2020年小桥中学人教版七年级上学期期中数学试卷含答案解析(A卷全套)

合集下载

2020学年七(上)数学期中测试卷参考答案及评分意见

2020学年七(上)数学期中测试卷参考答案及评分意见

2020学年七(上)数学期中素质测试卷参考答案及评分意见一、选择题(每小题3分,共36分) A C C B B D A C B C B D二、填空题(每小题3分,共30分)13). 2 14).2a +1 15).15℃16).0 17).5.3- 18).1222-或19). 千分 ; 2 ; 2,5(每空一分) 20).2-21).4- 22).600元三、解答题(共56分)23.数轴上画点,3分(每个点0.5分); 5.3--<327-<0<41<()2--<()22- ……………( 1分) 24.解:(1)(2) 原式 = 2-98+-2 ................... (2分) = 928-........................ (1分) (3) 原式 =24 81⨯41243124⨯+⨯-...............(2分) =683+-= 1 ………………………………………(1分)(4) 原式4(2)26=----= 6224--+ ………………………(2分)= 2- ……………………………………(1分)25.解:(1) 24)1046(3=++-⨯;24]10)36[(4=⨯÷--;244)6(310=--⨯- (答案不唯一, 写出一个得1分)(2) 原式=y x xy xy y x 22223515---=22612xy y x - 当1,12x y =-=时,原式=6331)21(61)21(122=+=⨯-⨯-⨯-⨯ (化简正确得3分,代入正确得2分)分)(分)(原式1....................................542..................-5143=-+-=26.解:(1) 纸片剩余部分的面积:24x ab - (2分)(2)当a =6,b =4时,462142⨯⨯=x (2分), 1242=x ,32=x ,因为x >0 所以 3=x (1分) 答:小正方形的边长为3.27.解:(1) =-+-+++-++-)3()4(68)9(741(千米)答:收工时检修小组在A 地东面1千米处 (3分)(2) 第一次距A 地44=-千米; 第二次:374=+-千米;第三次:6974=-+-千米; 第四次: 28974=+-+-千米; 第五次:868974=++-+-千米; 第六次:千米;4468974=-++-+- 第七次:千米;13468974=--++-+-所以距A 地最远的是第5次. (3分)(3)从出发到收工汽车行驶的总路程:千米413468974=-+-+++++-+++-;从出发到收工共耗油:5.205.041=⨯(升)答:从出发到收工共耗油20.5升. (3分)28.(8分)解:a 1=26;..............(2分)a 2=65;.............. (2分)a 3=122;............. (2分)a 2008=26............. (2分)29.解:(1) (5x+60) ; (72+4.5x) ............. (每空2分)(2)方案一:都在甲店购买;当X=10时,60+5X=60+510=110 .......... (1分) 方案二:都在乙店购买;当X=10时,72+4.5X=72+4.510=117.......... (1分) 方案三:在甲店购买4副乒乓球拍,在乙店购买6盒乒乓球; 420+650.9=107 ........ ...... (1分)因为107<110<117,所以方案三最合算。

【人教版】数学七年级上学期《期中检测试题》(含答案解析)

【人教版】数学七年级上学期《期中检测试题》(含答案解析)

