十字相乘法的运算方法
十字相乘法_非常非常好用

(3x) (5x) 8x
x2-5x+6 X2+5x-6 x2-5x-6 X2+5x+6
注意:
当常数项是正数时,分解的 两个数必同号,即都为正或都为 负,交叉相乘之和得一次项系数。 当常数项是负数时,分解的两个 数必为异号,交叉相乘之和仍得 一次项系数。因此因式分解时, 不但要注意首尾分解,而且需十 分注意一次项的系数,才能保证 因式分解的正确性。
例6、把 (x2+2x+3)(x2+2x-2)-6 分解因式
例7、把 (x+1)(x+2)(x+3)(x+4)-3分解 因式
拓展创新
把下列各式分解因式 1、x2-4xy+4y2-6x+12y+8
2、(x2+2x)(x2+2x-11)+11 3、x n+1+3xn+2xn-1 4、(x+1)(x+3)(x+5)(x+7)+16
x
7
x 1
②交叉相乘,和相加 ③检验确定,横写因式
顺口溜:
x7x 6x
竖分常数交叉乘, 横写因式不能乱。
试一试:
(顺口溜:竖分常数交叉乘,横写因式不能乱。)
x2 8x 15 (x 5)(x 3) 小结:
用十字相乘法把形如
x
5
x
3
x2 ax b
二次三项式分解因式使
一、计算:
(x p)(x q) x2 (p q)x pq
十字相乘法
“十字相乘法”是乘法公式: (x+p)(x+q)=x2+(p+q)x+pq的 反向运算,它适用于分解二次 三项式。
十字相乘公式法

十字相乘法是一种用于解决二次方程的方法,也被称为乘法因式分解法。
它适用于形如ax^2 + bx + c = 0的二次方程,其中a、b和c是已知的实数常数。
具体步骤如下:
1. 将二次方程写成标准形式:ax^2 + bx + c = 0。
2. 计算出二次方程的两个根的乘积,记为p = ac。
3. 找出两个数的和等于b的因子对,这两个数记为m和n。
4. 将二次方程按照十字相乘法的形式写成 (x + m)(x + n) = 0。
5. 根据乘法因式分解的原理,展开(x + m)(x + n)并将其化简为ax^2 + bx + c的形式。
6. 通过比较展开后的多项式与原始二次方程的系数,得到m和n的值。
7. 最后,将找到的m和n代入(x + m)(x + n) = 0,得到二次方程的解。
需要注意的是,十字相乘法只适用于可以被因式分解的二次方程。
对于无法被因式分解的二次方程,可以使用其他方法(如配方法或求根公式)来解决。
十字相乘法的运算方法

分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1
╳
2 3
1×3+2×1
=5
1 3
╳
2 1
1×1+2×3
=7
╳
2 6
1X6+2X1=8 8>7不成立继续试
第二次
1 2
╳
2 3
1X3+2X2=7所以分解后为:(x+2)(2x+3)
a1 c1
╳
a2 c2
a1c2+a2c1
按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
a^2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
上式的常数12可以分解为3×4,而3+4又恰好等于一次项的系数7,所以
上式可以分解为:x^2+7x+12=(x+3)(x+4)
又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5*(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3).
十字相乘法完整版

XX,a click to unlimited possibilities
十字相乘法完整版
目录
01
添加目录标题
02
十字相乘法的基本原理
03
十字相乘法的应用
04十字相乘法ຫໍສະໝຸດ 注意事项05十字相乘法的扩展应用
01
添加章节标题
02
十字相乘法的基本原理
定义与公式
定义:十字相乘法是一种解一元二次方程的方法,通过将方程的系数分解为两个因数的乘积,从而找到方程的解。
分解因式时,要注意符号的变化,特别是当多项式中含有括号时。
分解因式时,要注意符号的变化,特别是当多项式中含有分数时。
分解因式时要注意完全平方数的问题
分解因式时要注意完全平方数的问题,避免出现错误的结果。
分解因式时要注意符号问题,确保结果的正确性。
分解因式时要注意因式的分解是否彻底,避免出现不必要的错误。
应用场景:求解一元二次不等式时,当不等式的系数较大或较为复杂时,使用十字相乘法可以简化计算过程
注意事项:在使用十字相乘法时,需要确保分解后的两个一次项的乘积为正,否则会导致不等号方向错误
举例说明:通过具体的一元二次不等式实例,展示十字相乘法的应用和求解过程
求解一元二次函数极值
定义:一元二次函数极值是指函数在某点的导数为零,且该点两侧的函数值异号
代数方程:十字相乘法可用于解二次方程和一元高次方程
矩阵运算:十字相乘法在矩阵的乘法中也有应用
分式化简:十字相乘法可以用于化简分式,简化计算过程
在物理和工程领域的应用
线性代数方程组的求解
工程中的结构分析、流体动力学等领域
物理中的动力学方程求解
矩阵运算中的分块矩阵相乘
相乘法十字相乘法

