数形结合思想方法论文
数形结合思想在初中数学教学中的应用优秀获奖科研论文-2

数形结合思想在初中数学教学中的应用优秀获奖科研论文数形结合是一种非常重要的数学思想方法,也是数学解题中要求掌握的重要思想方法之一,在数学学习中有着重要的地位.数形结合,有利于学生对数学知识的理解,落实新课标的要求,即通过“以形助数,以数解形”,能够将复杂问题简单化,抽象问题具体化.很多数学问题利用数形结合思想来解决,能够达到化难为易的目的.在初中数学教学中,教师应重视数形结合思想,从而提高学生分析问题和解决问题的能力.下面结合自己的教学实践就数形结合思想在初中数学教学中的应用谈点体会.一、数形结合思想在集合问题中的应用在教学中,教师单一地讲解集合问题,很难使学生想象出各数集之间的关联性,而利用图示法,能够解决抽象的集合问题,让学生对集合问题一目了然.在图形中,一般利用圆来表示集合,两集合有公共的元素则两圆相交,两圆相离则表示没有公共的元素.例如,在学校开展兴趣班时,初中某班共有28个学生,其中有15人参加音乐兴趣班,有8人参加舞蹈兴趣班,有14人参加书法兴趣班,同时参加音乐和舞蹈兴趣班的有3人,同时参加音乐和书法兴趣班的有3人,没有人同时参加三个兴趣班,问:同时参加舞蹈班和书法兴趣班的有多少人?只参加音乐兴趣班的有多少人?图1解析:如图1,设A={参加音乐兴趣班的学生},B={参加舞蹈兴趣班的学生},C={参加书法兴趣班的学生},同时参加舞蹈和书法兴趣班的学生有x人.由题意可知,card(A交B)=3.card(A交C)=3,card(B交C)=x,则15+8+14-3-3-x=28,得x=3.因此,同时参加舞蹈和书法班的有3人,只参加音乐兴趣班的有15-3-3=9人.这样,利用图示法,可以使复杂的数学问题变得简单化和具体化,降低做题难度,有助于激发学生的学习兴趣.二、数形结合思想在函数问题中的应用函数是整个数学的重点,关于函数类型的题也数不胜数.利用函数求极值的问题是常见的题型,以数辅形,需要将图象中的数量关系整理清楚,以函数的形式表达出来,把握函数与图形之间的关系,达到快速解决数学问题的目的,体现数形结合在解题中的重要性.初中生对一次函数和二次函数的图象有着很深的了解,因此在面对这类函数问题时,往往可以根据函数图象来解答.这样,不但可以加深学生对基本概念的理解,还可以加强学生对这些基本知识的灵活运用.例如,当0 解析:方程中含有两个未知数,无法直接求解,可以转化成两个函数问题,图2求解的个数就是求函数图象的交点个数.由|1-x2|=kx+k,可构造y=|1-x2|和y=kx+k,如图2.所以原方程解的个数为3个.这样,复杂的函数问题,利用图形进行展示,能够直接得出问题的答案,强化了学生的认知,深化了学生的思维训练,提升了教学效率.三、数形结合思想在概率问题中的应用概率作为初中数学教学中的重点内容,一直是教学的难点.许多概率问题在思考中都存在着抽象,如果借助于坐标平面或数学模型的问题,以形助数,运用数形结合思想,就能够帮助学生迅速找到问题的切入点,优化解题过程,提高解题速度.总之,在初中数学教学中,数形结合思想既是一种教学手段,又是一种解题方法.运用数形结合思想,能够拓宽学生的思维;运用数形之间的关联性,以图形助数学解题,能够强化学生对数学本质的认知和了解,提高学生数学思维的灵活性、根基性等.教师应适当运用数形结合思想开展教学活动,从学生的角度出发,培养学生的综合技能和素质,提升初中数学教学质量,确保学生全面发展.。
论文浅析数形结合思想在初中数学课堂中的应用

论文浅析数形结合思想在初中数学课堂中的应用引言数形结合思想是一种将数学和几何形象结合起来的教学方法,它在初中数学课堂中具有重要应用价值。
本文旨在浅析数形结合思想在初中数学课堂中的应用。
数形结合思想的定义和特点数形结合思想是指通过图形和几何形象将抽象的数学概念直观地展现出来,帮助学生理解和掌握数学知识。
它的特点是能够激发学生的兴趣,提高他们的研究效果。
数形结合思想在初中数学教学中的应用1. 图形和几何形象辅助教学通过使用图形和几何形象,可以生动地展示数学概念和定理,帮助学生更好地理解和记忆。
例如,在教授平行线之间的关系时,通过给学生展示平行线与转角之间的关系图形,可以使学生更加直观地理解。
