数形结合思想方法在数学解题教学中应用

合集下载

数形结合思想在初中数学中的应用

数形结合思想在初中数学中的应用

数形结合思想在初中数学中的应用数形结合思想是指在解决数学问题时,通过形状和图形的变化来帮助理解和解决问题的思维方式。

它将数学与几何形状相结合,通过对形状的分析和变换,揭示出数学问题的本质。

在初中数学中,数形结合思想广泛应用于代数、几何和概率的相关知识中。

下面将分别介绍这几个领域中数形结合思想的应用。

1. 代数:代数是数学中重要的一个分支,它研究的是数与数之间的关系和运算。

在代数中,数形结合思想主要应用于代数式的理解和方程的解法。

通过将代数式转化为几何图形,可以帮助学生更好地理解代数式的含义和性质。

对于分式的除法运算,可以用一个长方形来表示被除数和除数,通过形状的变化可以帮助学生理解分式除法的原理。

2. 几何:几何学是研究图形、形状和空间关系的数学学科。

在几何学中,数形结合思想的应用非常广泛。

通过将图形进行平移、旋转和缩放等变换,可以帮助学生理解几何运动的性质和规律。

数形结合思想还可以用于解决几何问题。

通过画图来辅助解决面积、周长和体积等计算问题,可以更直观地理解问题的解题思路。

3. 概率:概率是描述随机事件发生可能性的数学工具。

在概率中,数形结合思想可以用于模拟随机事件的发生和计算概率。

通过掷硬币和掷骰子等实验,可以直观地模拟和计算各种随机事件的概率。

数形结合思想还可以用于解决排列和组合等问题。

通过画图来辅助计算排列和组合的个数,可以更好地理解问题的解题方法。

数形结合思想在初中数学中的应用非常广泛。

它可以帮助学生更好地理解和解决各种数学问题,提高数学思维能力和解题能力。

通过将数学与几何形状相结合,数学不再枯燥乏味,而变得有趣和实用。

初中数学教学中应充分发挥数形结合思想的作用,培养学生的数学兴趣和创造力。

数形结合在数学教学中的应用

数形结合在数学教学中的应用

数形结合在数学教学中的应用引言:“数”与“形”是数学研究的两个基本对象,利用“数形结合”方法能使“数”和“形”统一起来,借助于“形”的直观来理解抽象的“数”,运用“数”与“式”来细致入微地刻画“形”的特征,直观与抽象相互配合,取长补短。

数形结合,是一种基本的数学思维方法,能够帮助学生实现数学概念中数、形之间的有效转换,帮助学生更好的认识知识,理解知识,应用知识,最终提升学生数学的综合能力,训练学生良好的数学思维,提升学生的核心素养。

一、数形结合在数学教学中的地位和作用1、数形结合在数学教学中的地位在数学领域中,对数形结合的研究非常重要,由于数形结合具有较强的整合性和灵活的解题技巧,它使几何知识与代数知识紧密结合,使学生对数学概念掌握更为系统,有利于培养学生的思维能力。

2、数形结合在数学教学中的作用数形结合思想从字面意思上理解,就是数字、数学公式同图形、图像结合起来,用以解决一些抽象的、难以理解的数学问题,借助数形结合思想,学生的解题速度和解题质量都将大幅度提升,教师的教学难度也将降低。

数形结合思想有以下几点作用:第一,增强数学公式的直观性在数学学习过程中,由于初中生抽象思维还没有完全形成,对于抽象数学语言还做不到完全地理解,数形结合思想的融入,将数学语言直观化,提高学生的学习兴趣,培养学生的数学思维。

第二,丰富学生的解题思路在数学教学过程中渗透数形结合思想,尤其是一些图形、数量关系的转化问题,借助图形、思维图,将“数”与“形”进行有效转化,使抽象的应用题具体化,降低解题的难度,学生在图形结合中就能很明显的得出各数量之间存在的关系,找到解题思路。

