华中科技大学电力系统综合实验报告

合集下载

华中科技大学电力系统综合实验报告

华中科技大学电力系统综合实验报告

电力系统综合实验报告第一部分综合实验台1、实验目的通过实验加深对电力系统暂态稳定性内容的理解,在对不同类型短路数据的分析中锻炼独立思考的能力,进一步了解不同短路故障对电力系统的危害。

实验方式为在理想实验台上模拟最简单的电力系统暂态稳定性问题,以期巩固学生在前一阶段的学习中对相关内容的掌握.2、实验原理与接线电力系统中不同类型的短路故障引起的最大短路电流可由下式得到,推导过程可参见《电力系统分析》一书相关章节内容。

单相接地短路:I f=3E aj(X ff1+X ff2+X ff0)两相相间短路:I f=√3E aj(X ff1+X ff2)两相接地短路:I f=√3√1−X ff2//X ff0X ff2+X ff0•E aj(X ff1+X ff2//X ff0)三相对称短路:I f=E aj(X ff1)如下图1实验接线模拟了单机无穷大系统.图1单机无穷大系统3、实验结果与数据分析⑴、不同故障类型对短路电流影响在下表中根据QF1~QF6的开断来选择单机无穷大系统的运行方式。

XL1接入双回线运行、XL2接入双回线运行.表格 1 短路切除时间0.5s单相接地短路实验数据根据以上表格得出以下结论:1)在各种不同类型的短路中,系统以双回线运行时短路电流较系统单回线运行时短路电流更大,与序网分析结果一致。

2)在各种不同类型的短路中,XL1接入时短路电流相对XL2接入时短路电流更小,以单相短路为例进行分析,可知接入XL阻抗越小,短路电流越大.判断实验台设置中XL1大于XL2。

3)对比各组实验数据,发现短路电流大小在不同短路类型中呈现有以下关系.两相相间短路>两相接地短路>三相接地短路>单相接地短路根据相关实验原理分析,由于X ff1≈X ff2≫X ff0,一般有三相接地短路>两相接地短路>单相接地短路>两相相间短路。

实验台中元件参数不可测量,经分析判断本次实验中负序阻抗偏小导致了两相短路电流偏大的现象发生。

华中科技大学电力系统综合实验报告

华中科技大学电力系统综合实验报告

电力系统综合实验报告第一部分综合实验台1、实验目的通过实验加深对电力系统暂态稳定性内容的理解,在对不同类型短路数据的分析中锻炼独立思考的能力,进一步了解不同短路故障对电力系统的危害。

实验方式为在理想实验台上模拟最简单的电力系统暂态稳定性问题,以期巩固学生在前一阶段的学习中对相关内容的掌握。

2、实验原理与接线电力系统中不同类型的短路故障引起的最大短路电流可由下式得到,推导过程可参见《电力系统分析》一书相关章节内容。

单相接地短路:I f=3E aj(X ff1+X ff2+X ff0)两相相间短路:I f=√3E aj(X ff1+X ff2)两相接地短路:I f=√3√1−X ff2//X ff0X ff2+X ff0•E aj(X ff1+X ff2//X ff0)三相对称短路:I f=E aj(X ff1)如下图1实验接线模拟了单机无穷大系统。

图1单机无穷大系统3、实验结果与数据分析⑴、不同故障类型对短路电流影响在下表中根据QF1~QF6的开断来选择单机无穷大系统的运行方式。

XL1接入双回线运行、XL2接入双回线运行。

表格 1 短路切除时间0.5s单相接地短路实验数据根据以上表格得出以下结论:1)在各种不同类型的短路中,系统以双回线运行时短路电流较系统单回线运行时短路电流更大,与序网分析结果一致。

2)在各种不同类型的短路中,XL1接入时短路电流相对XL2接入时短路电流更小,以单相短路为例进行分析,可知接入XL阻抗越小,短路电流越大。

判断实验台设置中XL1大于XL2。

3)对比各组实验数据,发现短路电流大小在不同短路类型中呈现有以下关系。

两相相间短路>两相接地短路>三相接地短路>单相接地短路根据相关实验原理分析,由于X ff1≈X ff2≫X ff0,一般有三相接地短路>两相接地短路>单相接地短路>两相相间短路。