2020-2021学年度第一学期期中测试人教版七年级数学试题一、选择题1.下列是具有相反意义的量的是()A. 向东走5米和向北走5米B. 身高增加2厘米和体重减少2千克C. 胜1局和亏本70元D. 收入50元和支出40元2.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是()A. 24.70千克B. 25.30千克C.24.80千克D. 25.51千克3. -2、0、2、-3这四个数中最大的是【】A. 2 B. 0 C. -2 D. -34.在数轴上距离原点2个单位长度的点所表示的数是()A. 2 B. ﹣2 C. 2或﹣2 D. 1或﹣1 5.如图,25的倒数在数轴上表示的点位于下列两个点之间()A.点E和点F B. 点F和点G C. 点G和点H D. 点H和点I 6.下列说法中正确的是()A. 最小的整数是0 B. 如果两个数的绝对值相等,那么这两个数相等C. 互为相反数的两个数的绝对值相等D. 有理数分为正数和负数7.把–3+(–2)–(+1)改为省略加号的和的形式是A. –3+2+1B. –3–2+1C. –3–2–1D. –3+2–18.2018年我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍.将58000000000用科学记数法表示应为( )A. 58×109B. 5.8×1010C. 5.8×1011D. 0.58×10119.给出下列式子:0,3a ,π,2x y -,1,3a 2+1,-11xy ,1x +y.其中单项式的个数是( ) A. 5个 B. 1个C. 2个D. 3个 10.当x=﹣1时,代数式3x+1的值是( )A. ﹣1B. ﹣2C. 4D. ﹣411.下列说法正确的是( )A. 单项式34xy -的系数是﹣3B. 单项式2πa 3的次数是4C. 多项式x 2y 2﹣2x 2+3是四次三项式D. 多项式x 2﹣2x +6的项分别是x 2、2x 、6 12.将(354)x y --+去括号得( )A. 354x y --+B. 354x y -++C. 354x y +-D. 354x y -+- 13.小红要购买珠子串成一条手链,黑色珠子每个a 元,白色珠子每个b 元,要串成如图所示的手链,小红购买珠子应该花费( )A. (3a +4b )元B. (4a +3b )元C. 4(a +b )元D. 3(a +b )元 14.下列计算正确的是( )A. 277a a a +=B. 22232x y yx x y -=C. 532y y -=D. 325a b ab += 15.下列各组整式中,不是同类项的是( )A. 23x y 与213x y -B. 13-与0C. 3xyz 与3xyz -D. 32x y 与32xy二、填空题16. -6的相反数是 .17.-123的倒数是_____. 18.(-2)xy xy +=________________.19.某日北京的平均气温是-7.6℃,哈尔滨的平均气温是-20.8℃,则北京的平均气温比哈尔滨的平均气温高__________℃.20.x 是绝对值最小的有理数,y 是最小的正整数,z 是最大的负整数,则x+y+z=_____.21.将1.8046精确到0.01,结果是__.22.已知2(2)|3|0a b -++=,则a b +=__________.23.某校去年初一招收新生x 人,今年比去年增加20%,用代数式表示今年该校初一学生人数为_________人.24.“比数x 的3倍小5的数”用代数式表示为_____.25.已知826m a b --与4145n a b -是同类项,则代数式|23|n m -的值是__________. 三、解答题26.7.2(4.8)--27.计算:13+(﹣15)﹣(﹣23). 28.311()()(2)424-⨯-÷- 29.1211()(24)2312+-⨯- 30.计算222172(3)(6)()3-+⨯-+-÷-31.计算:22(321)(3)x x x x -+--+.32.画出数轴,并数轴上表示下列各数:5+, 3.5-,12,112-,4-,0,2.533.先化简,再求值:2(x 2y +3xy )﹣3(x 2y ﹣1)﹣2xy ﹣2,其中x =﹣2,y =2.34.有理数在数轴上的位置如图所示:求值:||||||||a cb b a b a ----++答案与解析一、选择题1.下列是具有相反意义的量的是()A. 向东走5米和向北走5米B. 身高增加2厘米和体重减少2千克C. 胜1局和亏本70元D. 收入50元和支出40元【答案】D【解析】【分析】根据具在相反意义的量的概念逐一进行判断即可.【详解】A.向东走5米和向北走5米,不是具有相反意义的量,故错误;B.身高增加2厘米和体重减少2千克,不是具有相反意义的量,故错误;C.胜1局和亏本70元,不是具有相反意义的量,故错误;D.收入50元和支出40元,是具有相反意义的量,故正确,故选D.【点睛】本题考查了具有相反意义的量,解题的关键是明确确定一对具有相反意义的量时要注意不是同一类别的量不能看成是具有相反意义的量.2.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是()A. 24.70千克B. 25.30千克C. 24.80千克D. 25.51千克【答案】C【解析】【分析】根据题意可知质量在24.75到25.25千克之间的合格,选出在此范围的即可.【详解】由题意可知质量在24.75到25.25千克之间的合格,因为24.75<24.80<25.25,所以24.8千克合格.故选C.【点睛】本题考查正负数在生活中的应用,关键是明确正负数的实际意义.3. -2、0、2、-3这四个数中最大的是【 】A. 2B. 0C. -2D. -3 【答案】A【解析】 2>0>-2>-3,∴最大的数是2,故选A4.在数轴上距离原点2个单位长度的点所表示的数是( )A. 2B. ﹣2C. 2或﹣2D. 1或﹣1【答案】C【解析】 试题分析:分点在原点左边与右边两种情况讨论求解.解:①在原点左边时,∵距离原点2个单位长度,∴该点表示的数是﹣2;②在原点右边时,∵距离原点2个单位长度,∴该点表示的数是2. 综上,距离原点2个单位长度的点所表示的数是﹣2或2. 故选C . 【点评】本题考查了数轴,难点在于要分点在原点的左边与右边两种情况讨论求解. 5.如图,25的倒数在数轴上表示的点位于下列两个点之间( ) A. 点E 和点F B. 点F 和点GC. 点G 和点HD. 点H 和点I【答案】C【解析】【分析】根据倒数的定义即可判断. 【详解】25的倒数是5522, 在G 和H 之间. 故选C .【点睛】本题考查了倒数的定义,数轴等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 6.下列说法中正确的是( )A. 最小的整数是0B. 如果两个数的绝对值相等,那么这两个数相等C. 互为相反数的两个数的绝对值相等D. 有理数分为正数和负数【答案】C【解析】【分析】根据数的大小比较,绝对值的性质、有理数的分类逐项进行分析即可得.【详解】A 、最小的整数不存在,故本选项错误;B 、如果两个数的绝对值相等,那么这两个数相等或互为相反数,故本选项错误;C 、互为相反数的两个数的绝对值相等,故本选项正确;D 、有理数分为正数、负数和0,故本选项错误,故选C . 【点睛】本题考查了有理数的分类,绝对值的性质等,熟练掌握相关概念以及性质是解题的关键. 7.把–3+(–2)–(+1)改为省略加号的和的形式是A. –3+2+1B. –3–2+1C. –3–2–1D. –3+2–1【答案】C【解析】【分析】按照有理数加减混合运算的方法,将有理数加减法统一成加法进行计算即可解答.【详解】-3+(-2)-(+1)=-3-2-1,故选C .【点睛】本题主要考查有理数加减混合运算的方法:在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.8.2018年我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍.将58000000000用科学记数法表示应为( )A. 58×109 B. 5.8×1010 C. 5.8×1011 D. 0.58×1011 【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将580 0000 0000用科学记数法表示应为5.8×1010. 故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.给出下列式子:0,3a ,π,2x y ,1,3a 2+1,-11xy ,1x +y.其中单项式的个数是( ) A. 5个B. 1个C. 2个D. 3个 【答案】A【解析】【分析】根据单项式的定义求解即可.【详解】单项式有:0,3a ,π, 1,-11xy ,共5个. 故选A.【点睛】本题考查单项式.10.当x=﹣1时,代数式3x+1的值是( )A. ﹣1B. ﹣2C. 4D. ﹣4【答案】B【解析】【分析】把x 的值代入进行计算即可.【详解】把x=﹣1代入3x+1,3x+1=﹣3+1=﹣2,故选B .【点睛】本题考查了代数式求值,熟练掌握运算法则是解本题的关键.11.下列说法正确的是( )A. 单项式34xy -的系数是﹣3B. 单项式2πa 3的次数是4C. 多项式x 2y 2﹣2x 2+3是四次三项式D. 多项式x 2﹣2x +6的项分别是x 2、2x 、6 【答案】C【解析】【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.12.将(354)x y --+去括号得( )A. 354x y --+B. 354x y -++C. 354x y +-D. 354x y -+-【答案】D【解析】【分析】根据去括号法则进行求解即可.注意区分括号前的符号是“+”还是“-”.【详解】(354)x y --+=354x y -+-,故选D .【点睛】本题考查了去括号法则,熟练掌握去括号法则是解题的关键.括号前是”+“,去括号后,括号里的各项都不改变符号;括号前是”-“,去括号后,括号里的各项都改变符号.13.