第三,培养学生的数形结合思维在数学中,计算题是重要的知识内容,很多学生对于基本的数学计算仅仅使用最普通的方式解决,这样既没有效率,还容易出错。

数形结合的融入,既让学生逐渐认识到“形”对数学解题的重要性,还可以让学生懂得算理,掌握良好的计算方法。

第四,提升学生的想象力和创造力在数学教学阶段,初中生对于很多的数学知识完全没有思路,想象力受到限制,数学教师使用数形结合思想将抽象的数学规律形象化、显现化和趣味化,培养学生对数学知识的想象力,让学生形成具体的思维能力,帮助初中生轻松发现数学规律。

数形结合思想方法在高中数学解题中的应用

数形结合思想方法在高中数学解题中的应用

数形结合思想方法在高中数学解题中的应用山西省阳泉市第一中学高硕数形结合思想方法是高中数学学习和解题的重要思想方法,它把“数”和“形”有机地结合在一起,可以起到以“数”助形和以“形”解“数”的目的,从而把许多复杂抽象、难以理解的数学问题变成形象、直观的问题,有助于学生更方便快捷地解题。

一、数形结合思想方法的应用原则在高中数学解题中,数形结合思想方法的应用要坚持以下几点原则:一是等价原则。

就是“数”的代数性质和“形”的几何性质两者在转换时要等价,也就运用图形反映的问题和数量表示的问题要有一致性;二是双向原则。

就是要在解题中既要注重对“数”的抽象性进行探索,又要对“形”的直观性进行探索,避免“数”或“形”单独探索给解题造成局限性;三是简洁原则。

在进行数形转换过程中,尽量使图形和代数式保持简洁,以避免繁琐的计算而造成错误,这样才能更好地达到“化繁为简”与“化难为易”的解题目的,使数形结合思想的作用发挥出来;四是直观与创新原则。

就是要充分利用图形和坐标系的直观性,来表示抽象的概念具体化、直观化。

数形结合思想方法在解题中的运用不可照搬,需要活学活用和创新运用,才能更好发挥其功能。

二、数形结合思想方法的应用策略(一)以形助数,使抽象问题变得形象直观在高中数学解题中,特别是对于一些数量关系既复杂又抽象的问题,学生难以理解,不容易找到解题的思路和方法。

如果运用数形结合的思想方法,就可以把复杂抽象“数”的问题用直观的图形问题来解决,这样就可以绕开冗长繁琐的数量计算的过程,利用图形能够帮助学生有效解决复杂的数量问题,使学生对题目中的数量关系能够正确理解, 即能够把题目中抽象的数量问题变成形象直观的图形问题,可以使学生容易理解题意,快速准确地找出已知条件、未知关系,就容易快速形成解题思路,快速正确找出数量关系式,从而有效突破解题难点。

例1:已知一个动圆P 与两个定圆相外切,定圆C 1方程是:(x +4)2+y 2=100, 定圆C 2方程是:(x −4)2+y 2=4,求这个动圆P 的圆心轨迹的方程。

数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用数形结合思想是指在解决数学问题时,通过将数学概念与几何图形相互结合,相互转化和应用的思考方法。

在初中数学的教学中,数形结合思想被广泛地应用。

本文将从初中数学的各个章节对其应用进行探讨。

1. 直线与圆在初中数学的直线与圆章节中,学生需要掌握直线与圆之间的基本关系,如切线、割线等,并学习如何运用这些关系解决问题。

数形结合思想在这一章节的应用体现在,通过将直线与圆相互结合,将抽象的数学概念转化为具体的几何图形,从而帮助学生更好地理解题意和解决问题。

例如,解决“过圆O外一点P作切线,过点P作另一条直线割圆于A、B两点,连接OP 并延长交圆于C点,求证:∠OAC=∠OBC”的问题时,我们可以通过画图,在圆上标出切线和割线,将几何图形与数学概念相互联系来解决问题。

2. 三角函数在初中数学的三角函数章节中,学生需要学习正弦、余弦、正切等三角函数的基本概念和运用。

例如,在解决“证明:sin2A+cos2A=1”的问题时,我们可以画出一个以A为顶点的直角三角形,将正弦、余弦与三角形的边相互对应,从而帮助学生理解三角函数的定义和性质。