实验台中元件参数不可测量,经分析判断本次实验中负序阻抗偏小导致了两相短路电流偏大的现象发生。

电力系统实验报告

电力系统实验报告

一、实验目的1. 掌握电力系统基本元件的特性和参数测量方法。

2. 理解电力系统运行的基本原理,包括稳态运行和暂态过程。

3. 学习使用电力系统仿真软件进行潮流计算和分析。

4. 提高实验操作能力和数据分析能力。

二、实验内容1. 电力系统基本元件特性实验(1)实验原理本实验主要研究电力系统中常用元件的特性,包括电阻、电感、电容和变压器。

通过测量元件在不同条件下的电压、电流和功率,分析其特性。

(2)实验步骤1. 测量电阻元件的伏安特性,绘制伏安曲线。

2. 测量电感元件的伏安特性,分析其频率响应。

3. 测量电容元件的伏安特性,分析其频率响应。

4. 测量变压器变比和损耗。

(3)实验结果与分析通过实验,得到了电阻、电感、电容和变压器的伏安特性曲线,分析了其频率响应和损耗情况。

2. 电力系统稳态运行实验(1)实验原理本实验研究电力系统在稳态运行条件下的电压、电流和功率分布。

通过仿真软件模拟电力系统运行,分析稳态运行特性。

(2)实验步骤1. 建立电力系统模型,包括发电机、变压器、线路和负荷。

2. 设置电力系统运行参数,如电压、频率和负荷。

3. 运行仿真软件,观察电压、电流和功率分布情况。

4. 分析稳态运行特性,如电压分布、潮流分布和功率损耗。

(3)实验结果与分析通过仿真实验,得到了电力系统稳态运行时的电压分布、潮流分布和功率损耗情况。

分析了不同运行参数对系统性能的影响。

3. 电力系统暂态过程实验(1)实验原理本实验研究电力系统在发生故障或扰动时的暂态过程。

通过仿真软件模拟故障或扰动,分析暂态过程的电压、电流和功率变化。

(2)实验步骤1. 建立电力系统模型,包括发电机、变压器、线路和负荷。

2. 设置故障或扰动参数,如故障类型、故障位置和故障持续时间。

3. 运行仿真软件,观察电压、电流和功率变化情况。

4. 分析暂态过程特性,如电压恢复、频率变化和稳定裕度。

(3)实验结果与分析通过仿真实验,得到了电力系统发生故障或扰动时的暂态过程特性。

电力系统分析综合实验报告

电力系统分析综合实验报告

电力系统分析综合实验报告本实验旨在通过对电力系统进行分析和综合实验,从而了解电力系统的基本工作原理、电力负荷的管理和电路的运行条件。

在本次实验中,我们将使用PSCAD软件进行电力系统的模拟,并最终得出分析结果。

第一部分:实验目的本实验的主要目的是使学生熟悉电力系统的基本概念、基本原理和基本分析方法,了解电路的运行条件和电力负荷的管理,通过实验来了解电力系统的基本运行流程和原理。

同时,实验中更加重视学生解决问题、创新思维、团队协作和实验数据记录。

第二部分:实验内容本实验的内容主要包括以下几个方面:1. 非线性电力系统的建模使用PSCAD软件来建立非线性电力系统的模型,包括电源、负载和传输线等组成部分。

通过一个简单的电路来进行模拟,检验电源、负载和传输线的正常工作状态。

2. 电力系统稳定性分析使用系统柔性和频率响应等分析方法,对电力系统进行稳定性分析。

通过仿真和实验搭建一个简单的电路来进行稳定性分析,只有在系统稳定的状态下才能进行正常的供电操作。

3. 电路负载管理和分析使用实际电路负载来进行各类负载管理和分析,包括负载均衡和负载优化。

通过对负载进行分析并进行优化调整,以达到电系统的最佳工作状态。

4. 设备运行条件分析通过对设备的状态进行分析,寻找设备的运行条件,以保证设备的正常运转。

在分析过程中,需要对各种设备产生的功率损失和电流负载进行考虑。

第三部分:实验步骤本实验的步骤大致如下:1. 建立非线性电力系统模型首先,需要在PSCAD软件中建立一个非线性电力系统模型,包括电源、负载和传输线等组成部分,并进行电路的初始化设置。