小红要购买珠子串成一条手链,黑色珠子每个a 元,白色珠子每个b 元,要串成如图所示的手链,小红购买珠子应该花费( )A. (3a +4b )元B. (4a +3b )元C. 4(a +b )元D. 3(a +b )元【答案】A【解析】【分析】 直接利用两种颜色的珠子的价格进而求出手链的价格.【详解】解:∵黑色珠子每个a 元,白色珠子每个b 元,∴要串成如图所示的手链,小红购买珠子应该花费为:3a+4b .故选A .【点睛】本题考查列代数式,正确得出各种颜色珠子的数量是解题关键.14.下列计算正确的是( )A. 277a a a +=B. 22232x y yx x y -=C. 532y y -=D. 325a b ab +=【答案】B【解析】【分析】根据合并同类项的法则和同类项的定义分别对每一项进行计算即可.【详解】A 、7a +a =8a ,故本选项错误;B 、22232x y yx x y -=,故本选项正确;C 、5y−3y =2y ,故本选项错误;D 、3a +2b ,不是同类项,不能合并,故本选项错误;故选:B .【点睛】此题考查了合并同类项,熟练掌握合并同类项的法则和同类项的定义是本题的关键.15.下列各组整式中,不是同类项的是( )A. 23x y 与213x y -B. 13-与0C. 3xyz 与3xyz -D. 32x y 与32xy【答案】D【解析】【分析】根据同类项的概念逐项进行分析即可得.【详解】A 、23x y 与213x y -,所含字母相同,并且相同字母的指数也相同,是同类项,不符合题意; B 、13-与0,都是常数项,是同类项,不符合题意; C 、3xyz 与3xyz -,所含字母相同,并且相同字母的指数也相同,是同类项,不符合题意; D 、32x y 与32xy ,相同字母的指数不相同,不是同类项,符合题意, 故选D .【点睛】本题考查了同类项,熟练掌握所含字母相同,并且相同字母的指数也相同的项是同类项是解题的关键.注意,所有常数项都是同类项. 二、填空题16. -6的相反数是 .【答案】6【解析】求一个数的相反数,即在这个数的前面加负号.解:根据相反数的概念,得-6的相反数是-(-6)=6.17.-123的倒数是_____. 【答案】﹣35. 【解析】【分析】 首先将213-化为假分数;然后将所得结果的分子、分母的位置颠倒即可. 【详解】25133-=- 53-的倒数是35-, 所以213-的倒数是35-. 故答案为35-. 【点睛】本题是求倒数的题目,解题的关键是熟练掌握倒数的定义.18.(-2)xy xy +=________________.【答案】-xy【解析】【分析】原式合并同类项即可得到结果.【详解】原式=(1﹣2)xy =﹣xy .故答案为﹣xy .【点睛】本题考查了整式的加减,熟练掌握运算法则是解答本题的关键.19.某日北京的平均气温是-7.6℃,哈尔滨的平均气温是-20.8℃,则北京的平均气温比哈尔滨的平均气温高__________℃.【答案】13.2【解析】【分析】用北京的平均气温减去哈尔滨的平均气温即可得.【详解】-7.6-(-20.8)=-7.6+20.8=13.2(℃),故答案为:13.2.【点睛】本题考查了有理数减法的应用,理解题意正确列出算式是解题的关键.20.x 是绝对值最小的有理数,y 是最小的正整数,z 是最大的负整数,则x+y+z=_____.【答案】0【解析】【详解】分析:根据x 是绝对值最小的有理数,y 是最小的正整数,z 是最大的负整数,求得x 、y 、z 的值,再代入所给的代数式求值即可.详解:∵x 是绝对值最小的有理数,y 是最小的正整数,z 是最大的负整数,∴x=0,y=1,z=﹣1,则x+y+z=0+1﹣1=0.故答案为0.点睛:本题考查了绝对值、正整数、负整数的知识,根据题意求得x 、y 、z 的值是解题的关键.21.将1.8046精确到0.01,结果是__.【答案】1.80【解析】根据四舍五入的规则,依据千分位上的数字判断,得1.804 1.80≈22.已知2(2)|3|0a b -++=,则a b +=__________.【答案】-1【解析】试题分析:若2(2)30a b -++=,则2(2)0,30,a b -=+=所以20,30,a b -=+=所以2,3,a b ==-所以a b +=2+(-3)=-1.考点:1.非负数的性质;2.有理数的计算.23.某校去年初一招收新生x 人,今年比去年增加20%,用代数式表示今年该校初一学生人数为_________人. 【答案】1.2x【解析】【分析】按题意列出代数式并化简即可.【详解】解:由题可列(120%) 1.2x x +=.故答案为1.2x .【点睛】本题考查根据题意列代数式.24.“比数x 的3倍小5的数”用代数式表示为_____.【答案】3x ﹣5【解析】试题解析:x 的3倍就是3x ,比3x 小5的数就是35x -.故答案为35x -.25.已知826m a b --与4145n a b -是同类项,则代数式|23|n m -的值是__________. 【答案】272【解析】【分析】先根据同类项的概念可求得m 、n 的值,继而代入式子进行计算即可得.【详解】∵826m a b --与4145n a b -是同类项,∴4n-1=8,m-2=4,∴n=94,m=6, ∴|23|n m - =9|236|4⨯-⨯ =272, 故答案为:272. 【点睛】本题考查了同类项的概念,代数式求值,得出m 、n 的值是解题的关键.三、解答题26.7.2(4.8)--【答案】12.【解析】【分析】直接利用有理数减法法则进行计算即可.【详解】7.2( 4.8)--=7.2 4.8+=12.【点睛】本题考查了有理数的减法运算,熟练掌握减去一个数等于加上这个数的相反数是解本题的关键.27.计算:13+(﹣15)﹣(﹣23).【答案】21.【解析】【分析】首先写成省略括号的形式,然后再计算即可.【详解】解:原式=13﹣15+23=21.【点睛】此题主要考查了有理数的加减混合运算,关键是掌握转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.28.311 ()()(2) 424 -⨯-÷-【答案】16 -.【解析】【分析】按顺序根据有理数的乘除法法则进行计算即可.【详解】3112424⎛⎫⎛⎫⎛⎫-⨯-÷-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=319 424 -⨯÷=34 89 -⨯=16 -.【点睛】本题考查了有理数的乘除混合运算,弄清运算顺序,熟练掌握和运用有理数乘除法法则是解题的关键.29.1211()(24) 2312+-⨯-【答案】-6.【解析】【分析】利用分配律进行计算即可.【详解】()1211242312⎛⎫+-⨯-⎪⎝⎭ =()()()12112424242312⨯-+⨯--⨯- =()()121622-+---=-6.【点睛】本题考查了利用运算律简化运算,熟练掌握分配律是解本题的关键.30.计算222172(3)(6)()3-+⨯-+-÷-【答案】-85.【解析】【分析】先算乘方,然后进行乘除法运算,最后进行加减法运算即可. 【详解】()()222172363⎛⎫-+⨯-+-÷- ⎪⎝⎭ =()1499269-+⨯+-÷=()491854-++-=-85. 【点睛】本题考查了有理数的混合运算,弄清运算顺序,熟练掌握和灵活运用相关的运算法则是解题的关键.31.计算:22(321)(3)x x x x -+--+.【答案】222x x --【解析】试题分析:先去括号,再合并同类项即可求解.试题解析:()()223213x x x x -+--+=22 3213x x x x -+-+-=3x 2-x 2-2x+x+1-3=(3-1)x 2+(-2+1)x+(1-3)=222x x --32.画出数轴,并在数轴上表示下列各数:5+, 3.5-,12,112-,4-,0,2.5【答案】见解析【解析】【分析】根据正数在原点的右边,负数在原点的左边以及距离原点的距离可得各数在数轴上的位置.【详解】如图所示:【点睛】本题考查了数轴:数轴有三要素(正方向、原点、单位长度),原点表示数0,原点左边的点表示负数,右边的点表示正数.33.先化简,再求值:2(x 2y +3xy )﹣3(x 2y ﹣1)﹣2xy ﹣2,其中x =﹣2,y =2.【答案】﹣x 2y+4xy+1,-23【解析】【分析】原式去括号再合并即可得到最简结果,将x 与y 的值代入计算即可求出值.【详解】原式=2x 2y+6xy ﹣3x 2y+3﹣2xy ﹣2=﹣x 2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.【点睛】本题考查了整式的加减运算-化简求值,解题的关键是熟练的掌握整式的加减运算.34.有理数在数轴上的位置如图所示:求值:||||||||a c b b a b a ----++【答案】2.【解析】【分析】观察数轴可得a 、b 、c 的值,继而可得a-c 、b-a 、b+a 的值,然后代入所求式子利用绝对值的性质化简后进行计算即可.【详解】观察数轴可知a=-3,b=2,c=5,∴a-c=-3-5=-8,b-a=2-(-3)=5,b+a=2+(-3)=-1,∴||||||||a c b b a b a ----++=|8||2||5||1|---+-=8-2-5+1=2.【点睛】本题考查了数轴,有理数的加减法,化简绝对值,准确识图,熟练掌握和灵活运用相关知识是解题的关键.。

2020--2021学年人教版七年级数学上册期中考试数学试题有答案

2020--2021学年人教版七年级数学上册期中考试数学试题有答案

2020--2021学年人教版七年级数学上册期中考试数学试题有答案2020-2021学年第一学期期中教学质量检测七年级数学(人教版)第Ⅰ卷(共60分)一、选择题(每小题3分,共30分)1.XXX手机上显示某地“海拔-45米”,这表示此地的海拔高度是()A.高于海平面45米B.低于海平面-45米C.低于海平面-45米D.低于海平面45米2.在数轴上,点A表示的数是-4,点B表示的数是2,线段AB的中点表示的数为()A.1B.-1C.3D.-33.在下列气温的变化中,能够反映温度上升5℃的是()A.气温由-3℃到2℃B.气温由-1℃到-6℃C.气温由-1℃到5℃D.气温由4℃到-1℃4.在下列变形中,错误的是()A.(-2)-3+(-5)=-2-3-5B.(-3)-(-5)=-3+5C.a+(b-c)=a+b-cD.a-(b+c)=a-b-c5.2019年4月10日21时,人类首张黑洞照片面世。