3. 平面向量例如,在解决“ABCD为平行四边形,设向量AB=a,向量AD=b,求向量AC的坐标表示”的问题时,我们可以画出平行四边形ABCD的几何图形,并通过图形将向量的定义和运算法则转化为数学表示式。

4. 二次函数例如,在解决“已知二次函数y=x²+px+q的图像过点(1,3),且在x轴上的零点为-2和3,求p、q”的问题时,我们可以通过画出二次函数的图像,并通过图像求出零点和顶点,进而求出p、q的值。

结语数形结合思想在初中数学的教学中具有重要的应用价值,可以帮助学生更好地理解数学知识,提高解题能力和思维能力。

教师在教学中应该注重将数学概念与几何图形相互联系,设计具体、形象的教学案例,引导学生积极思考、用图解题,从而达到提高教学质量和学生学习水平的目的。

数形结合思想方法在高中数学教学与解题中的应用

数形结合思想方法在高中数学教学与解题中的应用

The Science Education Article CollectsTotal.489 March2020(C)总第489期2020年3月(下)摘要在高中数学教学过程中,数学知识的学习与解题技巧的分析备受关注,为了构建高效课堂、促进教学实践活动的顺利开展,许多老师开始重新调整教学策略和教学方向,既坚持学生的主体地位,又十分关注教学策略和教学手段的稳定革新,在引导和鼓励学生的基础上丰富课堂教学内容和形式,保证学生在一个自由宽松的学习氛围下实现个人的良性成长和发展。

关键词数形结合;思想方法;高中数学教学;解题应用The Application of Numeral-Form Combination Method in High School Mathematics Teaching and Problem Solv原ing//Yin ShangzhiAbstract In the process of high school mathematics teaching, much attention has been paid to the learning of math knowledge and the analysis of problem solving skills.In order to build effi-cient classroom,and promote the smooth progress in teaching practice,many teachers start to adjust teaching strategies and teaching directions,both insisting on students'main body status, and paying close attention to the stable innovation of teaching strategies and teaching methods.On the basis of guiding and en-couraging students to enrich classroom teaching content and form,they attempt to ensure that students realize positive person-al growth and development in a free and relaxed learning envi-ronment.Key words numeral-form combination;method of thinking;high school mathematics teaching;problem solving application1数形结合思想方法数与形是高中数学教学的重点和难点,老师需要了解不同的数量关系和空间图形分析要求之间的内在逻辑联系,结合学生的学习能力和学习背景,积极阐述数量关系与图形之间的转化关系。

数形结合思想在小学三年级数学教学中的应用研究

数形结合思想在小学三年级数学教学中的应用研究

数形结合思想在小学三年级数学教学中的应用研究一、本文概述随着教育改革的深入和素质教育的推进,小学数学教学也在不断探索和创新教学方法。

数形结合思想作为一种重要的数学思想方法,已经在小学数学教学中得到了广泛的应用。

本文将探讨数形结合思想在小学三年级数学教学中的应用研究,旨在通过分析数形结合思想在小学数学教学中的作用,为小学三年级数学教学提供更为科学、有效的教学方法和手段。

数形结合思想是指将数学中的数与形相互结合,通过直观的图形来帮助学生理解和掌握数学概念、定理和解题方法。

在小学数学教学中,数形结合思想的应用不仅可以帮助学生更好地理解数学概念和定理,还可以提高学生的数学思维能力,培养学生的空间想象能力和抽象思维能力。

本文将从以下几个方面对数形结合思想在小学三年级数学教学中的应用进行研究:介绍数形结合思想的基本概念和特点;分析数形结合思想在小学三年级数学教学中的重要作用;接着,探讨数形结合思想在小学三年级数学教学中的应用方法和策略;通过实证研究,评估数形结合思想在小学三年级数学教学中的实际效果,并提出相应的建议和改进措施。

通过对数形结合思想在小学三年级数学教学中的应用研究,希望能够为小学数学教师提供更为科学、有效的教学方法和手段,帮助学生更好地理解和掌握数学知识,提高学生的数学素养和综合素质。