2. 进行电路的基本操作进行电路的基本操作,包括开关的合闭、电源的开启和负载的接入等,以检验电路的正常工作状态。

3. 进行电力系统稳定性分析通过进行仿真和实验来进行电力系统稳定性分析,只有在系统稳定的状态下才能进行正常的供电操作。

如果系统不稳定,则需要进行适当的调整。

4. 进行负载分析和负载管理通过对负载进行分析和管理,以达到电系统的最佳工作状态。

华中科技大学电力电子实验报告

华中科技大学电力电子实验报告

电气学科大类2010 级《信号与控制综合实验》课程电力电子实验报告姓名童俊_学号U200912052 专业班号电气1011指导教师邓春花老师日期2013/6/25实验成绩评阅人实验四十八 DC/DC 单端反激式变换电路设计实验一. 实验原理1. 单端反激变换电路基本原理在基本的DC/DC 变换器中引入隔离变压器,可以实现变换器的输入端和负载端的电气隔离,从而提高运行的安全可靠性和电磁兼容性。

同时,当电源电压V S 和负载所需的输出电压V O 相差较大时,也不会导致占空比D 接近1或者0。

而且引入变压器后,电路可以设置多个二次绕组输出几个不同的直流电压。

图48-1是单端反激变换电路原理图。

电路仅有一个开关管,隔离变压器的磁通只能单方向变化。

当有正向偏压加载在开关晶体管VT 的基极上时,VT 导通,当集电极-发射极间的电压达到饱和电压V CE(sat)时,输入电压加在变压器的初级绕组上的电压。

同时,在变压器的次级绕组中感应出反极性的电压,次级的二极管VD 中没有电流流过,次级绕组处于开路状态。

这时变压器内部并没有能量传递,电源提供给初级绕组的能量全部存储在变压器中。

开关管断开时,电源停止向初级绕组提供能量,同时变压器给负载供电,因此该电路称为图 48-1隔离式单端反激电路的原理单端反激变换电路。

2.自激式单端反激变换器原理及其设计图48-2是一种常见的自激式单端反激变换电路,简称为RCC电路,广泛应用于50W以下的开关电源,它不需要专门的振荡电路,结构简单,由输入电压与输入、输出电流改变频率。

图48-2 RCC基本电路(1)自激原理RCC电路的电压和电流波形如图48-3所示。

输入电压V1是输入交流电压经整流的直流电压。

当V1加到输入端时,V1通过电阻R B 和晶体管VT1的基-射极给VT1的基极一个正的偏置电压,使VT1导通,变压器T1的初级绕组流过励磁电流,而此时感应到的次级的电压V2由于二极管的阻挡而不能向负载提供电能,所以电源提供的能量完全积聚在变压器中。