相乘法十字相乘法
(原创实用版)
目录
1.相乘法和十字相乘法的概念
2.相乘法的运算规则
3.十字相乘法的运算规则
4.相乘法和十字相乘法的应用
5.结论
正文
相乘法和十字相乘法是数学中常用的两种乘法方法。
相乘法是指两个数相乘得到一个积,而十字相乘法则是一种特殊的乘法运算,主要用于解线性方程组。
相乘法的运算规则比较简单,就是将两个数相乘得到一个积。
例如,2 乘以 3 等于 6,这就是一个相乘法的运算。
在数学中,相乘法被广泛应用于各种计算和公式中。
十字相乘法则是一种特殊的乘法运算,它主要用于解线性方程组。
十字相乘法的运算规则是,将一个数分成两个数,然后将这两个数分别与另一个数相乘,最后将四个积相加得到一个和。
例如,解方程组 x+3y=6 和2x+4y=10,我们可以使用十字相乘法。
首先,将第一个方程中的 x 分成 2 和 1,然后将 3y 分成 4y 和 y,得到 2y+4y=6,解得 y=1。
接着,将第二个方程中的 2x 分成 x 和 x,将 4y 分成 3y 和 y,得到 x+3y=10,代入 y=1,解得 x=7。
这样,我们就解出了方程组的解。
相乘法和十字相乘法在实际应用中都有广泛的应用。
相乘法被广泛应用于各种计算和公式中,而十字相乘法则主要用于解线性方程组,是数学中的一种重要方法。
十字相乘法的方法

十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。
(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。
2、十字相乘法只适用于二次三项式类型的题目。
3、十字相乘法比较难学。
5、十字相乘法解题实例:1)、用十字相乘法解一些简单常见的题目例1把m²+4m-12分解因式分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为1 -21 ╳6所以m²+4m-12=(m-2)(m+6)例2把5x²+6x-8分解因式分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。
当二次项系数分为1×5,常数项分为-4×2时,才符合本题解:因为1 25 ╳-4所以5x²+6x-8=(x+2)(5x-4)例3解方程x²-8x+15=0分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解:因为1 -31 ╳-5所以原方程可变形(x-3)(x-5)=0所以x1=3 x2=5例4、解方程6x²-5x-25=0分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
高中十字相乘法

高中十字相乘法摘要:一、引言二、十字相乘法的定义和基本原理三、十字相乘法的运算步骤1.确定两个括号2.找出两个括号内的因数3.计算乘积并相加四、十字相乘法的应用与实例1.多项式乘法2.因式分解五、总结与回顾正文:一、引言在高中数学的学习过程中,我们经常会遇到一些复杂数字运算,而十字相乘法作为一种快速分解因式的方法,可以帮助我们更高效地解决这些问题。
本文将为您详细介绍高中十字相乘法的相关知识。
二、十字相乘法的定义和基本原理十字相乘法是一种因式分解方法,主要针对二次多项式和四次多项式。
它通过将多项式的系数用一个十字形状排列,然后找出合适的因数组合进行相乘,最终得到多项式的因式分解式。
三、十字相乘法的运算步骤1.确定两个括号首先,我们需要找到多项式中次数最高的项,将其作为第一个括号的因数。
例如,在多项式ax^2 + bx + c 中,我们选择x^2 作为第一个括号的因数。
2.找出两个括号内的因数接下来,我们需要在多项式中找出与x^2 相乘能得到一次项和常数项的因数。
例如,在多项式ax^2 + bx + c 中,与x^2 相乘能得到bx 和c 的因数分别为b 和c。
3.计算乘积并相加将两个括号内的因数相乘并相加,得到的结果应该等于原多项式的常数项。
例如,在多项式ax^2 + bx + c 中,(b + c) = c,即b = 0。
四、十字相乘法的应用与实例1.多项式乘法通过十字相乘法,我们可以快速地计算多项式的乘积。
例如,对于多项式(x + 2)(x - 3),我们可以通过十字相乘法得到:```x -3x| x^2 -3x+| x^2 -3x-|-------x^2 -6x -3```2.因式分解十字相乘法也可以用于多项式的因式分解。
例如,对于多项式x^2 - 6x - 3,我们可以通过十字相乘法得到:```x -3x| x^2 -3x+| x^2 -3x-|-------x^2 -6x -3```从上面的计算过程可以看出,多项式x^2 - 6x - 3 可以因式分解为(x -3)(x + 1)。
十字相乘法_非常非常好用