2. 数形结合的问题设计在教学中,可以设计一些结合数学和几何形象的问题,激发学生思考和解决问题的能力。
通过这种方式,学生能够将抽象的数学知识转化为具体的图形情境,更加深入地了解数学的应用。
3. 数形结合的实例分析通过分析一些实际中的数形结合问题,可以让学生了解数学知识在现实生活中的应用和意义。
例如,在城市规划中,通过分析不同街道网格的图形形状,可以帮助学生理解和掌握平行线和垂直线的特性。
数形结合思想在初中数学课堂中的优势- 提高学生研究兴趣,激发研究动力;- 帮助学生更好地理解和掌握数学知识;- 增强学生的问题解决能力和创新思维。
结论数形结合思想在初中数学课堂中的应用可以有效提高教学效果,促进学生对数学的理解和兴趣。
在教学过程中,教师应充分利用数形结合思想的优势,设计合适的教学方法和问题,以达到更好的教学效果。
论文浅析数形结合思想在小学数学课堂中的应用

论文浅析数形结合思想在小学数学课堂中的应用数形结合是一种思想方法,它建立在数形优势互补的基础上,抓住数与形之间本质上的联系,以“形”直观的表达数,以“数”精确的研究形的思想方法。
数形结合能够将抽象的数量关系与直观的图形结构结合起来进行考虑,既分析其代数意义,又揭示其几何直观,使数量的精确刻画与空间形式的直观形象巧妙、和谐的结合在一起。
数形结合思想是数学中最重要、最基本的思想方法之一,是解决许多数学问题的有效思想。
在教学中,以形助数是数形结合思想的一种重要应用。
通过借助直观的几何图形来帮助学生理解抽象的概念,使得抽象的知识变得趣味化、直观化,让学生在研究时,不再感到枯燥乏味,反而能够使学生从中获得有趣的情感体验,让学生主动去探索,把握概念本质。
例如,在研究“千以内数的认识”一课时,教师可以利用几何模型直观地将计数单位及其相互间的“十进制关系”呈现出来。
用一个立体方格表示1,10个一就是十(即十个立体方格),以此类推,将数字的认识以这种学生感兴趣的方式呈现出来,结合立方体的变化,直观地认识了计数单位“个”“十”“百”“千”“万”,知道10个十是一百,10个一百是一千。
理解了它们之间的十进制关系,这种变抽象为直观,数形结合的策略,更能让学生掌握概念本质,并在学生的头脑中留下了计数单位的直观现象,为数的大小比较、数的计算留下了初步的基础。
另外,以形助数还可以化解研究难点。
例如,在比较7.8和7.80的异同点时,用数轴来表示,形象直观的表示出为什么7.80比7.8更精确,使学生对保留小数位数的精确度有了本质的认识。
总之,数形结合思想在小学数学课堂中的应用是非常重要的,它能够帮助学生更好地理解和掌握数学知识,提高数学研究的效果。
数形结合是一种很好的研究方法,它将数量关系和空间形式结合起来去分析和解决问题。
这种思想的应用可以化难为易,促进学生形象思维和抽象思维的协调发展,并促进学生的可持续发展。
例如,当一年级的学生遇到一个排队问题时,他们可能会感到困惑。
数形结合思想论文浅谈数形结合思想在实际问题中的应用

数形结合思想论文浅谈数形结合思想在实际问题中的应用大家都知道数形结合是数学解题中常用的一种思想方法准确说是根据数与形之间的对应关系通过数与形的相互转化来解决数学问题的思想方法。
数形结合的思想可以使某些抽象的数学问题直观化、生动化能够变抽象思维为形象思维有助于把握数学问题的本质。
在初中数学中数形结合的思想通过忠实的体现者——示意图得以淋漓尽致的展现的。
如在初一上学期“有理数”这一章许多概念都是通过数形结合来解决的。
比如用温度计、海拔高度引入有理数的概念利用数轴讲授绝对值、相反数的概念包括有理数的加法、有理数的乘法。
又如在初一平面几何的入门课讲授线段和角的概念时长度、大小的度量及其计算处处都有数形结合的影子。
再如一次函数和二次函数这两章更是将示意图用到“极点”。
数与形是一对矛盾但它们又是统一的它包含“以形助数”和“以数助形”两个方面。
笔者借助初中课本举例说明数形结合思想在解决实际问题中的一些妙用。
一、利用数形结合思想解决一次函数方案性问题中的调配问题例如在八年级上册一次函数这一章有这样一个问题 a城有肥料200吨b城有肥料300吨现要把这些肥料全部运往c、d两乡从a城往c、d两乡运肥料的费用分别为每吨20元和25元从b城往c、d两乡运肥料的费用分别为每吨15元和24元现c乡需要肥料240吨d乡需要肥料260吨怎样调动总运费最少这一道题是典型的方案性问题是历年中考的一个热门考点。