二、数形结合思想的理论基础数形结合思想作为一种重要的数学教学方法论,其理论基础源于数学学科的本质属性和儿童的认知发展规律。

数形结合,即将数学中的数量关系和空间形式结合起来,以图形的直观性辅助理解数量的抽象性,或者通过数量的精确性来揭示图形的性质。

这种思想在小学三年级数学教学中具有广泛的应用价值。

从数学学科的角度来看,数形结合思想是数学学科本身的内在要求。

数学是研究数量关系和空间形式的科学,数量与图形是数学的两个基本要素。

在数学的发展过程中,数与形常常是相互渗透、相互转化的。

数形结合思想正是基于这种数与形之间的相互关系,通过数与形的相互转换来揭示数学问题的本质。

数形结合思想在中学数学中的解题应用

数形结合思想在中学数学中的解题应用

数形结合思想在中学数学中的解题应用数与形是数学的两大支柱,它们是对立的,也是统一的。

数形结合,其实质是将抽象的数学语言与直观图形结合起来,使抽象思维和形象思维结合起来,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观。

教师要尽量发掘数与形的本质联系,促使学生善于运用数形结合的思想方法去分析问题、解决问题,从而提高学生的数学能力。

下面结合具体实例谈谈数形结合思想在解题中的应用:1.函数中的数形结合思想例1:已知:点(-1,y1)(-3,y2)(2,y3)在y=3x2+6x+2的图象上,则: y1、y2、y3 的大小关系为()a.y1>y2>y3b.y2>y1>y3c.y2> >y1d.y3>y2>y1分析:由y=3x2+6x+2=3(x+1)2-1画出图象1,由图象可以看出:抛物线的对称轴为直线x=-1即:x=-1时,y有最小值,故排除a、b,由图象可以看出:x=2时y3的值,比x=-3时y2的值大,故选c.例2:二次函数 y=ax2+bx+c的图象的顶点在第三象限,且不经过第四象限,则此抛物线开口向,c的取值范围,b的取值范围,b2-4ac的取值范围。

解:由题意画出图象,如图:从而判断:a>0,c≥0∴对称轴:x=- 0图象与x轴有两个交点:∴△>0即b2-4ac>0例3:如图3,已知二次函数y=ax2+bx+c(a≠0)的图象过点c (0,),与x轴交于两点a(x1,0)、b(x2,0)(x2>x1),且x1+x2=4,x1x2=-5.求(1)a、b两点的坐标;(2)求二次函数的解析式和顶点p的坐标;(3)若一次函数y=kx+m的图象的顶点p,把△pab分成两个部分,其中一部分的面积不大于△pab面积的,求m的取值范围。

解:(1)∵x1+x2=4x1·x2=-5且x1<x2∴x1=5,x2=-1.∴a、b两点的坐标是a(5,0),b(-1,0)(2)由a(5,0),b(-1,0),c(0,),求得y=- (x-2)2+3.∴顶点p的坐标为(2,3);(3)由图象可知,当直线过点p(2,3)且过点m(1,0)或n (3,0)时,就把△pab分成两部分,其中一个三角形的面积是△pab的面积的 .①过n(3,0),p(2,3)的一次函数解析式为y=-3x+9;过点a(5,0),p(2,3)的一次函数解析式为y=-x+5.又一次函数y=kx+m,当x=0时,y=m,此一次函数图象与y轴的交点的纵坐标为m,观察图形变化,可得m的取值范围是5<m≤9.②过b(-1,0),p(2,3)的一次函数解析式为y=x+1;过点m (1,0),p(2,3)一次函数解析式为y=3x-3,观察图形变化,得m的取值范围是-3≤m<1.∴m的取值范围是-3≤m<1或5<m≤9.2.求最值问题:例.已知正实数x,求y= + 的最小值.分析:可以把 + 整理为 + ,即看作是坐标系中一动点(x,0)到两点(0,2)和(2,1)的距离之和,于是本问题转化为求最短距离问题.解:y= + ,令p=(x,0)、a(0,2)和b(2,1),则y=pa+pb.作b点关于x轴的对称点b’(2,-1),则y的最小值为ab’= = .3.利用方程解决几何问题例:本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取a、b、c三根木柱,使得a、b之间的距离与a、c之间的距离相等,并测得bc长为240米,a到bc的距离为5米,如图1所示.请你帮他们求出滴水湖的半径.[解析]如图2,设圆心为点o,连结ob、oa,oa交线段bc于点d.因为ab=ac,所以ab= bc,∴oa⊥bc,且bd=dc= bc=120.由题意,知da=5.设ob=x米.在rt△bdo中,因为ob2=od2+bd2,所以x2=(x-5)2+120.得x=1442.5 .所以,滴水湖的半径为1442.5米.数形结合思想在对于培养和发展学生的空间观念和数感方面有很大的启发作用,利用数形结合思想进行解题可以使的有些复杂问题简单化,抽象问题具体化。