该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球xxxxxxxx光年,质量约为太阳的65亿倍。

则xxxxxxxx用科学记数法表示为()A.5.5×105B.5.5×106C.5.5×107D.55×1066.在代数式①51b;②-2x3+y4;③0.2x2y3;④3;⑤1-;⑥中,整式的个数有()A.4个B.3个C.2个D.1个7.下列说法正确的是()A.-2xy的系数是-2B.x2+x-1的常数项为1C.22ab3的次数是6次D.2x-5x2+7是二次三项式8.下列运算正确的是()A.x3+x2=x5B.x4+x4=2x4C.x3+x3=2x6D.x5+x5=x109.已知m-n=99,x+y=-1,则代数式(n+x)-(m-y)的值是()A.100B.98C.-100D.-9810.如图,把六张形状大小完全相同的小长方形纸卡片(如图①)不重叠地放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A。

人教版七年级上学期期中数学试卷(含解析)

人教版七年级上学期期中数学试卷(含解析)

人教版七年级第一学期期中数学试卷及答案一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.02.下列各式中不是整式的是()A.3a B.C.D.03.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=04.|﹣3|的相反数是()A.﹣3B.3C.D.﹣5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.26.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.87.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣28.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于111.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.4912.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是.17.(3分)按下图的程序计算,若输入n=32,则输出结果是.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为人.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣2222.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.参考答案与试题解析一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.0【分析】利用“负数<0<正数,两个负数比大小,绝对值大的反而小”比较大小.【解答】解:∵负数<0<正数,两个负数比大小,绝对值大的反而小,||>|﹣1|,∴<﹣1<0<,∴最小的数是.故选:A.【点评】本题考查了有理数的大小比较,解题的关键是熟知有理数大小比较方法“两个负数比大小,绝对值大的反而小”.2.下列各式中不是整式的是()A.3a B.C.D.0【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3a是单项式,是整式,故本选项不符合题意;B、既不是单项式,又不是多项式,不是整式,故本选项符合题意;C、是单项式,是整式,故本选项不符合题意;D、0是单项式,是整式,故本选项不符合题意;故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义;单项式与多项式统称为整式.3.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=0【分析】根据一元一次方程的定义即可求出答案.只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.【解答】解:A.不是整式方程,故本选项不合题意;B.含有两个未知数,不是一元一次方程,故本选项不合题意;C.是一元一次方程,故本选项符合题意;D.未知数的最高次数2次,不是一元一次方程,故本选项不合题意;故选:C.【点评】本题考查一元一次方程,解题的关键是正确运用一元一次方程的定义,本题属于基础题型.4.|﹣3|的相反数是()A.﹣3B.3C.D.﹣【分析】根据绝对值定义得出|﹣3|=3,再根据相反数的定义:只有符号相反的两个数互为相反数作答.【解答】解:∵|﹣3|=3,∴3的相反数是﹣3.故选:A.【点评】此题主要考查了绝对值,相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0,难度适中.5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.2【分析】根据相反数的概念:只有符号不同的两个数是互为相反数,即可得出x的值,即可得出答案.【解答】解:∵x与3互为相反数,∴x=﹣3,∴x+1=﹣3+1=﹣2.故选:A.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.6.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.8【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入计算即可得出答案.【解答】解:∵单项式a m+1b3与﹣a3b n是同类项,∴m+1=3,n=3,∴m=2,n=3,∴m n=23=8.故选:D.【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键.7.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣2【分析】首先把2a﹣2b﹣1化成2(a﹣b)﹣1;然后把a﹣b=1代入化简后的算式计算即可.【解答】解:∵a﹣b=1,∴2a﹣2b﹣1=2(a﹣b)﹣1=2×1﹣1=2﹣1=1.故选:A.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元【分析】根据3月份、2月份与1月份的产值的百分比的关系列式计算即可求解.【解答】解:∵今年1月份产值为a万元,2月份比1月份减少了15%,∴2月份的产值为a(1﹣15%)万元,∵3月份比2月份增加了5%,∴3月份的产值为a(1﹣15%)(1+5%)万元.故选:D.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my【分析】根据等式的性质2进行准确运用辨别.【解答】解:根据等式的性质1,等式mx=my两边都加1可得mx+1=my+1,故选项A不符合题意;∵m可能为0,∴根据等式的性质2,等式mx=my两边都除以m可能无意义,故选项B符合题意;∵π≠0,∴根据等式的性质2,等式mx=my两边都乘以π可得πmx=πmy,故选项C不符合题意;∵,∴根据等式的性质2,等式mx=my两边都乘以可得mx=my,故选项D不符合题意;故选:B.【点评】此题考查了等式性质的应用能力,关键是能准确理解性质,并在运用等式性质2时,明确等式两边都除以的数是否为0.10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于1【分析】把|m﹣1|+m=1,转化为|m﹣1|=1﹣m,再根据绝对值的性质判断即可.【解答】解:∵|m﹣1|+m=1,∴|m﹣1|=1﹣m,∴m﹣1≤0,∴m≤1,故选:D.【点评】本题考查了绝对值,通过转化得到|m﹣1|=1﹣m是解题的关键.11.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.49【分析】设最中间的数为x,根据题意列出方程即可求出判断.【解答】解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣7、x﹣6、x、x+8、x+7、x+6,∴这7个数的和为:x﹣8+x﹣7+x﹣6+x+x+8+x+7+x+6=7x,当7x=161时,此时x=23,当7x=91时,此时x=13,当7x=78时,此时x=11不是整数,当7x=49时,此时x=7,故选:C.【点评】本题考查了一元一次方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.12.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形【分析】设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,分别表示出m、n的值,就可计算出m﹣n的值为4c,从而可得只需知道正方形③的周长即可.【解答】解:设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,可得m=2[c+(a﹣c)]+2[b+(a+c﹣b)]=2a+2(a+c)=2a+2a+2c=4a+2c,n=2[(a+b﹣c)+(a+c﹣b)]=2(a+b﹣c+a+c﹣b)=2×2a=4a,∴m﹣n=4a+2c﹣4a=2c,故选:D.【点评】该题考查了数形结合解决问题的能力,关键是能根据图形正确列出算式并计算.二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为9.5×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:将95000000用科学记数法可以表示为9.5×107.故答案为:9.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为20.【分析】利用有理数的加减法法则,统一成加法,然后运算即可.【解答】解:25+(﹣12)﹣(﹣7)=25﹣12+7=20.故答案为20.【点评】本题考查有理数的加减混合运算,关键是熟练掌握相应的运算法则.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=3.【分析】利用一元一次方程的定义得到:k﹣2=1.【解答】解:根据题意,得k﹣2=1.解得k=3.故答案是:3.【点评】此题考查了一元一次方程的定义,只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是5.【分析】利用数轴,从点A向右数2个单位,即得点B表示的数为5.【解答】解:3+2=5,故答案为:5.【点评】本题考查数轴上的有理数,关键分清正负方向,右加左减.17.(3分)按下图的程序计算,若输入n=32,则输出结果是806.【分析】根据程序框图的要求计算即可.【解答】解:输入n=32,5n+1=5×32+1=161<500,把n=161再输入得:5n+1=5×161+1=806>500,故输出结果为806.故答案为:806.【点评】本题考查代数式求值,解题关键是读懂题意,根据程序框图的要求准确计算.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=﹣6.【分析】直接利用整式的加减运算法则化简,进而合并同类项,得出x2项和x项的系数为零,进而得出答案.【解答】解:∵多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,∴ax2+3x﹣1﹣(2x2﹣bx﹣4)=ax2+3x﹣1﹣2x2+bx+4=(a﹣2)x2+(b+3)x+3,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,故ab=﹣6.故答案为:﹣6.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=8或2.【分析】若|a+b|=a+b,则a+b≥0,结合a|=5,|b|=3,求出a,b的值即可求解.【解答】解:∵a|=5,|b|=3,∴a=±5,b=±3,∵|a+b|=a+b,∴a=5,b=±3,∴a+b=8或2,故答案为:8或2.【点评】此题主要考查了绝对值的性质和有理数的减法,解决问题的关键是判断出a+b≥0.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为8人.【分析】由题意可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片草地的面积是小片草地的2倍,列出方程解答即可.【解答】解:由题可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片地的面积是小片地的2倍,列出方程,0.5xy+0.5×0.5xy=2×(0.5×0.5xy+y),0.5xy+0.25xy=0.5xy+2y,0.75xy﹣0.5xy=2y,0.25xy=2y,0.25x=2,x=8.答:此次参加社会实践活动的人数为8人.故答案为:8.【点评】此题考查了一元一次方程的应用,主要是先明白每人每天除草量是一定的,设次参加社会实践活动的人数为x人,每人每天除草量为y,根据题意找到关系即可解答.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣22【分析】先准确地画出数轴,并在数轴上找到各数对应的点,即可解答.【解答】解:在数轴上表示各数如图所示:∴﹣22<﹣3<0<|﹣2|<3.【点评】本题考查了实数大小比较,数轴,绝对值,有理数的乘方,准确在数轴上找到各数对应的点是解题的关键.22.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.【分析】(1)由有理数乘法法则计算即可;(2)先算乘方,再算乘除,最后算加减.【解答】解:(1)原式=+5×7×2=70;(2)原式=﹣1+(﹣2)×(﹣3)﹣9=﹣1+6﹣9=﹣4.【点评】本题考查有理数运算,解题的关键是掌握有理数运算的顺序及相关运算的法则.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)移项,可得:5x﹣x=4+4,合并同类项,可得:4x=8,系数化为1,可得:x=2.(2)去分母,可得:3x﹣(5x+11)=6+2(2x﹣4),去括号,可得:3x﹣5x﹣11=6+4x﹣8,移项,可得:3x﹣5x﹣4x=6﹣8+11,合并同类项,可得:﹣6x=9,系数化为1,可得:x=﹣1.5.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.【分析】(1)把整式去括号、合并同类项,即可得出答案;(2)把整式去括号、合并同类项化简后,代入计算,即可得出答案.【解答】解:(1)ab+3b2﹣(2b2+ab)=ab+3b2﹣2b2﹣ab=b2;(2)3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy=3x2y﹣2xy+(2xy﹣x2y)﹣xy=3x2y﹣2xy+2xy﹣x2y﹣xy=2x2y﹣xy,当x=﹣2,y=﹣1时,原式=2×(﹣2)2×(﹣1)﹣(﹣2)×(﹣1)=﹣8﹣2=﹣10.【点评】本题考查了整式的加减—化简求值,把整式去括号、合并同类项正确化简是解决问题的关键.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?【分析】(1)对本周每天使用口罩数量进行比较、计算即可;(2)先求出两种口罩各用的只数,再进行求解此题结果.【解答】解:(1)由题意得﹣20<﹣14<﹣5<+11<+48,48+500=548(只),答:本周周四这天七年级同学使用口罩最多,数量是548只;(2)本周共使用口罩数量为:500×5+(﹣14+11﹣20+48﹣5)=2500+20=2520(只),设本周使用N95型口罩x只,得x+x+520=2520,解得x=1000,∴x+520=1000+520=1520(只),∴1×1520+3×1000=1520+3000=4520(元),答:本周七年级所有同学们购买口罩的总金额为4520元.【点评】此题考查了运用正负数解决实际问题的能力,关键是能准确理解该知识和题目间的数量关系,进行列式计算.26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?【分析】(1)根据题意和题目中的数据,可知原计划购买的文具袋个数×10﹣17=(原计划购买文具袋数+1)×10×0.85,然后列出相应的方程,再求解即可;(2)根据题意和(1)中的结果,可以列出相应的方程,然后求解即可.【解答】解:(1)设洪洪原计划购买文具袋x个,由题意可得:10x﹣17=10(x+1)×0.85,解得x=17,答:洪洪原计划购买文具袋17个;(2)设洪洪班里共有a名同学,由题意可得:10×(17+1)×0.85+(8a+6a×2)×0.85=612,解得a=27,答:洪洪班里共有27名同学.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.【分析】(1)根据加油数的定义即可判断;(2)设x的十位数为a,y的个位数为b,则x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,根据F(x)+F(y)=30列出等式即可解答.【解答】解:(1)8624是“加油数”,理由如下:∵8=6+2,6=2+4,∴8624是“加油数”;3752不是“加油数”,理由如下:∵3≠7+5,7=5+2,∴3752是“加油数”;(2)设x的十位数为a,y的个位数为b,∴x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,∴F(x)=2a+1+a+1+a+1=4a+3,F(y)=4+b+b+2+b+2=3b+8,∴F(x)+F(y)=4a+3+3b+8=30,∴4a+3b=19,∵0≤a≤9,0≤b≤9,且a,b为整数,∴a=1,b=5或a=4,b=1,∴有满足条件的“加油数”x为3211或9541.【点评】本题以新定义考查了列代数式,整式的加减,解题的关键是根据新定义列出代数式.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.【分析】(1)设运动时间为t,利用路程=速度×时间,再根据点P与点Q相遇,列关于t的一元一次方程,解方程即可;(2)①分点P在AO上,点Q在BC上和点P在OC上,点Q在AO上两种情况,结合题意列出方程即可求解;②分别求出点Q的运动时间,结合点P,点Q的不同位置,根据=2列出方程求解即可.【解答】解:(1)设运动时间为t秒,点P与点Q相遇,∵点P从点A出发,以2个单位/秒的速度向右运动,点Q从点B出发,以1个单位/秒的速度向左运动,∴2t+t=14,解得:t=,∴点P与点Q经过秒相遇;(2)①(Ⅰ)当点P在AO上,点Q在BC上时,设点P与点Q运动的时间为t秒时,=2,∵=AO﹣AP+BC﹣BQ,8﹣2t+6﹣t=2,解得:t=4,此时,点P运动至点O,点Q运动至点C;(Ⅱ)∵点P在OC上运动速度为1个单位/秒,点Q在OC上运动速度为2个单位/秒,结合(1),当点P运动到OC中点时,点Q运动到点O,此时,=1,∵=8,=2,点P在AO上运动速度为2个单位/秒,在OC上运动速度为1个单位/秒,∴点P运动到OC中点所需时间为:+1=5秒,。