许多考生尤其是基础较差的考生此题丢分非常厉害究其原因是此题涉及到的已知数据较多容易张冠李戴造成数据上的混乱。
为了避免这一点特借助示意图进行了以下处理设a城运往c乡x吨画出如下示意图或者设a城运往c乡x吨画出以下示意图:数形结合思想得以充分体现。
以上两种方法正是由于使用了数形结合的方法使学生对题目中数量关系一目了然学生只要借助上面的示意图中体现的数据问题便迎刃而解了而且对于变量xyy表示需要的总费用之间关系的表达也显得非常简单y20x25200-x15240-x24x604x10040一次函数也就轻易地得出其中自变量x的取值范围是一个难点但由实际情况也较轻易得到从而解出0≤x≤200再次利用数形结合——解析式与函数图像得出当x0时y有最小值10040。
数形结合毕业论文

数形结合毕业论文数形结合毕业论文在数学和几何学领域中,数形结合是一种强大的方法,它将数学和几何学的概念相结合,以解决各种问题。
本文将探讨数形结合在毕业论文中的应用,并介绍一些相关的案例研究。
第一部分:数形结合的概念和原理数形结合是指将数学中的抽象概念与几何学中的图形相结合,以帮助解决问题。
通过将数学问题可视化为几何图形,我们能够更直观地理解问题的本质,并找到解决问题的方法。
数形结合的原理是将数学中的符号和公式转化为几何图形,以便更好地理解和分析。
第二部分:数形结合在毕业论文中的应用数形结合在毕业论文中有广泛的应用。
它可以用于解决各种数学和几何学问题,并提供更深入的分析和解释。
以下是一些数形结合在毕业论文中的应用案例:1. 几何图形的分析:通过将几何图形转化为数学符号和公式,我们可以更好地分析几何图形的性质和特征。
例如,在研究三角形的性质时,我们可以使用角度和边长的关系来推导出一些重要的结论。
2. 数据可视化:数形结合还可以用于将数据可视化为几何图形,以便更好地理解和分析数据。
例如,在统计学中,我们可以使用柱状图或折线图来表示数据的分布和趋势。
3. 几何模型的建立:数形结合可以帮助我们建立几何模型,以解决实际问题。
例如,在工程学中,我们可以使用几何模型来分析和设计建筑结构或机械装置。
第三部分:数形结合的案例研究以下是一些关于数形结合的案例研究,展示了它在毕业论文中的应用:1. 数学建模:一个学生在毕业论文中使用数形结合的方法建立了一个数学模型,以解决城市交通流量的问题。
通过将交通流量转化为几何图形,该学生能够更好地分析和预测交通拥堵的情况,并提出了一些改进交通流量的建议。
2. 几何优化:另一个学生在毕业论文中使用数形结合的方法,优化了一个建筑结构的设计。
通过将建筑结构转化为几何图形,并使用数学公式和算法进行分析,该学生能够找到最优的结构设计,以提高建筑的稳定性和效率。
3. 数据分析:还有一个学生在毕业论文中使用数形结合的方法,分析了一组市场数据。
数形结合思想数学论文1400字_数形结合思想数学毕业论文范文模板

数形结合思想数学论文1400字_数形结合思想数学毕业论文范文模板数形结合思想数学论文1400字(一):小学数学数形结合教学思想论文一、数形结合教学思想在小学数学教学中的运用数形结合作为一种教学思想方法,一般包含两方面内容,一个方面是“以形助数”,另一个方面的内容是“以数解形”。
下面介绍这两个方面的内容在小学数学教学中的运用。
(一)以形助数所谓“以形助数”,是指老师在讲解某些数学知识的时候,仅靠数字讲解学生不太能理解,借助几何图形的特点,将所要讲的知识点更直观地展现在学生面前,从而将抽象化的问题转变为具体化的问题。
学生在学习行程问题的应用题时,可以运用图形的办法清晰地展现问题。
如:一辆汽车从甲地开往乙地,先是经过上坡路,然后是平地,最后是下坡路,汽车上坡速度是每小时20千米,在平地的速度是每小时30千米,而下坡的速度则是每小时40千米,汽车从甲地到乙地一共上坡花了6小时,平地花了2小时,下坡花了4小时。
请问汽车从乙地到甲地需要多长时间?在这道题中,既存在变量,又存在不变量。
变量就是上坡路和下坡路随着汽车行驶的方向而发生改变,当汽车从乙地到甲地行驶时,原先的上坡路变成了下坡路,原先的斜坡路变成了上坡路。