电力系统及自动化综合实验报告

电力系统及自动化综合实验报告

《电力系统及自动化综合实验报告》摘要:本报告主要介绍了电力系统及自动化综合实验的内容、目的、原理以及实验结果的分析。

通过对电力系统的模拟与控制实验,加深了对电力系统基本原理和自动化技术的理解,提高了实际操作能力。

一、引言电力系统及自动化是电气工程及其自动化专业的重要课程,其理论知识与实践技能对于学生未来的工程应用具有重要意义。

为了加深对电力系统及自动化理论的理解,提高实际操作能力,进行了电力系统及自动化综合实验。

本报告将详细介绍实验的内容、目的、原理及实验结果的分析。

二、实验内容及目的1.实验内容本实验主要包括以下内容:(1)电力系统模拟实验:通过模拟软件,建立电力系统的模型,分析电力系统的稳定性、暂态稳定性等性能指标。

(2)电力系统自动化控制实验:利用PLC编程技术,实现对电力系统的自动控制,包括发电机电压、频率的调节,负载的自动分配等。

2.实验目的(1)掌握电力系统的基本原理,如电路理论、电机原理等。

(2)了解电力系统的运行特性,如稳定性、暂态稳定性等。

(3)熟悉电力系统自动化控制技术,如PLC编程、传感器应用等。

(4)提高实际操作能力,培养解决实际问题的能力。

三、实验原理1.电力系统模拟实验原理电力系统模拟实验主要通过模拟软件建立电力系统的模型,分析其性能指标。

模拟软件根据电力系统的电路原理和电机原理,通过数值计算方法,模拟电力系统的运行过程,从而得出电力系统的性能数据。

2.电力系统自动化控制实验原理电力系统自动化控制实验主要利用PLC编程技术,实现对电力系统的自动控制。

PLC(Programmable Logic Controller,可编程逻辑控制器)是一种专门用于工业控制的计算机,具有逻辑运算、定时、计数等功能。

通过编写PLC程序,实现对电力系统的自动控制。

四、实验结果及分析1.电力系统模拟实验结果及分析通过模拟实验,得到了电力系统的稳定性、暂态稳定性等性能数据。

分析数据可以得出以下结论:(1)电力系统的稳定性与电力系统的结构、参数等有关,合理的电力系统结构和参数可以保证电力系统的稳定运行。

华中科技大学电力电子实验

华中科技大学电力电子实验
当比较器CT放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的双稳触发器进行计时,同时停止输出管Q1和Q2的工作。若输出控制端连接到参考电压源,那么调制脉冲交替输出至两个输出晶体管,输出频率等于脉冲振荡器的一半。如果工作于单端状态,且最大占空比小于50%时,输出驱动信号分别从晶体管Q1或Q2取得。输出变压器一个反馈绕组及二极管提供反馈电压。在单端工作模式下,当需要更高的驱动电流输出,亦可将Q1和Q2并联使用,这时,需将输出模式控制脚接地以关闭双稳触发器。这种状态下,输出的脉冲频率将等于振荡器的频率。
TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:
(28 - 1)
输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率输出管Q1和Q2受控于或非门。当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。当控制信号增大,输出脉冲的宽度将减小。
(2)基于PWM芯片的控制电路设计。
(3)调试验证电路的正确性
(4)分析并验证基于集成PWM控制芯片TL494的PWM控制电路的基本功能
(5)掌握PWM控制芯片的工作原理和外围电路设计方法。
2、实验原理及方案设计
TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。其主要特性如下:(参考PCB资源网的学习资料)
实验二十九DC/DC—PWM升压、降压变换电路性能研究
1、实验目的
(1)验证研究DC/DC PWM降压变换电路的工作原理和特性。

电力系统分析实验报告

电力系统分析实验报告

一、实验目的1. 了解电力系统的基本组成和运行原理;2. 掌握电力系统潮流计算的方法和步骤;3. 熟悉电力系统故障计算的方法和步骤;4. 培养分析电力系统问题的能力。

二、实验原理1. 电力系统潮流计算:通过求解电力系统中的潮流方程,得到系统中各节点的电压、电流、功率等参数,从而分析电力系统的运行状态。

2. 电力系统故障计算:通过求解电力系统中的故障方程,得到故障点附近的电压、电流、功率等参数,从而分析电力系统故障的影响。

三、实验仪器与设备1. 电力系统分析软件:如PSCAD/EMTDC、MATLAB等;2. 电力系统仿真设备:如电力系统仿真机、计算机等;3. 电力系统相关教材和资料。

四、实验步骤1. 建立电力系统模型:根据实验要求,利用电力系统分析软件建立电力系统模型,包括发电机、变压器、线路、负荷等元件。

2. 潮流计算:(1)设置初始条件:根据实验要求,设置电力系统运行状态,如电压、功率等;(2)求解潮流方程:利用电力系统分析软件求解潮流方程,得到系统中各节点的电压、电流、功率等参数;(3)分析潮流计算结果:根据计算结果,分析电力系统的运行状态,如电压分布、潮流分布等。

3. 故障计算:(1)设置故障条件:根据实验要求,设置电力系统故障,如短路、断路等;(2)求解故障方程:利用电力系统分析软件求解故障方程,得到故障点附近的电压、电流、功率等参数;(3)分析故障计算结果:根据计算结果,分析电力系统故障的影响,如电压波动、潮流变化等。

五、实验结果与分析1. 潮流计算结果分析:(1)电压分布:根据潮流计算结果,分析系统中各节点的电压分布情况,判断电压是否满足运行要求;(2)潮流分布:根据潮流计算结果,分析系统中各线路的潮流分布情况,判断潮流是否合理。

2. 故障计算结果分析:(1)故障点电压:根据故障计算结果,分析故障点附近的电压变化情况,判断电压是否满足运行要求;(2)故障点电流:根据故障计算结果,分析故障点附近的电流变化情况,判断电流是否过大;(3)故障点功率:根据故障计算结果,分析故障点附近的功率变化情况,判断功率是否过大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表格 1 短路切除时间 0.5s 单相接地短路实验数据 表格 2 短路切除时间 0.5s 两相相间短路实验数据电力系统综合实验报告第一部分 综合实验台1、实验目的通过实验加深对电力系统暂态稳定性内容的理解,在对不同类型短路数据的分析中锻 炼独立思考的能力,进一步了解不同短路故障对电力系统的危害。