人教版2020---2021学年度七年级数学(上)期中考试卷及答案(含两套题)

人教版2020---2021学年度七年级数学(上)期中考试卷及答案(含两套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分 时间: 100分钟)一、选择题:(本大题共10个小题,每小题2分,共20分)在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2-的相反数是( ) A.2B.2-C.21D.21-2. 下列运算正确的是( )A.2523a a a =+B.ab b a 743=+C.325a a a =-D.b a b a b a 2222=- 3. 一种面粉的质量标识为“25.025±”,则下列面粉中合格的是:A.24.70千克B.25.30千克C.24.80千克D.25.51千克4. 在式子31,3,2,9.0,52,12+--+x y x a y x x 中,单项式的个数是( )A.5个B.4个C.3个D.2个5. 如果两个数的和是负数,那么这两个数( )A.至少有一个为正数B.同是正数C.同是负数D.至少有一个为负数6. 多项式7)4(21||+--x m x m 是关于x 的四次三项式,则m 的值是( )A.4B.2-C.4-D.4或4-7. 一个有理数和它的相反数之积一定为( ) A.正数B.非正数C.负数D.非负数8. 一个多项式与122+-x x 的和是23-x ,则这个多项式为: A.352+-x x B.12-+-x x C.352-+-x x D.1352--x x 9. 计算44442222+++的结果是( ) A.162B.48C.82D.62 10. 有理数b a ,在数轴上的位置如下图所示,在下列结论中:①<ab ;②>+b a ;③23b a >;④)(3<-b a ;⑤ab b a -<<-<;⑥b a a b =--||||.正确的结论有( ) A.5个 B.4个 C.3个D.2个二、填空题:(本大题共6个小题,每小题2分,共12分) 11. 地球上海洋面积约为36100万2km ,可表示为科学记数法________________2km .12. 已知:||||y x -=,3-=x ,则y =_______. 13. 在3223)2(,2,)1(,)1(----这四个数中,最大的数与最小的数的和等于_________. 14. 如果3251b a 与y x x b a ++-141是同类项,那么xy =________.15. 多项式9126322-+--xy y mxy x 合并后不含xy 项,则=m ________.16. 已知:b a ,互为相反数,c 与d -互为倒数,2||=m ,则3m cd mba +-+=________.题号一 二 三 总分 得分ba密 封 线 内 不 得 答 题三、解答题:(本大题共8个小题,共68分)解答应写出文字说明、证明过程或演算步骤.17.(每小题4分,共16分) (1) )31(|)11(7|)32(|5|322-+--⨯---+- (2) )14()2()3121()61(2-⨯-+--÷- (3) )7()7649(-⨯-(4) ]2)31()4[(|10|22⨯---+- 18.(本小题满分6分)化简求值: y x y x xy xy y x 222222)(5)31(12--+-,其中5,51-==y x .19.(每小题4分,共8分) (1) 1]2)1(32[--+---n m m (2) )74()53(252222xy y x y x +-+-- 20.(本小题满分6分)已知:多项式1222-+my x 与多项式632+-y nx 的差与y x ,的大小无关.求:mn n m ++的值. 21.(本小题满分6分)(1) 各线段长度如图标记,请用含n m ,的式子表示阴影部分的面积;(2) 若(1)中的nm ,满足0)2(|3|2=-+-n m ,请计算阴影部分的面积. 22.(本小题满分6分)设一个两位数的个位数字为a ,十位数字为b (b a ,均为正整数,且b a >),若把这个两位数的个位数字和十位数字交换位置得到一个新的两位数,则新的两位数与原两位数的差 一定是9的倍数,试说明理由. 23.(本小题满分10分)某出租车司机国庆节的营运全是在长虹路南北方向上进行的,如果规定向北为正,向南为负,他这天行车里程(单位:千米)如下:12,16,5,15,4.4,4.2,5,10+-+++-+-(1) 最后一名乘客送到目的地时,出租车在出发点的哪个方向?与出发点的距离?(2) 长虹路南北至少有多少千米?(3) 若该出租车耗油量为每千米0.08升,每升油7.5元,出租车按物价部门规定,起步价(不超过3千米)5元,超过3千米的部分,每千米(不足1千米按1千米计算)加价2元,该出租车司机今天的纯收入为多少元?(纯收入=收入-油耗钱)24. (本小题满分10分)如图,在数轴上每相邻两点之间的距离为一个单位长度.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)若点A,B,C,D 对应的数分别是d c b a ,,,, 则可用含a 的整式表示d 为 ,若1423=-a d ,则b= c= (填具体数值)(2)在(1)的条件下, 点A 以4个单位/秒的速度沿着数轴的正方向运动,同时点B 以2个单位/秒的速度沿着数轴的正方向运动,当点A 到达D 点处立刻返回,与点B 在数轴的某点处相遇,求相遇点所对应的数.(3)如果点A 以2个单位/秒的速度沿着数轴的负方向运动,同时点B 以4个单位/秒的速度沿着数轴的正方向运动,是否存在某时刻使得点A 与点B 到点C 的距离相等,若存在请求出时间t,若不存在请说明理由.七年级数学试题参考答案一.选择题题号 1 2 3 4 5 6 7 8 9 10 答案 A D C C D C B C D B二.填空题11.81061.3⨯ 12.3± 13.7- 14.2 15. 4 16.79-或(第16题只填一种情况并且对了的,给2分;若填了两种情况,但有一种错误的,给0分)三.解答题 17.31123185931189459)31(|)11(7|)32(|5|3)1(22-=--+-=-⨯-+-=-+--⨯---+-54555651)14(4)56()61()14()2()3121()61)(2(2-=-=-⨯+-⨯-=-⨯-+--÷-3493501)7(50)7(71)7()5071()7()7649)(3(=+-=-⨯--⨯=-⨯-=-⨯- 423210)1616(10]2)91(16[10]2)31()4[(|10|)4(22=+=++=⨯--+=⨯---+- (每小题4分,共计16分,请按步骤给分) 18. 解:22222222222252554122)(5)31(12xy y x y x y x xy xy y x yx y x xy xy y x +=--+-=--+-.............................………...............…4分 当5,51-==y x 时,原式=451)5(51)5()51(522=+-=-⨯+-⨯⨯........…6分19. 解: 431531)53(1)23332(1]2)1(32[)1(+-=-+-=--+--=---+--=--+---n m n m n m n m m n m m xy y x xy y x y x xy y x y x 71015741065)74()53(25)2(2222222222+-=+-+-=+-+-- (每小题4分,共计8分,请按步骤给分) 20. 解:18)3()2(63122)63()122(22222-++-=-+--+=+---+y m x n y nx my x y ny my x ................................................…2分∵上式的值与y x ,的大小无关∴03,02=+=-m n ....................................................................…4分 即3,2-==m n ...........................................................................…5分 ∴7612)3(23-=--=⨯-++-=++mn n m ......................…6分21. 解:(1)mn mn mn n n n m n m S 211216)25.03(32=-=---⋅=阴.................…3分(2)由题意得02,03=-=-n m .....................................................................…4分 所以2,3==n m ..........................................................................................…5分 ∴3323211211=⨯⨯==mn S 阴 .................................................................…6分 22. 解:原数与新数可用含b a ,的式子分别表示为b a a b ++10,10则..................…1分)(9991010)10()10(b a b a ab b a a b b a -=-=--+=+-+.....................................................................................…4分∵b a ,均为正整数,且b a >∴)(9b a -一定是9的倍数.............................................................................…5分 即新的两位数与原两位数的差一定是9的倍数...........................................…6分 23. 解:(1)∵1312165154.44.2510+=+-+++-+-.................................…2分∴最后一名乘客下车时,出租车在出发点的北边13千米处......................3分 (2)八次运营与出发点的距离如下:南10;南5;南7.4;南3;北12;北17;北1;北13…..5分∴长虹路南北至少:10+17=27千米...........................................................…6分 (3)油耗钱:88.415.708.0)12165154.44.2510(=⨯⨯+++++++….........7分 收入:134233192995919=+++++++...............................................…8分 纯收入:12.9288.41134=-…..........................................................................9 答:该出租车司机今天的纯收入为92.12元.…...........................................10分(本题每问分数分配:3分+3分+4分)24. 解: (1) 8+a ;7;12-- (2) ∵8102)10(2=+-=---=AD 10122)12(2=+-=---=BD∴两点的路程之和为 ∴两点的相遇时间为:3)24(18=+÷ ∴相遇点所表示的数为:62312-=⨯+- (3) 存在431或=t 时,点A 与点B 到点C 的距离相等,理由如下 ①当点A 与点B 相遇时:31)24()]12(10[=+÷---②当点A 在点C 右侧时:t 秒时点A 、B 表示的数分别为:t 210--;t 412+-此时点A 到点C 的距离为:32)210(7+=----t t 点B 到点C 的距离为:54)7(412-=--+-t t∴5432-=+t t解得4=t 综上所述:当431或=t 时,点A 与点B 到点C 的距离相等(本题每问分数分配:3分+3分+4分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分 时间: 100分钟)一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分). 1.﹣2的相反数是( ) A .B .2C .﹣D .﹣22.将数据15 000 000用科学记数法表示为( )A .15×106B .1.5×107C .1.5×108D .0.15×1083.在数8,﹣6,0,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14中,负数的个数有( ) A .4B .5C .6D .7 4.下列说法正确的是( )A .一个数前面加上“﹣”号这个数就是负数B .非负数就是正数C .正数和负数统称为有理数D .0既不是正数也不是负数5.下列各图中,数轴表示正确的是( )A .B .C .D .6.如果单项式与2x 4y n+3是同类项,那么m 、n 的值分别是( )A .B .C .D .7.下面运算正确的是( )A .3ab+3ac=6abcB .4a 2b ﹣4b 2a=0C .2x 2+7x 2=9x 4D .3y 2﹣2y 2=y 28.下列式子中去括号错误的是( )A .5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5zB .2a 2+(﹣3a ﹣b )﹣(3c ﹣2d )=2a 2﹣3a ﹣b ﹣3c+2dC .3x 2﹣3(x+6)=3x 2﹣3x ﹣6D .﹣(x ﹣2y )﹣(﹣x 2+y 2)=﹣x+2y+x 2﹣y 29.若2是关于x 的方程x+a=﹣1的解,则a 的值为( )A .0B .2C .﹣2D .﹣610.如图,M ,N ,P ,Q ,R 分别是数轴上五个整数所对应的点,其中有一点是原点,并且MN=NP=PQ=QR=1.数a 对应的点在N 与P 之间,数b 对应的点在Q 与R 之间,若|a|+|b|=3,则原点可能是( )A .M 或QB .P 或RC .N 或RD .P 或Q题号一 二 三 四 五 六 总分 得分密 题二、填空题(每小题2分,共16分). 11.比较大小:﹣2 ﹣3.12.单项式﹣的系数是 ,次数是 次.13.将多项式﹣2+4x 2y+6x ﹣x 3y 2按x 的降幂排列: . 14.已知x ﹣3y=3,则6﹣x+3y 的值是 . 15.若(m ﹣2)x|m|﹣1=3是关于x 的一元一次方程,则m 的值是 .16.若关于x 的方程mx+2=2(m ﹣x )的解是,则m= .17.若|a|=2,|b|=4,且|a ﹣b|=b ﹣a ,则a+b= . 18.观察下列一组图形中点的个数,其中第1个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,…按此规律第5个图形中共有点的个数是 .三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1) ③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 四、先化简、再求值:(本题5分)20.先化简,再求值:a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),其中﹣5.五、解下列方程(每题4分,共8分)21.解方程:(1)2x ﹣(x+10)=6x ; (2)=3+.六、解答题:(本题21分,第1-4题各4分,第5小题题分)22.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为求a ﹣2cd+b+m 的值.23.有理数在数轴上的对应点位置如图所示,化简:﹣2|a ﹣b|.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.已知|2a+1|+(4b ﹣2)2=0,求:(﹣ a+b 2)﹣(a ﹣b 2)﹣(+b )的值.25.用“☆”定义一种新运算:对于任意有理数a 、b ,都有a ☆b=ab+a 2,例如(﹣3)☆2=﹣3×2+(﹣3)2=3(1)求(﹣5)☆3的值;(2)若﹣a ☆(1☆a )=8,求a 的值.26.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a+4|+(b ﹣1)2=0.现将A 、B 之间的距离记作|AB|,定义|AB|=|a ﹣b|.(1)|AB|= ;(2)设点P 在数轴上对应的数是x ,当|PA|﹣|PB|=2时,求x 的值.参考答案与试题解析一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分).1.【解答】解:﹣2的相反数是2,故选:B .2.【解答】解:将15 000 000用科学记数法表示为:1.5×107. 故选:B .3.【解答】解:﹣|﹣2|=﹣2,(﹣1)2015=﹣1,﹣14=﹣1,负数有:﹣6,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14,负数的个数共6个, 故选:C .4.【解答】解:A 、不一定,例如0前面加上“﹣”号0还是0;B 、错误,0既不是正数也不是负数; C 、错误,正数和负数和0统称为有理数;D 、正确.故选D .5.【解答】解:A 、没有正方向,不是数轴,故本选项错误;B 、没有原点,不是数轴,故本选项错误;C 、没有单位长度,不是数轴,故本选项错误;D 、符合数轴的定义,故本选项正确.故选D . 6.【解答】解:∵单项式与2x 4y n+3是同类项,∴2m=4,n+3=1,解得:m=2,n=﹣2.故选A .7.【解答】解:A 、3ab+3ac=3a (b+c );B 、4a 2b ﹣4b 2a=4ab (a ﹣b );C 、2x 2+7x 2=9x 2;D 、正确.故选D .8.【解答】解:A 、5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5z ,故本选项不符合题意;得答B、2a2+(﹣3a﹣b)﹣(3c﹣2d)=2a2﹣3a﹣b﹣3c+2d,故本选项不符合题意;C、3x2﹣3(x+6)=3x2﹣3x﹣18,故本选项符合题意;D、﹣(x﹣2y)﹣(﹣x2+y2)=﹣x+2y+x2﹣y2,故本选项不符合题意.故选C.9.【解答】解:把x=2代入方程得:1+a=﹣1,解得:a=﹣2,故选C10.【解答】解:∵MN=NP=PQ=QR=1,∴|MN|=|NP|=|PQ|=|QR|=1,∴|MR|=4;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在N或R时且|Na|=|bR|时,|a|+|b|=3;③当原点在M点时,|a|+|b|>3,又因为|a|+|b|=3,所以,原点不可能在M点;综上所述,此原点应是在N或R点.故选:C.二、填空题(每小题2分,共16分).11.【解答】解:在两个负数中,绝对值大的反而小,可求出﹣2>﹣3.故答案为:>.12.【解答】解:单项式﹣的系数是﹣,次数是5,故答案为:﹣,5.13.【解答】解:多项式﹣2+4x2y+6x﹣x3y2按字母x列是:﹣x3y2+4x2y+6x﹣2.故答案是:﹣x3y2+4x2y+6x﹣2.14.【解答】解:∵x﹣3y=3,∴原式=6﹣(x﹣3y)=6﹣3=3,故答案为:315.【解答】解:∵(m﹣2)x|m|﹣1=3是关于x程,∴,解得m=﹣2.故答案为:﹣2.16.【解答】解:把x=代入方程,得:m+2=2(m﹣),解得:m=2.故答案是:2.17.【解答】解:∵|a|=2,|b|=4,∴a=±2,b=±4,∵|a﹣b|=b﹣a,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴或, ∴a+b=6或2, 故答案为:6或2.18.【解答】解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点, 第3个图中共有1+1×3+2×3+3×3=19个点,…第n 个图有1+1×3+2×3+3×3+…+3n 个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故答案为:46.三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1) ③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 【解答】解:①原式=12+18=30. ②原式=﹣3××=﹣2. ③原式=﹣6.5+13﹣3.5=3.④原式=×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4.⑤原式=4+(﹣6)×9=﹣50. 四、先化简、再求值:(本题5分)20.【解答】解:原式=a 2+5a 2﹣2a ﹣2a 2+6a=4a 2+4a ,当a=﹣5时,原式=100﹣20=80. 五、解下列方程(每题4分,共8分)21.【解答】解:(1)方程去括号得:2x ﹣x ﹣10=6x , 移项合并得:5x=﹣10, 解得:x=﹣2;(2)方程去分母得:2(x+1)=12+2﹣x ,去括号得:2x+2=12+2﹣x , 移项合并得:3x=12, 解得:x=4.六、解答题:(本题21分,第1-4题各4分,第5小题题5分)22.【解答】解:∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,∴a+b=0,cd=1,m=±2,∴原式=(a+b )﹣2cd+m=﹣2±2, ∴a ﹣2cd+b+m 的值为0或﹣4.密 封 内 不 得 23.【解答】解:∵由图可知,a <﹣1<0<b <1, ∴a+b <0,a ﹣b <0,∴原式=﹣a ﹣(a+b )+2(a ﹣b )=﹣a ﹣a ﹣b+2a ﹣2b =﹣3b .24.【解答】解:∵|2a+1|+(4b ﹣2)2=0, ∴a=﹣,b=.(﹣a+b 2)﹣(a ﹣b 2)﹣(+b )=﹣a+b 2﹣a+b 2﹣﹣b =当a=﹣,b=时,原式==.25.【解答】解:(1)(﹣5)☆3=(﹣5)×3+(﹣5)2=﹣15+25=10;(2)∵﹣a ☆(1☆a )=﹣a ☆(a+1)=﹣a (a+1)+(﹣a )2=﹣a 2﹣a+a 2=﹣a=8, ∴a=﹣8.26.【解答】解:(1)∵|a+4|+(b ﹣1)2=0,∴a=﹣4,b=1, ∴|AB|=|a ﹣b|=5;(2)当P 在点A 左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣5≠2.当P 在点B 右侧时, |PA|﹣|PB|=|AB|=5≠2.∴上述两种情况的点P 不存在.当P 在A 、B 之间时,|PA|=|x ﹣(﹣4)|=x+4,|PB|=|x ﹣﹣x ,∵|PA|﹣|PB|=2,∴x+4﹣(1﹣x )=2.∴x=﹣,即x 的值为﹣; 故答案为:5.。