谈数形结合思想在小学数学教学中的灵活运用

谈数形结合思想在小学数学教学中的灵活运用

谈数形结合思想在小学数学教学中的灵活运用摘要:小学数学是一门基础学科,它主要以学生掌握数学知识为目的。

而数形转换这一概念又是一个重要的基础知识和基本方法。

因此,如何将抽象复杂、枯燥难懂的内容转化为简单直观、易于理解的语言符号就显得尤为重要了。

小学数学教学不仅要提高小学生对基本概念、基本原理的认识水平,而且还要引导他们学会从生活中来解决实际问题,培养其良好的思维品质。

那么如何把这些知识有效地转化成具体的表达形式呢?数形结合教学法就是这样的一条途径。

它以形象生动、通俗易懂的方式让孩子们在轻松愉快中学习数学知识。

本文就此谈点浅见。

关键词:数形结合思想;小学数学;运用策略随着素质教育的深入发展,要求我们加强教育和改革,促进每个儿童都能得到全面而又有个性的发展。

为此必须坚持以学定教,因材施教的原则,才能真正实现教书育人的目的。

小学数学教学过程是一个循序渐进的渐进过程,应遵循由简到繁、由易到难的规律,同时还要注意教学内容与能力水平相适应。

因此,数学课不仅要备好教材,更要备好教案。

应突出能力训练与创新意识相结合的特点,做到学以致用,为学生终身受用;同时还应该将其教学内容生活化,贴近生活,贴近学生;还要关注学生情感态度与价值观方面的变化。

因此,实施数学与几何相结合的方法是十分必要的。

一、概述所谓数形结合,就是围绕着数(量)、形(图)、用三个或多个概念来概括事物的本质,并使它们之间相互联系起来,从而完成复杂的计算任务。

它强调应用知识解决问题,要把抽象的数字转化为用具体数字来表示的形式或概念;使之成为现实世界中所存在的事物和现象的一种重要表现形式;培养人们认识客观事物和分析解决问题的思维能力;以图形为主线,通过对数学知识和技能的综合运用而达到解决特定问题的目的。

它要求在课堂上创设情境,引导学生自主探索学习;加强师生交流,营造和谐氛围。

这样做有利于促进教学效果。

二、当前小学数学教学数形结合主要体现在以下几个方面(一)加强基础知识和基本技能的学习,促进数学知识和技能的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数形结合的思想方法在数学解题教学中的应用摘要:数形结合作为重要的数学思想方法,在数学解题中起着举足轻重的作用。

本文介绍了数形结合的思想方法在函数、几何、方程与不等式、数列、集合等方面的应用,为进一步提高学生的解题能力抛砖引玉。

关键词:数形结合思想方法解题
1、问题的提出
数学问题的解决是数学教学中的一个重要部分,尤其是解题能力的培养,成为数学教学中不可缺少的一部分。

解决数学问题的方法有很多,其中数形结合的思想方法是中学数学教学中常用的一种解题方法,教师更应该很好的掌握和研究这一思想方法,为培养学生的解题能力打下坚实的基础。

中学数学研究的对象可分为两大部分,一部分是数,一部分是形。

如何将数与形有机的结合起来,是学好数学的关键。

数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质等;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质等。