而不变量就是这两个路程汽车行驶的速度都是始终不变的。
那么在解决问题的时候,就可以直观地展现出来。
先算出汽车从乙地到甲地的上坡时间,即(40×4)÷20=8(小时),然后算出下坡所花费的时间,即(20×6)÷40=3(小时),而平地所花费的时间是不变的,所以汽车从乙地到甲地所花费的时间是8+3+2=13(小时)。
在这道题中,运用图像将数学中的数量关系、运算都直观地展现出来,学生比较易于理解,这样的教学可以在很大程度上提高教学效率。
(二)以数解形虽然图形可以更加直观地展现数学中的数量关系,但是对于一些几何图形,特别是小学数学中的几何图形来讲,非常简单,如果仅仅是通过直接观察反而看不出规律,这时就可以运用“以数解形”的方式教学。
小学数学数形结合论文

小学数学数形结合论文浅析小学数学课堂中数形结合思想的运用一、数形结合思想的由来。
华罗庚先生在《谈谈与蜂房结构有关的数学问题》中首次提出“数形结合”思想,强调数与形的对应关系和相互转化,以几何与代数统一为核心。
数形结合思想能将抽象的数学问题直观化,使复杂问题简明化,有助于抽象思维与形象思维的协调发展。
小学中的数形结合思想主要借助实物和直观性活动,如摆、数、画等,使抽象的数与现实生活相联系,培养学生的数学思维和感知能力,为未来的数学学习打下基础。
二、小学教学中运用数形结合思想的必要性。
在小学课堂中用好数形结合思想,对于老师教学和学生成长都大有裨益。
(一)对于教师而言。
“双减”背景下,教师应遵循科学原则布置作业,特别是对于小学一、二年级的学生,不应布置书面作业。
这一政策的实施对传统教学模式产生了深远影响,促使教师们积极转变观念,重新审视并调整自己的教育实践。
基于小学低年级学生的认知特点,数学教师需更深入地解读教材,有效融入数形结合等数学思想,以激发低年级学生的数学兴趣,努力提升课堂教学质量,为国家教育改革做贡献。
(二)对于学生而言。
数形结合思想在小学数学低年级教学中的应用,可以有助于学生获得“四能”,即从生活中发现并提出数学问题、分析并解决问题。
数形结合思想增强了学生学习数学的主动性和自觉性,丰富了学生对于数学意义的理解,对于培养小学生数学素养和创新能力有很大的帮助。
三、如何在课堂上用好数形结合的思想。
下面通过一些教学案例,具体阐释如何把数形结合思想融入小学课堂当中。
在小学数学中,数形结合思想的具体运用主要有“以形助数”和“以数解形”两类。
“以形助数”是借助形的几何直观性来阐明某些概念及数之间的关系。
例如可以借助形来认识数、掌握加减法、掌握乘除法并解决数学问题。
在理解乘法的意义时,教师可以先提问几?然后展示一张有3排,每排5张桌子的图片,引导学生理解其中的联系。
“以数解形”是借助于数的精确性、程序性和可操作性来阐明形的某些属性。
数形结合论文

数形结合论文引言数形结合是一种将几何形状与数学概念相结合的方法,通过这种方法我们可以更深入地理解和解决数学问题。
数形结合在数学教育中有着重要的地位,它不仅可以激发学生对数学的兴趣,还可以提高学生的思维能力和问题解决能力。
本论文将详细介绍数形结合的概念、应用和教学策略,并通过实例分析说明其在数学学习中的重要性。
数形结合的概念与应用1. 数形结合的基本概念数形结合是指通过几何形状来揭示和解释数学概念。
它是将数学与几何相结合的一种方法,通过对几何形状的分析和观察,可以得出一定的数学规律和结论。
数形结合的本质是将抽象的数学概念转化为直观的几何表示,使学生更容易理解和记忆。
2. 数形结合的应用领域数形结合广泛应用于各个数学领域,包括代数、几何、概率等等。
在代数中,可以通过几何图形表示多项式的乘法、因式分解等运算,帮助学生理解代数运算的本质。
在几何中,可以通过数学公式和方程与几何图形相结合,解决几何问题。
在概率中,可以通过几何模型来表示随机事件的概率,并进行相关计算。
数形结合在数学中的应用是多种多样的,它能够让抽象的数学概念变得具体可见,增加学生对数学的体验和理解。
数形结合的教学策略1. 主动探究数形结合的教学应该注重学生的主动参与和探究。
教师可以引导学生通过观察、分析和实践等方式,提出问题、发现规律,培养学生的数学思维和解决问题的能力。