【人教版】七年级上学期数学《期中考试试卷》附答案解析

【人教版】七年级上学期数学《期中考试试卷》附答案解析

2020-2021学年度第一学期期中测试人教版七年级数学试题一.选择题1.在有理数2(1)-、0、25-、3()2--、12、2--、3(2)-中负数有()个.A. 5B. 4C. 3D. 22.如图所示的几何体的面数、面与面相交形成的线数、线与线相交形成的点数分别是()A. 6,10,5B. 6,10,6C. 5,10,6D. 5,6,53.若一个数的绝对值的相反数是5-,则这个数是()A. 5B. 5-C. 5±D. 0或54.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A. 用两个钉子就可以把木条固定在墙上B. 利用圆规可以比较两条线段的大小关系C. 把弯曲的公路改直,就能缩短路程D. 植树时,只要定出两棵树的位置,就能确定同一行树所在的直线5.下列说法正确的个数是()①0是绝对值最小的有理数;②一个有理数不是正数就是负数;③数轴上原点两侧的数互为相反数;④两个数比较,绝对值大的反而小;⑤一个有理数不是整数就是分数;⑥相反数大于本身的数是负数.A. 1B. 2C. 3D. 46.如图所示,不同的线段的条数是()A. 4条B. 5条C. 10条D. 12条7.如图,小明将-3,-2,-1,0,1,2,3,4,5分别填入九个空格内,便每行、每列、每条对角线上的三个数之和相等,现在,,a b c 分别表示其中的一个数,则a b c -+的值( )A. 1-B. 0C. 3D. 18.在同一平面内两两相交的三条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( )A. 1B. 2C. 3D. 49.有理数a ,b 在数轴上对应的点的位置如图所示,则a b ab +的值是( )A. 负数B. 正数C. 0D. 正数或010.将31.62︒化成度分秒表示,结果是( )A. 31'6'2'︒B. '3'13712'︒C. 3137''2'︒D. 31'37︒11.有这样三个数,它们的积是负数,它们的和是正数,则这三个数中负数的个数为( )A. 1个B. 3个C. 1个或3个D. 2个12.如图∠BCA=90,CD ⊥AB ,则图中互余的角有( )对.A. 1B. 2C. 3D. 4 13.n 为正整数时,1(1)(1)n n +-+-的值是( )A. 2B. -2C. 0D. 不能确定14.如果A 、B 、C 三点在同一直线上,且线段6AB cm =,4BC cm =,若M ,N 分别为AB ,BC 的中点,那么M ,N 两点之间的距离为( )A. 5cmB. 1cmC. 5cm 或1cmD. 无法确定15.如图,△ODC 是由△OAB 绕点O 顺时针旋转40°后得到的图形,若点D 恰好落在AB 上,且∠AOC=105°,则∠DOB 的度数是( )A. 40°B. 30°C. 25°D. 20° 16.计算1+2+22+23+…+22010的结果是( )A. 22011–1B. 22011+1C. ()20111212-D. ()201112+12 二.填空题17.小刚同学遇到这样一道题:“计算:”,其中“□”是被墨水污染看不清的一个数,但是通过看后面的答案知道计算的结果等于5,则“□”表示的数是__________.18.计算7732'56''5047'42''-︒︒的结果为__________.19.如图:在一条不完整的数轴上一动点A 向左移动4个单位长度到达点B ,再向右移动7个单位长度到达点C .若点A 表示的数为0,则点C 表示的数为__________;若点A 、C 表示的数互为相反数,则点B 表示的数为__________.三.解答题20.尺规作图:如图,已知线段a 、b 、c ,用直尺和圆规作出一条线段,使它等于a c b +-.(不要求写作法,但要保留作图痕迹)21.计算(1)20231(2)(2)|12|-+-÷----;(2)2353(12)17 2.7573464⎛⎫⎛⎫-+⨯-+-⨯+⨯ ⎪ ⎪⎝⎭⎝⎭22.如图,C ,D 为线段AB 上的两点,M ,N 分别是线段AC ,BD 的中点.(1)如果CD =5cm ,MN =8cm ,求AB 的长;(2)如果AB =a ,MN =b ,求CD 的长.23. 如图,O 是直线AB 上一点,OC 为任意一条射线,OD 平分∠BOC ,OE 平分∠AOC .(1)指出图中∠AOD 与∠BOE 的补角;(2)试判断∠COD 与∠COE 具有怎样的数量关系.并说明理由.24.观察思考:已知:数,a b 在数轴上位置如图.解决问题:(1)比较下列各数的大小(填“>”“ <”“ =”):a 0;b 0; b ;(2)把数,,,a b a b -按从小到大的顺序排列: < < < ;拓展延伸:(3)化简:b a a b ---;(4)3a =,1=b 时,求+a b 的值.25.2018年9月第22号台风“山竹”给某地造成严重影响.蓝天救援队驾着冲锋舟沿一条东西方向的河流营救灾民,早晨从A 地出发,晚上最后到达B 地,约定向东为正方向,当天航行依次记录如下(单位:千米):11,-6,15,-7,18,-8,10,-5,问:(1)B 地在A 地的东面,还是西面?与A 地相距多少千米?(2)冲锋舟离开出发地最远是多少千米?(3)若冲锋舟每千米耗油0.5升,油箱容量为30升,求途中至少需要补充多少升油?26.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示);(3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.答案与解析一.选择题1.在有理数2(1)-、0、25-、3()2--、12、2--、3(2)-中负数有( )个. A. 5B. 4C. 3D. 2 【答案】C【解析】【分析】 先根据有理数的乘方、绝对值运算、去括号法则进行化简,再根据负数的定义即可得.【详解】23233(1)1,25,(),22,825(22)-==---=--=--=-- 因此,负数有3个:23,25(),2----故选:C .【点睛】本题考查了有理数的乘方、绝对值运算、去括号法则、负数的定义,熟记各运算法则是解题关键. 2.如图所示的几何体的面数、面与面相交形成的线数、线与线相交形成的点数分别是( )A. 6,10,5B. 6,10,6C. 5,10,6D. 5,6,5【答案】B【解析】【分析】 根据点、线、面的概念,观察图形即可得.【详解】观察图形可知,这个几何体侧面有5个三角形,底面有1个五边形,因此,总共有6个面;面与面相交形成的线数为10条,线与线相交形成的点数为6个故选:B .【点睛】本题考查了几何体中点、线、面的概念,学会认识图形,掌握相关概念是解题关键.3.若一个数的绝对值的相反数是5-,则这个数是( )A. 5B. 5-C. 5±D. 0或5【分析】设这个数为a,由于一个数的绝对值的相反数是-5得到-|a|=-5,然根据绝对值的意义即可得到a的值.【详解】设这个数为a,根据题意得-|a|=-5,∴|a|=5,∴a=±5.故选C.【点睛】本题考查了绝对值,解决本题的关键是熟记若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.4.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A. 用两个钉子就可以把木条固定在墙上B. 利用圆规可以比较两条线段的大小关系C. 把弯曲的公路改直,就能缩短路程D. 植树时,只要定出两棵树的位置,就能确定同一行树所在的直线【答案】C【解析】A选项:用两个钉子就可以把木条固定在墙上利用的是“两点确定一条直线”,所以A不能选;B选项:利用圆规可以比较两条线段的大小关系是“线段大小的比较”,所以B不能选;C选项:把弯曲的公路改直,就能缩短路程利用的是“两点之间线段最短”,所以C可以选;D选项:植树时,只要定出两棵树的位置,就能确定同一行树所在的直线的依据是“两点确定一条直线”,所以D不能选;故选C.5.下列说法正确的个数是()①0是绝对值最小的有理数;②一个有理数不是正数就是负数;③数轴上原点两侧的数互为相反数;④两个数比较,绝对值大的反而小;⑤一个有理数不是整数就是分数;⑥相反数大于本身的数是负数.A. 1B. 2C. 3D. 4【分析】根据题目中给出的信息,对错误的举出反例即可解答本题.【详解】0是绝对值最小的有理数,故①正确;正数、0和负数统称为有理数,故②错误;5和-3在原点两侧,而5和-3不是相反数,故③错误;8的绝对值大于6的绝对值,而8大于6,故④错误;整数和分数统称为有理数,故⑤正确;相反数大于本身的数是负数,故⑥正确.故选C .【点睛】本题考查了数轴、有理数、相反数的知识点,解题的关键是能将错误的举出反例.6.如图所示,不同的线段的条数是( )A. 4条B. 5条C. 10条D. 12条【答案】C【解析】【分析】根据线段的定义,列出所有线段便可.【详解】图中线段有:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE 共有10条.故选C.【点睛】本题考核知识点:线段. 解题关键点:理解线段的定义,列出线段.7.如图,小明将-3,-2,-1,0,1,2,3,4,5分别填入九个空格内,便每行、每列、每条对角线上的三个数之和相等,现在,,a b c 分别表示其中的一个数,则a b c -+的值( )A. 1-B. 0C. 3D. 1【答案】D【解析】【分析】 先根据每行、每列、每条对角线上的三个数之和相等求出,,a b c 的值,再代入所求式子求解即可.【详解】由题意得:5051(3)0451(3)0151(3)a b c ++=++-⎧⎪++=++-⎨⎪++=++-⎩解得:212a b c =-⎧⎪=-⎨⎪=⎩代入得:2(1)21a b c -+=---+=故选:D .【点睛】本题考查了列代数式求值,理解题意,正确列出等式求出,,a b c 的值是解题关键.8.在同一平面内两两相交的三条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( )A. 1B. 2C. 3D. 4 【答案】D【解析】试题解析:平面内两两相交的三条直线,最多有3个交点,最少有1个交点,即m=3,n=1,∴m+n=4.故选D .点睛:平面内两两相交的三条直线,有两种情况:(1)三条直线相交于同一点,(2)三条直线相交于不同的三点.9.有理数a ,b在数轴上对应的点的位置如图所示,则a b ab+的值是( )A. 负数B. 正数C. 0D. 正数或0 【答案】B【解析】【分析】根据数轴可得:01a <<,1b <-,继而可得: 0a b +<, 0ab <,再根据两数相除,同号得正,异号得负,进行判定即可.【详解】根据数轴可得:01a <<,1b <-,所以0a b +<, 0ab <,因为两数相除,同号得正,异号得负, 所以0a b ab+>, 故选B.【点睛】本题主要考查数轴和有理数的除法,解决本题的关键是要熟练掌握数轴和有理数除法法则. 10.将31.62︒化成度分秒表示,结果是( )A. 31'6'2'︒B. '3'13712'︒C. 3137''2'︒D. 31'37︒【答案】B【解析】【分析】根据角的单位制换算法则即可得.【详解】3131.6.6202︒=︒+︒ 310.62'60=︒+⨯3132'7.=︒+31370.2'6'0'=︒+⨯'12'337'1=︒+3137'''12=︒故选:B .【点睛】本题考查了角的单位制换算法则,熟记换算法则是解题关键.11.有这样三个数,它们的积是负数,它们的和是正数,则这三个数中负数的个数为( )A. 1个B. 3个C. 1个或3个D. 2个【答案】A【解析】【分析】根据三个数相乘积为负,得到三个数中有1个或3个负数,再由和为正数,确定出三个数中负数只有一个.【详解】解:有这样三个数,它们的积是负数,它们的和是正数,则这三个数中负数的个数为1个.故选A .【点睛】此题考查了有理数的乘法,以及有理数的加法,熟练掌握运算法则是解本题的关键.12.如图∠BCA=90,CD ⊥AB ,则图中互余的角有( )对.A. 1B. 2C. 3D. 4 【答案】D【解析】【分析】 根据互余的定义,结合图形进行判断.【详解】∵∠BCA=90,CD ⊥AB ,∴互余的角有:∠A 与∠B ,∠A 与∠ACD ,∠ACD 与∠BCD ,∠BCD 与∠B ,共4对.故选D .【点睛】考查的互余的知识,注意掌握互余的定义和等量代换是解题的关键.13.n 为正整数时,1(1)(1)n n +-+-的值是( )A. 2B. -2C. 0D. 不能确定【答案】C【解析】【分析】 由于n 为正整数,则n 与n +1为连续的两个奇数,必定一个为奇数一个为偶数,再根据﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1,得出结果.【详解】n 为正整数时,n 与n +1一个为奇数一个为偶数;则(﹣1)n 与(﹣1)n +1的值一个为1,一个为﹣1,互为相反数,故(﹣1)n +(﹣1)n +1的值是0.故选C .【点睛】本题考查了有理数的乘方运算,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.14.如果A 、B 、C 三点在同一直线上,且线段6AB cm =,4BC cm =,若M ,N 分别为AB ,BC 的中点,那么M ,N 两点之间的距离为( )A. 5cmB. 1cmC. 5cm 或1cmD. 无法确定【答案】C【解析】【分析】 分两种情况:点B 在点A 、C 中间和点C 在点A 、B 中间,然后画出图形,根据线段的和差、线段中点的定义分别求解即可得.