实验方式为在理想实验台上模拟最简单的电力系统暂态稳定性问题,以期巩固学生在 前一阶段的学习中对相关内容的掌握。

2、实验原理与接线电力系统中不同类型的短路故障引起的最大短路电流可由下式得到,推导过程可参见 《电力系统分析》一书相关章节内容。

3 单相接地短路: =( 1+ 2 + 0) 3两相相间短路: =( 1 + 2) 2// 0两相接地短路: = 3 1 ‒ 2 +三相对称短路: =( 1)• (1 + 2// 0 )如下图 1 实验接线模拟了单机无穷大系统。

图 1 单机无穷大系统3、实验结果与数据分析⑴、不同故障类型对短路电流影响在下表中根据 QF1~QF6 的开断来选择单机无穷大系统的运行方式。

XL1 接入双回线 运行、XL2 接入双回线运行。

表格3短路切除时间0.5s两相接地短路实验数据表格4短路切除时间0.5s三相短路实验数据1)在各种不同类型的短路中,系统以双回线运行时短路电流较系统单回线运行时短路电流更大,与序网分析结果一致。

2)在各种不同类型的短路中,XL1接入时短路电流相对XL2接入时短路电流更小,以单相短路为例进行分析,可知接入XL阻抗越小,短路电流越大。

判断实验台设置中XL1大于XL2。

3)对比各组实验数据,发现短路电流大小在不同短路类型中呈现有以下关系。

两相相间短路>两相接地短路>三相接地短路>单相接地短路根据相关实验原理分析,由于1≈2≫0,一般有三相接地短路>两相接地短路>单相接地短路>两相相间短路。

实验台中元件参数不可测量,经分析判断本次实验中负序阻抗偏小导致了两相短路电流偏大的现象发生。

4)小组实验中发现通过实验台面板调节似乎无法改变内部默认参数,继电器动作阈值无法重新整定,动作电流始终为5A,导致实验中多次出现未按预期跳闸的现象发生。

可能因为设备老化或内部模块未连接。

⑵、不同故障切除时间对短路电流影响表格5不同短路切除时间最大短路电流记录由Iy yy yyyy y第二部分动模实验记录的量:故障线路首端和末端电压电流(6个波形)电压电流的测量可以通过电压电流表计模型测量,也可以通过断路器和节点测量。