数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关系的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问
题化难为易、化繁为简,从而得到完美的解答。

2、数形结合解题教学中应注意的几个方面
在运用数形结合的思想方法分析和解决问题时,藏汉双语数学教师要注意以下五点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数联想其形,以形建立数之间的关系式,做好数形转化;第三是正确确定参数的取值范围,切忌忽视隐含条件;第四要挖掘数学概念的内涵和外延,防止发生扩大内涵、缩小外延或缩小内涵、扩大外延的错误;第五要注意代数性质与几何性质的转换应该是等价的,否则会出现漏洞。

3、数行结合的思想方法在数学解题中的应用
3.1 在函数教学中的应用
函数是中小学数学教学的一条主线,也是学生最难掌握的部分。

在解题过程中要始终将数与形有机结合起来分析思考问题,用几何的眼光体察分析函数,建立数与形之间的一一对应关系。

把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过抽象思维与形象思维的结合,使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。

如表示有序实数与平面上的点之间所具有的一一对应关系的平面坐标系;二元一次方程与直线;锐角三角函数的定义;任意角的三角函数的定义等。

在这类问题的教学中,特别要突出形,让学生学会如何通过形去分析问题、解决问题。

通过对部分高中学生的调查发现40%左右的学生不喜欢数学,原因是函数太抽象。

其根源主要是教师没有很好的向学生讲清楚数与形的关系问题,从而抑制了学生学习数学的积极性。

例1:证明:如果函数满足,则的图像关于直线对称。

证明:在的图像上任取一点,p点关于的对称点为,则据已知可得
故q点的坐标满足,即点q也在曲线上。

因此的图像关于直线对称。

3.2在解方程和不等式上的应用
利用数形结合的思想方法解方程问题就是把方程整理成等式两边各能形成一个初等函数的新方程。

在同一坐标系内画两个函数的图象。

由图象的交点情况,就可以确定原方程根的情况。

数形结合解不等式,就是把不等式的两边设为两个函数,在同一坐标系中画二者的图象,图象位置的上、下关系就反应了不等式的两边的大小关系,然后找出相应的x的取值区间,就得不等式的解集区间。

例2:求方程的近似解。

分析:求解方程,可以把方程的根设计成两个初等函数的图象的交点的横坐标来求。

解:将化为
在同一坐标系内画及的图象,求得交点的横坐标。

这个近似满足方程,所以它就是方程的近似解。

例3:不等式对恒成立,求取值的范围。

解:将原不等式变为
作和的图像。

的图象是抛物线,的图象是过点(4,0)、斜率为的直线系。

显然,使对恒成立的取值范围是
3.3 在数列问题上的应用
数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。

用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。

如:
例4:已知等差数列的公差为,等比数列的公比为,若,。

(1)比较与,与的大小关系。

(2)猜想并证明与的大小关系。

解:由题意知,,根据函数和的图像可知,与处有两个公共点,则,并可判断当时有,再可结合比较法及数学归纳法证明(略)
3.4在集合问题中的应用
在集合运算中常常借助于数轴、venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。

例5:已知全集,、为全集的子集,且 , , ,求集合
分析:因题目涉及了十个元素及、、、、五个集合.若不借助图形,容易出现错误,故借助韦氏图求解集合可知
4、结束语
利用数形结合的思想方法往往能使一些错综复杂的问题变得直
观,解题思路清晰,步骤明了,获得快捷的解题方法。

同时可以激发学生学习数学的兴趣。

但是数形结合能力的形成与发展是一个长期积累的过程,不能操之过急,教师应指导学生多思考、多想象,逐步提高能力,为学生形成良好的数学思维品质奠定坚实的基础。

参考文献:
【1】张雄,李得虎 .数学方法论与解题研究 .高等教育出版社. 2003.8
【2】徐涛. 四抓数列的函数“情结”,构建数列的解题思路..数学教学.2007.8
【3】邓善菅.数形结合解题的几个常见误区..数学通讯.2010.1 注:本文中所涉及到的图表、注解、公式等内容请以pdf格式阅读原文。

相关文档
最新文档