x :s 22:11x y C m t m t +=--- (1)若“”是真命题,求的取值范围;p q ∧m (2)若是的必要不充分条件,求的取值范围.q s t20.(本小题满分12分)如图,在四棱锥P -ABCD 中,PA ⊥面ABCD ,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =PA =2,E ,F 分别为PB ,AD 的中点.(1) 证明:AC⊥EF;(2)求直线EF 与平面PCD 所成角的正弦值.21.(本小题满分12分)已知椭圆:()经过点,离心率为,点为坐标原点.E O (1)求椭圆的标准方程;E(2)过椭圆的左焦点任作一直线,交椭圆于,两点,求的取值范围.E F l E P Q OP OQ ⋅uu u r uuu r22.(本题满分12分)已知. ()212ln x f x x+=(1)求的单调区间;()f x(2)令,则时有两个不同的根,求的取值范围;()22ln g x ax x =-()1g x =a(3)若存在,且,使成立,求的取值范围.1x ()21,x ∈+∞12x x ≠|ln ln ||)()(|2121x x k x f x f ->-k高二理科数学答案一、选择题1-5 D C B B C 6-10 D B D C A 11-12 A B 二、填空题13、 14、 15、1 16、 2 14i -+1e - 三、解答题17解:(Ⅰ)直线的普通方程为:; (2分)l 0333=+-y x 曲线的直角坐标方程为: (5分)C 1)2(22=+-y x (Ⅱ)设点,则)sin ,cos 2(θθ+P )(R ∈θ所以的取值范围是 (10分) d [1,1]22-+ (注:几何法略)18.解:(1)当时,等价于3a =()6f x ≤233x x --≤当时,解得 ; 当时,解得23≥x ]6,23[∈x 230〈〈x )23,0(∈x 当时,解得 ; 所以解集为. (5分)0≤x {}0∈x {}06x x ≤≤ (2)当时,,x ∈R ()()232f x g x x a a x +=-++-2323x a x a a a ≥-+-+=-+ 所以当时,等价于.① (7分)x ∈R ()()5f x g x +≥35a a -+≥ 当时,①等价于,无解; 5a ≤当时,①等价于,解得, 所以的取值范围是.(10分)[)4,+∞19.(Ⅰ)解:若p 为真,则解得:m ≤-1或m ≥3 2分若q 为真,则解得:-4 < m < -2或m > 4 4分 若“p 且q ”是真命题,则解得:或m > 4 6分∴m 的取值范围是{ m |或m > 4} 7分21(1)4202m ∆=--⨯⨯≥ 228280m m m ⎧>+⎨+>⎩13424m m m m ≤或≥或-⎧⎨-<<->⎩42m -<<- 42m -<<-(Ⅱ)解:若s 为真,则,即t < m < t + 1 8分∵由q 是s 的必要不充分条件∴ 9分即或t≥4 11分 解得:或t≥4∴t 的取值范围是{ t |或t≥4} 12分()(1)0m t m t ---<{|1}{|424}m t m t m m m <<+-<<->或Ü 412t t -⎧⎨+-⎩≥≤ 43t --≤≤ 43t --≤≤20. 解:(1)易知AB ,AD ,A P 两两垂直.如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 设AB =t ,则相关各点的坐标为:A(0,0,0),B(t,0,0),C(t,1,0),D(0,2,0),P(0,0,2),E(,0,1),F(0,1,0).从而=(-,1,-1),=(t,1,0),=(-t,2,0).因为AC ⊥BD ,所以·=-t2+2+0=0.解得t =或t =-(舍去). (3分)于是=(-,1,-1),=(,1,0).因为·=-1+1+0=0,所以⊥,即AC ⊥EF. (5分) (2) 由(1)知,=(,1,-2),=(0,2,-2). 设n =(x ,y ,z)是平面PCD 的一个法向量,则⎩⎨⎧2x +y -2z =02y -2z =0令z =,则n =(1,,). (10分) 设直线EF 与平面PCD 所成角为θ,则sin θ=|cos <n ,>|=.即直线EF 与平面PCD 所成角的正弦值为. (12分)21.解:(1)因为,所以,从而,222253144415a b b a ⎧+=⎪⎪⎨⎪-=⎪⎩1a b ⎧=⎪⎨=⎪⎩2c = 椭圆的方程为. (4分)E 2215x y +=(2),当直线的斜率不存在时,可得,,()2,0F -l 2,5P ⎛- ⎝⎭2,5Q ⎛-- ⎝⎭此时; (5分)119455OP OQ ⋅=-=uu u r uuu r当直线的斜率存在时,设:,,,l l ()2y k x =+()11,P x y ()22,Q x y联立与,可得,()2y k x =+2215x y +=()222215202050k x k x k +++-=所以,, (7分)21222015k x x k +=-+212220515k x x k -=+1212OP OQ x x y y ⋅=+u u u r u u u r()()2221212124k x x k x x k =++++,所以()222205115k OP OQ k k -⋅=+⋅++uu u r uuu r 2222202415k k k k ⎛⎫⋅-+ ⎪+⎝⎭2224419519515515k k k -==-++, (10分) 因为,,所以,从而,20k ≥2511k +≥2444450515k -≤-<+1955OP OQ -≤⋅<uu u r uuu r综上可得的取值范围是. (12分)OP OQ ⋅uu u r uuu r 195,5⎡⎤-⎢⎥⎣⎦22.解:(1).令得,()34ln xf x x-'=()0f x '=1x = ()0,1x ∈时,,单调递增;()0f x '>()f x ()1,x ∈+∞时,,单调递减.()0f x '<()f x综上,单调递增区间为,单调递减区间为. (3分)()f x ()0,1()1,+∞ (2)①当时,,单调递减,故不可能有两个根,舍去0≤a ()'0g x <②当时, 时,,单调递减,0>a x ⎛∈⎝()'0g x <()f xx ⎫∈+∞⎪⎪⎭时,,单调递增.所以得.()'0g x >()fx 1g <01a << 综上, (7分) (注:可利用第(1)问结论用分离参数法)01a << (3)不妨设,由(1)知时,单调递减.121x x >>()1,x ∈+∞()f x()()1212ln ln f x f x k x x -≥-,等价于()()()2112ln ln f x f x k x x -≥-即()()2211ln ln f x k x f x k x +≥+存在,且,使成立1x ()21,x ∈+∞12x x ≠()()2211ln ln f x k x f x k x +≥+ 令,在存在减区间()()ln h x f x k x =+()h x ()1,+∞()234ln 0kx xh x x -'=<有解,即有解,即24ln x k x <2max4ln x k x ⎛⎫< ⎪⎝⎭ 令,,时,,单调递增,()24ln xt x x=()()3412ln x t x x-'=(x ∈()0f x '>()f x)x ∈+∞时,,单调递减,,. (12分) ()0f x '<()f x 2max 4ln 2x x e⎛⎫= ⎪⎝⎭∴2k e <。

相关文档
最新文档