学生通过自主探究和互动合作,能够更深入地理解数学概念和思想。
2. 多样化的教学方法在数形结合的教学中,应该采用多样化的教学方法来激发学生的学习兴趣。
例如,可以通过使用实物模型、图形软件等教具,让学生亲身感受数学与几何形状的联系;还可以运用问题解决法、探究法等教学策略,培养学生的思维能力和创新意识。
3. 融入实际问题数形结合的教学应该注重将数学概念和实际问题相结合。
通过将数学知识运用到实际问题中,可以增加学生对数学的兴趣和动力。
教师可以设计一些与日常生活息息相关的问题,让学生在解决问题的过程中,更好地理解和应用数学概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数形结合的思想方法
数形结合思想是高考必考的七大数学思想之一,是数学研究对象的数量关系和空间形式,即数与形两个方面,把数量关系的研究转化为图形性质的研究,或者把图形性质的研究转化为数量关系的研究,这种解决问题过程中“数”与“形”相互转化的研究策略,就是数形结合的思想。
数形结合思想就是要使抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来。
在使用的过程中,由“形”到“数”的转化,往往比较明显,而由“数”到“形”的转化却需要转化的意识,因此,数形结合的思想的使用往往偏重于由“数”到“形”的转化。
在一维空间,实数与数轴上的点建立一一对应关系;在二维空间,实数对与坐标平面上的点建立一一对应关系。
特别是在集合、函数、不等式、数列、向量、解析几何、导数与积分等能够用图形表述的知识点,就要用数形结合形象化,高考在选择题、填空题侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化。
1.集合问题中的数形结合
例1.已知全集u=r,集合a=x|-2≤x≤3,b=x|x4,那么集合
ai(c∪b)等于()
a.x|-2≤x0)时f’(x0),函数y=f(x)的图象过原点,所以顶点在第一象限
评注:要熟悉导函数与原函数之间的关系,对一次、二次函数关系及其图象的特点要很熟悉。
4.利用不等式表示的平面区域解答问题
例4.若m为不等式组x≤0y≥0y-x≤2表示的平面区域,则当 a 从-2连续变化到1时,动直线x+y=a扫过m中的那部分区域的面积为
分析:作出不等式表示的平面区域,然后再作平行线x+y=-2 和x+y=1 则夹在两平行线之间的部分即为所求。
解:如图知δaob是直角边为2 的等腰直角三角形,δbcd是斜边为1等腰直角三角形,则所求区域的面积为s=sδaob-sδbcd=■×2×2-■×1×■=■
评注:涉及到不等式表示的平面区域问题时常常要画出图形数形结合解答问题。
5.利用函数借助图形求面积
例5.曲线y=x2和曲线y=■围成一个叶形图(如图所示阴影部分),其面积是()
a.1 b.■ c.■ d.■
分析: 两条曲线围成的面积用微积分求出,并且是上面的函数减去下面的函数的积分.
解:两条曲线的交点为(1,1),阴影部分的面积为s=(■-x2)dx=(■x■-■x3)=■
评注:对于曲线所围成的不规则的几何图形的面积,要用微积分解答,注意积分的上限和下限,有时要看图形是否需要切分成多块部分求出.
6.解析几何问题常常数形结合
例6.已知点p在抛物线y2=4x上,那么点p到点q(2,-1)的距离与点p到抛物线焦点距离之和取得最小值时,点p的坐标为()
a.(■,-1) b.(■,1) c.(1,2) d.(1,-2)分析: 点p到点q(2,-1)的距离与点p到抛物线焦点的距离之和取得最小值时, 点p到点q(2,-1)的距离与点p到抛物线的准线的距离之和也取得最小值,这样就可以把点p到抛物线的焦点的距离转为到准线的距离求出.
解: 点q(2,-1)在抛物线y2=4x的内部,要使点p到点 q(2,-1)的距离与点p到抛物线焦点q(2,-1)的距离之和取得最小值,根据抛物线的定义知,须使点p到点q(2,-1)的距离与点p到抛物线准线距离之和取得最小,即pq⊥l时最小.则p(■,-1)故选a.
答案: a
评注:抛物线的定义是到焦点的距离等于到准线的距离,做题时常常用定义进行转化。