【详解】由题意,分以下两种情况:(1)如图1,点B 在点A 、C 中间 113,222MB AB cm BN BC cm ==== 则325()MN MB BN cm =+=+=(2)如图2,点C 在点A 、B 中间113,222MB AB cm BN BC cm ==== 则321()MN MB BN cm =-=-=综上,M ,N 两点之间的距离为5cm 或1cm故选:C .【点睛】本题考查了线段的和差、线段中点的定义,依据题意,正确分两种情况,并画出图形是解题关键. 15.如图,△ODC 是由△OAB 绕点O 顺时针旋转40°后得到的图形,若点D 恰好落在AB 上,且∠AOC=105°,则∠DOB 的度数是( )A. 40°B. 30°C. 25°D. 20°【答案】C【解析】【分析】 根据旋转的性质求出∠AOD 和∠BOC 的度数,计算出∠DOB 的度数即可.【详解】由题意得:∠AOD =∠BOC =40°.又∵∠AOC =105°,∴∠DOB =105°﹣40°﹣40°=25°.故选C .【点睛】本题考查的是旋转的性质,掌握旋转的性质是解题的关键.16.计算1+2+22+23+…+22010的结果是( )A. 22011–1B. 22011+1C. ()20111212-D. ()201112+12 【答案】A【解析】【分析】可设其和为S ,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.【详解】设S=1+2+22+23+ (22010)则2S=2+22+23+…+22010+22011② ②-①得S=22011-1.故选A.【点睛】本题考查了因式分解的应用;设出和为S ,并求出2S 进行做差求解是解题关键.二.填空题 17.小刚同学遇到这样一道题:“计算:”,其中“□”是被墨水污染看不清的一个数,但是通过看后面的答案知道计算的结果等于5,则“□”表示的数是__________.【答案】10-【解析】【分析】根据乘法的逆运算、有理数的乘方、乘除法计算即可得.【详解】22(2)(8)(2)(8)-⨯÷-=-÷-⨯ 4(8)=÷-⨯1()2=-⨯ 由题意得:1()52-⨯=解得:10=-故答案为:10-.【点睛】本题考查了乘法的逆运算、有理数的乘方、乘除法运算,熟记各运算法则是解题关键. 18.计算7732'56''5047'42''-︒︒的结果为__________.【答案】26'4514''︒【解析】【分析】根据角的单位制运算即可得.【详解】7732'56''5047'42''-︒︒76'56''5047'42''92=-︒︒4526'14''=︒故答案为:26'4514''︒.【点睛】本题考查了角的单位制换算法则,熟记换算法则是解题关键.19.如图:在一条不完整的数轴上一动点A 向左移动4个单位长度到达点B ,再向右移动7个单位长度到达点C .若点A 表示的数为0,则点C 表示的数为__________;若点A 、C 表示的数互为相反数,则点B 表示的数为__________.【答案】 (1). 3 (2). 112-【解析】【分析】先根据线段的和差求出AC 的长,再根据数轴的定义即可得出点C 表示的数;设点B 表示的数为b ,从而可分别得出点A 、C 表示的数,再根据相反数的定义可求出b 的值,即得出答案.【详解】由题意得:4,7AB BC ==3AC BC AB ∴=-=(1)若点A 表示的数为0则点C 表示的数为3(2)设点B 表示的数为b ,则点A 、C 表示的数分别为4b +、7b +点A 、C 表示的数互为相反数4(7)b b ∴+=-+解得112b =-,即点B 表示的数为112- 故答案为:3;112-. 【点睛】本题考查了数轴的定义、相反数的定义等知识点,掌握理解数轴的定义是解题关键.三.解答题20.尺规作图:如图,已知线段a 、b 、c ,用直尺和圆规作出一条线段,使它等于a c b +-.(不要求写作法,但要保留作图痕迹)【答案】作图结果见解析【解析】【分析】 先用直尺往右延长线段a ,再利用圆规在线段a 的右边端点作长度等于c 的线段,然后再利用圆规作长度等于b 的线段,即可得出答案.【详解】分以下三步:(1)利用直尺,延长AB 至点E(2)利用圆规,以点B 圆心,c 为半径画弧,交BE 于点D(3)利用圆规,以点D 为圆心,b 为半径画弧,交AD 于点C则线段AC 即为所求.【点睛】本题考查了线段的尺规作图,理解题意,掌握尺规作图的方法是解题关键.21.计算(1)20231(2)(2)|12|-+-÷----;(2)2353(12)17 2.7573464⎛⎫⎛⎫-+⨯-+-⨯+⨯ ⎪ ⎪⎝⎭⎝⎭【答案】(1)0;(2)2-.【解析】【分析】(1)先计算有理数的乘方、绝对值运算,再计算有理数的除法,最后计算有理数的加减法即可; (2)先利用乘法的分配律和结合律,再计算有理数的乘法,最后计算有理数的加减法即可.【详解】(1)20231(2)(2)|12|-+-÷----1(8)(2)3=-+-÷--143=-+-0=;(2)2353(12)17 2.7573464⎛⎫⎛⎫-+⨯-+-⨯+⨯ ⎪ ⎪⎝⎭⎝⎭235(12)(12)((12) 1.75)7 2.757346=⨯--⨯-+⨯-+-⨯+⨯ 8910( 1.75 2.75)7=-+-+-+⨯97=-+2=-.【点睛】本题考查了含乘方的有理数混合运算、乘法的分配律和结合律等知识点,熟记各运算法则是解题关键.22.如图,C ,D 为线段AB 上的两点,M ,N 分别是线段AC ,BD 的中点.(1)如果CD =5cm ,MN =8cm ,求AB 的长;(2)如果AB =a ,MN =b ,求CD 的长.【答案】(1)线段AB 的长为11cm ;(2)2b ﹣a .【解析】【分析】(1)先根据M,N 分别是线段AC,BD 的中点,可得MC =12AC ,DN =12BD , 再根据MC+CD+DN=MN =8cm,可得MC+DN =8﹣5=3cm,进而可得:AC+BD=2MC+2DN =2×3=6cm,所以AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),(2)根据M,N分别是线段AC,BD的中点,可得CM=AM=12AC,BN=DN=12BD,再根据AM+BN=MC+DN=AB﹣MN,可得MC+DN=a﹣b, 进而可得:CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.【详解】(1)M,N分别是线段AC,BD的中点,∴MC=12AC,DN=12BD,∵MC+CD+DN=MN=8cm,∴MC+DN=8﹣5=3cm,∴AC+BD=2MC+2DN=2×3=6cm,∴AB=AC+CD+BD=AC+BD+CD=6+5=11(cm), 即线段AB的长为11cm,(2)M,N分别是线段AC,BD的中点,∴CM=AM=12AC,BN=DN=12BD,∵AM+BN=MC+DN=AB﹣MN,∴MC+DN=a﹣b,∴CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.【点睛】本题主要考查线段的中点性质和线段和差关系,解决本题的关键是要熟练掌握线段中点性质,根据线段和差关系进行求解.23. 如图,O是直线AB上一点,OC为任意一条射线,OD平分∠BOC,OE平分∠AOC.(1)指出图中∠AOD与∠BOE的补角;(2)试判断∠COD与∠COE具有怎样的数量关系.并说明理由.【答案】(1)∠AOD的补角为∠BOD,∠COD;∠BOE的补角为∠AOE,∠COE;(2)∠COD+∠COE=90º,理由参见解析.【解析】【分析】(1)两个角相加等于180度即为互为补角,由互为补角意义,和已知的角平分线即可得出结论;(2)利用平角是180度和角平分线意义即可得出结论.【详解】(1)因为∠AOD+∠BOD=180º,所以∠AOD 的补角为∠BOD ,又因为OD 平分∠BOC ,所以∠COD=∠BOD ,所以∠AOD 的补角为∠BOD ,∠COD ;同理因为∠AOE+∠BOE=180º,所以∠BOE 的补角为∠AOE ,又因为OE 平分∠AOC ,所以∠COE=∠AOE ,所以∠BOE 的补角为∠AOE ,∠COE ;(2)∵OD 平分∠BOC ,OE 平分∠AOC , ∴∠COE=12∠AOC ,∠COD=12∠BOC , ∴∠COD+∠COE=12∠BOC+12∠AOC=12∠AOB=90º, 即∠COD 与∠COE 的数量关系是∠COD+∠COE=90º.考点:1.互为补角意义;2.互余的意义.24.观察思考:已知:数,a b 在数轴上的位置如图.解决问题:(1)比较下列各数的大小(填“>”“ <”“ =”):a 0;b 0; b ;(2)把数,,,a b a b -按从小到大的顺序排列: < < < ;拓展延伸:(3)化简:b a a b ---;(4)3a =,1=b 时,求+a b 的值.【答案】(1)<,>,>;(2),,,a b b a -;(3)0;(4)2-.(1)根据数轴的定义即可得;(2)根据数轴的定义、绝对值化简运算即可得;(3)根据(1)的结论,利用绝对值运算即可得;(4)根据(1)的结论和已知等式可求出a 、b 的值,再代入求解即可.【详解】(1)由数轴的定义得:0,0,a b a b <>>故答案:<,>,>;(2)由(1)知,0,0,a b a b <>>00,,b b a a b ∴-<>>->a b ∴<-a b b a ∴<-<< 故答案为:,,,a b b a -;(3)由(1)知,0b a -> 则()0b a a b b a b a ---=---=;(4)3,1,0,0a b a b <==> 3,1a b ∴=-= 代入+a b 得:312a b +=-+=-. 【点睛】本题考查了数轴的定义、化简绝对值等知识点,根据数轴的定义得出,a b 的符号是解题关键. 25.2018年9月第22号台风“山竹”给某地造成严重影响.蓝天救援队驾着冲锋舟沿一条东西方向的河流营救灾民,早晨从A 地出发,晚上最后到达B 地,约定向东为正方向,当天航行依次记录如下(单位:千米):11,-6,15,-7,18,-8,10,-5,问: (1)B 地在A 地的东面,还是西面?与A 地相距多少千米? (2)冲锋舟离开出发地最远是多少千米? (3)若冲锋舟每千米耗油0.5升,油箱容量为30升,求途中至少需要补充多少升油? 【答案】(1)B 地在A 地的东面,与A 地相距28千米;(2)冲锋舟离开出发地最远是33千米;(3)途中至少需要补充10升油.(1)将航行记录的距离相加即可得出答案;(2)根据航行记录下的数据,依次计算出每次记录时冲锋舟距离出发地的距离,找出其中的最大值即可;(3)先计算出冲锋舟行驶的总距离,从而可得出总耗油量,再根据油箱容量为30升即可得出答案.+-++-++-++-【详解】(1)11(6)15(7)18(8)10(5)=+++-+++(11151810)(6785)=-5426=28>,向东为正方向因280故B地在A地的东面,与A地相距28千米;(2)每次记录时,冲锋舟距离出发地的距离依次如下:第一次为11+-=第二次为11(6)5+=第三次为51520+-=第四次为20(7)13+=第五次为131831+-=第六次为31(8)23+=第七次为231033+-=第八次为33(5)28因此,冲锋舟离开出发地最远是33千米;+-++-++-++-(3)冲锋舟行驶的总距离为116157188105116157188105=+++++++=(千米)80⨯=(升)冲锋舟航行中的总耗油量为0.58040-=(升)途中至少需要补充的油量为403010故途中至少需要补充10升油.【点睛】本题考查了正数与负数在实际生活中的应用、绝对值运算等知识点,读懂题意,列出相应的等式是解题关键.26.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示);(3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.【答案】(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由见解析. 【解析】【分析】 (1)先根据补角的定义求出∠BOC 的度数,再由角平分线的性质得出∠COE 的度数,根据∠DOE =∠COD -∠COE 即可得出结论;(2)同(1)可得出结论;(3)先根据角平分线的定义得出∠COE =∠BOE =12∠BOC ,再由∠DOE =∠COD -∠COE 即可得出结论. 【详解】(1)∵COD ∠是直角,30AOC ∠=︒,180903060BOD ∴∠=︒-︒-︒=︒,9060150COB ∴∠=︒+︒=︒,∵OE 平分BOC ∠,1752BOE BOC ∴∠=∠=︒, 756015DOE BOE BOD ∴∠=∠-∠=︒-︒=︒.(2)COD ∠是直角,AOC a ∠=,1809090BOD a a ∴∠=︒-︒-=︒-,9090180COB a a ∴∠=︒+︒-=︒-,∵OE 平分BOC ∠,119022BOE BOC a ∴∠=∠=︒-, ()11909022DOE BOE BOD a a a ∴∠=∠-∠=︒--︒-=. (3)2AOC DOE ∠=∠,理由是:180BOC AOC ∠=︒-∠,OE 平分BOC ∠,119022BOE BOC AOC ∴∠=∠=︒-∠, 90COD ∠=︒,()909018090BOD BOC AOC AOC ∴∠=︒-∠=︒-︒-∠=∠-︒,()11909022DOE BOD BOE AOC AOC AOC ⎛⎫∴∠=∠+∠=∠-︒+︒-∠=∠ ⎪⎝⎭, 即2AOC DOE ∠=∠.【点睛】本题考查的是角的计算,熟知角平分线的定义、补角的定义是解答此题的关键.。