( x a)(x b) x (a b) x ab
2
十字相乘法
“十字相乘法”是乘法公式: (x+a)(x+b)=x2+(a+b)x+ab的反 向b)x+ab= (x+a)(x+b)
例1、把 x2+6x-7分解因式
十字相乘法(借助十字交叉线分解因式的方法)
例5、把(x2+5x)2-2(x2+5x)-24 分解因式
练习:(2+a)2+5(2+a)-36
2
小结: 用十字相乘法把形如
5 3
x px q
2
二次三项式分解因式使
q ab, p a b
(3x) (5x) 8x
例2、把 解因式
例3、把 分解因式
4 2 y -7y -18
分
2 2 x -9xy+14y
练习:把下列各式分解因式
1. 3. 5.
2 x -11x-12
例一:
步骤:
x
x
x 6 x 7 ( x 7)(x 1) ①竖分二次项与常数项
2
7
②交叉相乘,和相加 ③检验确定,横写因式
1
顺口溜: 竖分常数交叉验, 横写因式不能乱。
x 7x 6x
试一试:
(顺口溜:竖分常数交叉验,横写因式不能乱。)
x x
x 8x 15 ( x 5)(x 3)
2. 4.
2 x +4x-12
2 x -x-12
2 x -5x-14
2 y -11y+24
2 x -5x+6 2 x -5x-6 2 X +5x-6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上式可以分解为:x^2+7x+12=(x+3)(x+4)
又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5*(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3).
讲解:
x^2-3x+2=如下:
②kx^2+mx+n型的式子的因式分解
如果能够分解成k=ac,n=bd,且有ad+bc=m时,那么
kx^2+mx+n=(ax+b)(cx+d)
a b
╳
c d
通俗方法
先将二次项分解成(1 X二次项系数),将常数项分解成(1 X常数项)然后以下面的格式写
1 1
╳
二次项系数常数项
若交叉相乘后数值等于一次项系数则成立,不相等就要按照以下的方法进行试验。(一般的题很简单,最多3次就可以算出正确答案。)
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.
解(x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y) ^2-3(x-y)-2
需要多次实验的格式为:(注意:此时的abcd不是指(ax^2+bx+c)里面的系数,而且abcd最好为整数)
a b
╳
c d
第一次a=1 b=1 c=二次项系数÷a d=常数项÷b
第二次a=1 b=2 c=二次项系数÷a d=常数项÷b
第三次a=2 b=1 c=二次项系数÷a d=常数项÷b
第四次a=2 b=2 c=二次项系数÷a d=常数项÷b
1 2
╳
5 -4
1×(-4)+5×2=6
解5x^2+6xy-8y^2=(x+2y)(5x-4y).
指出:原式分解为两个关于x,y的一次式.
例4
把(x-y)(2x-2y-3)-2分解因式.
分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.
问:以上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?
a1 c1
╳
a2 c2
a1c2+a2c1
按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
a^2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
1 -2
╳
2 1
1×1+2×(-2)=-3
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.
例5
x^2+2x-15
分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)
(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。
=(x-3)(x+5)
总结:①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q)
x 1
╳
x 2
左边x乘x=x^2
右边-1乘-2=2
中间-1乘x+-2乘x(对角)=-3x
上边的【x+(-1)】*下边的【x+(-2)】
就等于(x-1)*(x-2)
x^2-3x+2=(x-1)*(x-2)例题
例1
把2x^2-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1
╳
2 3
1×3+2×1
=5
1 3
╳
2 1
1×1+2×3
=7
对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是
1 -3
╳
1 5
1×5+1×(-3)=2
所以x^2+2x-15=(x-3)(x+5).
例3
把5x^2+6xy-8y^2分解因式.
分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即
╳
2 6
1X6+2X1=8 8>7不成立继续试
第二次
1 2
╳
2 3
1X3+2X2=7所以分解后为:(x+2)(2x+3)
1 -1
╳
2 -3
1×(-3)+2×(-1)
=-5
1 -3
╳
2 -1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解2x^2-7x+3=(x-3)(2x-1).
一般地,对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
第五次a=2 b=3 c=二次项系数÷a d=常数项÷b
第六次a=3 b=2 c=二次项系数÷a d=常数项÷b
第七次a=3 b=3 c=二次项系数÷a d=常数项÷b
......
依此类推
直到(ad+cb=一次项系数)为止。最终的结果格式为(ax+b)(cx+d)
例Hale Waihona Puke :2x^2+7x+6
第一次:
1 1
例2
把6x^2-7x-5分解因式.
分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
2 1
╳
3 -5
2×(-5)+3×1=-7
是正确的,因此原多项式可以用十字相乘法分解因式.
解6x^2-7x-5=(2x+1)(3x-5)
指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.
十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两
十字相乘法
个因数a1,a2的积a1.a2,把常数项c分解成两个因数c1,c2的积c1乘c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x^2+(p+q)x+pq=(x+p)(x+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把x*2+7x+12进行因式分解.