实验一:线路出口瞬时性故障(100ms):AN相->30ms单跳线路两侧断路器A 相->500ms合线路两侧断路器A相Main:Graphs Main:Graphs0.250<Untitled>0.80<Untitled>0.2000.1500.1000.0500.000-0.050-0.100-0.150-0.2000.000.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00.........0.600.400.200.00-0.20-0.40-0.60-0.80-1.000.300.400.500.600.700.800.90 1.00 1.10 1.20 1.30.........图2发电机测电流图3发电机测电压Main:Graphs Main:Graphs0.040<Untitled>0.80<Untitled>0.0300.0200.0100.000-0.010-0.020-0.030-0.040-0.0500.000.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00.........0.600.400.200.00-0.20-0.40-0.60-0.800.300.400.500.600.700.800.90 1.00 1.10 1.20.........图4无穷大侧电流图5无穷大侧电压实验二:线路出口瞬时性故障(100ms):AB相->30ms三跳线路两侧断路器->500ms三合线路两侧断路器0.200 0.150<Untitled>Main:Graphs1.251.000.75<Untitled>Main:Graphs0.1000.0500.000-0.050-0.100-0.150-0.2000.000.50 1.00 1.50 2.00 2.50.........0.500.250.00-0.25-0.50-0.75-1.00-1.250.000.200.400.600.80 1.00 1.20 1.40 1.60 1.80.........图6发电机测电流图7发电机测电压1.00 0.80 0.60 0.40 0.20 0.00<Untitled>Main:Graphs0.0500.0400.0300.0200.0100.000<Untitled>Main:Graphs-0.20-0.40-0.60-0.80-1.000.000.250.500.75 1.00 1.25 1.50 1.75 2.00 2.25.........-0.010-0.020-0.030-0.040-0.0500.000.200.400.600.80 1.00 1.20 1.40 1.60.........图8无穷大侧电流图9无穷大侧电压yyyyyyyy实验三:线路出口处永久性故障(600ms ):AN 相 ->30 ms 单跳线路两侧断路器 A相->500ms 合线路两侧断路器 A 相->550ms 三跳线路两侧断路器Main :Graphs Main :Graphs0.30 0.200.10 0.00 -0.10<Untitled> 1.000.75 0.500.25 0.00-0.25 <Untitled> -0.20 -0.30 0.00 0.50 1.00 1.50 2.00 2.50 3.00 ... ... ... -0.50 -0.75-1.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 ... ... ...图 10 发电机测电流 图 11 发电机测电压Main :GraphsMain :Graphs 0.80<Untitled> 0.060 <Untitled> 0.60 0.40 0.200.00-0.20 -0.40 -0.60-0.80-1.000.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 ... ... ... 0.040 0.020 0.000 -0.020 -0.040 -0.060 -0.080 0.00 0.50 1.00 1.50 2.00 2.50 3.00 ... ... ...图 12 无穷大侧电流 图 13 无穷大侧电压实验四: 线路中间 50%处永久性故障(600ms ):AN 相 ->单跳线路两侧断路器 A相->500ms 合线路两侧断路器 A 相->550ms 三跳线路两侧断路器Main :GraphsMain :Graphs <Untitled> 1.00 <Untitled>0.0500.0400.0300.0200.0100.000-0.010-0.020-0.030-0.0400.00 0.20 0.40 0.60 0.80 1.00 1.20 ... ... ... 0.80 0.60 0.40 0.20 0.00 -0.20 -0.40 -0.60 -0.80 -1.00 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 ... ... ...图 14 发电机测电流 图 15 发电机测电压Main :Graphs Main :Graphs0.040 <Untitled> 0.80 <Untitled> 0.030 0.020 0.010 0.000-0.010-0.020 -0.030 -0.040-0.050-0.060 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 ... ... ... 0.60 0.40 0.20 0.00 -0.20 -0.40 -0.60 -0.80 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 ... ... ...图 16 无穷大侧电流 图 17 无穷大侧电压实验五: 线路中间 50%处永久性故障(600ms ):AB 相 ->30 ms 三跳线路两侧断 路器->500ms 三合线路两侧断路器->550ms 三跳线路两侧断路器。

yyyyMain :GraphsMain :Graphs0.080<Untitled>1.00<Untitled>0.060 0.040 0.020 0.000 -0.020 -0.040 -0.060 -0.0800.000.200.400.600.801.001.20... ......0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 -1.000.000.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 ... ......图 18 发电机测电流 图 19 发电机测电压Main :GraphsMain :Graphs0.100 <Untitled> 0.80<Untitled>0.075 0.050 0.025 0.000 -0.025 -0.050 -0.075 -0.100 0.200.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 ... ......0.60 0.40 0.20 0.00 -0.20 -0.40 -0.60 -0.80 -1.000.000.20 0.40 0.60 0.80 1.00 1.20 1.40 ... ......图 20 无穷大侧电流图 21 无穷大侧电压第三部分 RTDS 实验1、系统参数按照实验手册要求连接实验电路并计算以下参数。

⑴、模拟比= 625; = 120; = 5.21; = 75000⑵、原型参数根据模拟比求出各模型参数对应的原型参数如下表所示。

表格 6 原型参数计算序 号 名称2发电机组模型参数 原型参数容量 15kVA 1125MVA cosФ 0.8 0.8 Xd ∑ 0.56 0.56 Xd‘∑ 0.132 0.132 Xd“∑ 0.113 0.113电阻 2.0917 10.8978 正序 电抗 23.908 124.561 阻抗 24 1253 输电线路阻抗角 85 度 85 度 电阻 14.418 75.118 零序 电抗 57.829 301.289 阻抗 59.6 310.5阻抗角 76 度 76 度5 变压器高压侧电压 800V 500kV 低压侧电压 220V 6.3kV连接检查无误后开机并网,系统单回线运行,稳定后从检测仪表中记录发电机发出的有功为5.399kW,无功414kvar,记录波型号0110143649。

相关文档
最新文档