人教版数学七年级上学期《期中考试试卷》(含答案解析)

人教版数学七年级上学期《期中考试试卷》(含答案解析)
答案与解析
一、选择题(本大题共10个小题,每小题3分,共30分)
1.在 中,表示正分数的有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据正分数的定义即可求解.
【详解】在 中, 整数, 是负分数,
只有: 是正分数,共2个,
故选:B.
【点睛】本题考查了有理数的分类,熟练掌握有理数的分类方法是解本题的关键.
23.近期电影《少年 你》受到广大青少年的喜爱,某校七年级1班2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为
购买张数
每张票的价格



家长沟通后决定两个班的同学在期中考试结束后去观看。两个班共有 人,期中 班人数多于 不足 人。经过估算,如果两个班都以班为单位购买,则一共应付 元。
15.已知|a|=5,|b|=3,且|a-b|=b-a,那么a+b=________.
16.已知等式 ,无论 取何值等式都成立,则 __________.
三、解答题(共8题,共72分)
17.
18. 化简:
化简求值: ,其中
19.解方程:
20.在军运会期间,七年级1班志愿者小组准备利用午休时间把校门口的自行车摆放整齐,小组长进行分工时(小组长也参与摆放)发现:如果每人摆放 辆自行车,则还剩 辆自行车需要最后再摆;如果每人摆放 辆自行车,则有一名同学少摆放 辆自行车。请问:这个志愿者小组有几名同学,校门口有几辆自行车需要摆放?
2.下列式子是单项式的是()
A. B. C. D.
【答案】A
【解析】
【分析】
直接利用单项式的定义分析得出答案.
【详解】A、1是整式,此选项符合题意;

人教版七年级数学上学期期中试题(2020年)

人教版七年级数学上学期期中试题(2020年)
(1) 2(2a 3b) 3(2b 3a)
(2) 3( ab 2a) (3a b) 3ab
第 3页 共 9页
2020年最新 (3) 2( x2 xy) 3(2x2 3xy) 2[ x 2 (2x2 xy y 2 )]
23.(本题有 2 个小题,第 1 题 4 分,第 2 题 8 分,共 12 分) (1)小明是个小马虎,他在计算多项式 M减去多项式 ab-2 bc+3ac 时,把减号误看成加号, 结果得到答案 -2 ab+bc+8ac,请你帮小马虎小明求出正确答案 .
A. 4x-9x+6x=- x
) B
) B

1
x
y
2
的次数
2
2
5 xy 2
5
D.的系数是-2来自211 . a- a=0
22
C. x 3 — x 2 =x
D
. xy— 2xy=3xy
10.已知 a,b 互为相反数,且 a b 6 ,则 b 1 的值为(

第 1页 共 9页
2020年最新
A. 2
B. 2 或 3
景区门票收入为 369.7 万元 , 将这一数据用科学记数法表示为
元.
15.已知点 A 和点 B 在同一数轴上, 点 A 表示数- 2,点 B 和点 A 相距 5 个单位长度, 则
点 B 表示的数是 _________ .
16.计算 6a 2 5a 3 与 5a 2 2a 1 的差,结果是 _______________.
的树比第二队种的树的一半少 6 棵,三队共种树
棵.
三、解答题(共 60 分)
21.计算(每小题 4 分,共 12 分)
3 57
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020学年四川省南充市营山县小桥中学七年级(上)期中数学试

一、精心选一选(每题3分,共39分)
1.下列式子中,符合代数式的书写格式的是( )
A.(a﹣b)×7 B.3a÷5b C.1ab D.
2.算式(﹣8)÷(﹣8)×的结果等于( )
A.﹣8 B.8 C.D.﹣
3.倒数等于本身的数是( )
A.0 B.1 C.﹣1 D.±1
4.用代数式表示比m的相反数大1的数是( )
A.m+1 B.m﹣1 C.﹣m+1 D.﹣m﹣1
5.在数﹣,﹣|﹣2|,+[﹣(+0.5)],﹣(﹣1),(﹣1)4中负数的个数是( )
A.4个B.3个C.2个D.1个
6.阳光中学七(2)班篮球队参加比赛,胜一场得2分,负一场得1分,该队共赛了12场,共得2020该队胜了多少场?解:设该队胜了x场,依题意得,下列方程正确的是( ) A.2(12﹣x)+x=2020.2(12+x)+x=2020.2x+(12﹣x)=2020.2x+(12+x)=20207.下列各种变形中,不正确的是( )
A.从2+x=5可得到x=5﹣2 B.从3x=2x﹣1可得到3x﹣2x=﹣1
C.从5x=4x+1可得到4x﹣5x=1 D.从6x﹣2x=﹣3可得到6x=2x﹣3
8.下列各式中,正确的是( )
A.x2y﹣2x2y=﹣x2y B.2a+3b=5ab
C.7ab﹣3ab=4 D.a3+a2=a5
9.如图是一个简单的数值运算程序,当输入的x的值为﹣1时,则输出的值为( )
A.1 B.﹣5 C.﹣1 D.5
10.巴黎与北京的时间差为﹣7时(正数表示同一时刻比北京时间早的时数),如果北京时间是7月2日14:00,那么巴黎时间是( )
A.7月2日21时B.7月2日7时C.7月1日7时D.7月2日5时
11.如果关于x的方程6n+4x=7x﹣3m的解是x=1,则m和n满足的关系式是( ) A.m+2n=﹣1 B.m+2n=1 C.m﹣2n=1 D.3m+6n=11
12.当x=2时,代数式ax3+bx+1的值为3,那么当x=﹣2时,代数式ax3+bx+1的值是( ) A.1 B.﹣1 C.3 D.2
13.对于ax+b=0(a,b为常数),表述正确的是( )
A.当a≠0时,方程的解是x= B.当a=0,b≠0时,方程有无数解
C.当a=0,b=0,方程无解D.以上都不正确
二、细心填一填(每空3分,共24分)
14.﹣2的相反数是__________.
15.任写一个﹣2ab2的同类项__________.
16.北京故宫占地面积约为7202000m2,用科学记数法表示为__________m2.
17.单项式﹣的系数是__________,次数是__________.
18.已知4x2m y m+n与3x6y2是同类项,则m﹣n=__________.
19.在数轴上与表示﹣2的点距离3个单位长度的点表示的数是__________.
2020果|﹣a|=|﹣4|,则a=__________.
三、耐心算一算(本大题共70分)
21.(16分)计算或化简:
(1)﹣14+(﹣+﹣)×36;
(2)﹣99×34;
(3)2x+(5x﹣3y)﹣2(3x+y);
(4)a2﹣2[a2﹣(2a2﹣b)].
22.化简求值:
(1)(2x2+x﹣5)﹣2(1﹣x),其中x=﹣2;
(2)已知a=﹣(﹣2),b=﹣(﹣3)3,C=﹣(﹣42),求﹣[a﹣(b﹣c)]的值.
23.(24分)解下列一元一次方程
(1)﹣3x+7=4x+21;
(2)﹣1=+x;
(3)9y﹣2(﹣y+4)=3;
(4)﹣=.
24.有下列各有理数:﹣22,﹣|﹣2.5|,,0,(﹣1)100,﹣|3|.
(1)将上述各数填入适当的括号内.
正整数:{__________};负有理数:{__________}
(2)将上面各数在数轴上表示出来,并按从小到大的顺序用“<”号连接起
来.
25.已知y1=﹣x+3,y2=2+x.
(1)当x取何值时,y1=y2;
(2)当x取何值时,y1比2y2大5.
26.当a=3,b=﹣1时
(1)求代数式a2﹣b2和(a+b)(a﹣b)的值;
(2)猜想这两个代数式的值有何关系?
(3)根据(1)(2),你能用简便方法算出a=2020,b=2020时,a2﹣b2的值吗?
四.潜心想一想(本大题共17分)
27.已知如图
(1)如图(1),两条直线相交,最多有__________个交点.
如图(2),三条直线相交,最多有__________个交点.
如图(3),四条直线相交,最多有__________个交点.
如图(4),五条直线相交,最多有__________个交点;
(2)归纳,猜想,30条直线相交,最多有__________个交点.
28.阅读下面材料并完成填空,你能比较两个数20202020和20202020的大小吗?为了解决这个问题,先把问题一般化,即比较n n+1和(n+1)n的大小(n≥1的整数),然后,从分析这些简单情形入手,从中发现规律,经过归纳,猜想出结论.
(1)通过计算,比较下列各组两个数的大小(在横线上填>、=、<号)
①12__________21;②23__________32;③34__________43;④45__________54;
⑤56__________65;

(2)从第(1)小题的结果经过归纳,可以猜想,n n+1和(n+1)n的大小关系是什么?
(3)根据上面归纳猜想得到的一般结论,可以猜想得到20202020__________20202020(填>、=、<).
2020学年四川省南充市营山县小桥中学七年级(上)期中
数学试卷
一、精心选一选(每题3分,共39分)
1.下列式子中,符合代数式的书写格式的是( )
A.(a﹣b)×7 B.3a÷5b C.1ab D.
【考点】代数式.
【分析】根据代数式的书写要求判断各项.
【解答】解:选项A正确的书写格式是7(a﹣b),
选项B正确的书写格式是,
选项C正确的书写格式是ab,
选项D的书写格式是正确的.
故选D.
【点评】代数式的书写要求:
(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;
(2)数字与字母相乘时,数字要写在字母的前面;
(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.2.算式(﹣8)÷(﹣8)×的结果等于( )
A.﹣8 B.8 C.D.﹣
【考点】有理数的混合运算.
【分析】先将除法转化为乘法,再按照有理数的乘法法则计算.
【解答】解:(﹣8)÷(﹣8)×
=(﹣8)×(﹣)×
=.
故选C.
【点评】有理数的乘除混合运算,应按从左到右的顺序进行.
3.倒数等于本身的数是( )
A.0 B.1 C.﹣1 D.±1
【考点】倒数.
【分析】根据倒数的定义可知倒数等于本身的数是±1.。

相关文档
最新文档