数形结合思想在解题中的应用

合集下载

数形结合思想在高中数学解题中的应用

数形结合思想在高中数学解题中的应用

数形结合思想在高中数学解题中的应用数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。

华罗庚先生说过:“数缺形时少直观,形少数时难入微,数形结合百般好,割裂分家万事休。

”数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。

纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果。

数形结合的重点是研究“以形助数”。

这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓思维视野。

数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。

另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。

运用数形结合思想解题的三种类型及思维方法:一、“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。

纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。

例如:已知二次函数y=ax2+bx+c(a≠0)的图像如图,在下列代数式中(1)a+b+c>0,(2)-4a<b<-2a,(3)abc>0,(4)5a-b+2c<0,其中正确的个数为(A)。

A.1个B.2个C.3个D.4个由图形可知:抛物线开口向上,与y轴交点在正半轴,∴a>0,b<0,c>0,即abc<0,故(3)错误。

又x=1时,对应的函数值小于0,故将x=1代入得:a+b+c<0,故(1)错误。

∵对称轴在1和2之间,∴1<-<2,又a>0,∴在不等式左右两边都乘以-2a得:-2a>b>-4a,故(2)正确。

又x=-1时,对应的函数值大于0,故将x=1代入得:a-b+c>0,又a>0,即4a>0,c>0,∴5a-b+2c=(a-b+c)+4a+c>0,故(4)错误。

浅谈“数形结合”思想在数学解题中的应用

浅谈“数形结合”思想在数学解题中的应用

浅谈“数形结合”思想在数学解题中的应用——从2003年全国数学高考题看数学解题中的“数形结合”思想数学是研究现实世界的空间形式和数学关系的一门学科。

数学思想是现实世界的空间形式和数量关系反映到人的意识之中,经过思维而产生的结果,是对数学事实与理论的本质认识。

数学思想是数学学科的精髓,是素质教育的要求,是数学素养的重要内容,是获取知识、发展思维能力的重要工具,同时也是数学解题中的良方。

“数”和“形”是数学研究的两个基本的对象。

是在数学解题中,通过建立坐标系,使数和形互相渗透,互相转化,以“数解形”与以“形助数”的思想方法得到极佳的效果,寻求解题中的技巧和捷径。

这就是数学思维中所谓的“数形结合”思想。

“数形结合”思想是高中数学众多数学思想中最重要的,也是最基本的思想之一,它在高中数学中有着广泛的应用,是解决许多数学问题的有效思想。

数和形是数学研究客观物体的两个方面,数侧重研究物体数量方面,具有精确性;形侧重研究物体形的方面,具有直观性。

数和形互相联系,可用数来反映空间形式,也可用形来说明数量关系,“数形结合”就是将两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题。

以“数解形”是从特殊到一般,从直观到抽象的发展过程,以“形助数”是利用图形的直观帮助探求解题思路。

通过已知条件和探求目标联想甚至是构造出一个恰当的图形,可利用图形探索解题思路,甚至有时能估计出结果。

历年来,数学高考中都十分重视考查学生对数形结合思想的运用。

2003年数学高考试题中对运用这种方法的考查体现得十分突出。

如试题中第1题、第2题、第3题、第5题、第6题、第8题、第11题、第12题、第15题、第16题、第17题、第18题、第19题、第20题、第21题等,都可以借助这种思想方法求解,在整个试题中占分值达108分。

可见必须充分重视“数形结合”方法的运用。

一、“数形结合”思想在函数解题中的应用函数是高中数学的重要内容之一,通过坐标系把“数”和“形”结合起来,利用函数图像研究函数的性质,由函数的解析式画出其几何图形,由此相互依托,可以解决许多问题。

数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用数形结合思想是指在解决数学问题时,通过将数学概念与几何图形相互结合,相互转化和应用的思考方法。

在初中数学的教学中,数形结合思想被广泛地应用。

本文将从初中数学的各个章节对其应用进行探讨。

1. 直线与圆在初中数学的直线与圆章节中,学生需要掌握直线与圆之间的基本关系,如切线、割线等,并学习如何运用这些关系解决问题。

数形结合思想在这一章节的应用体现在,通过将直线与圆相互结合,将抽象的数学概念转化为具体的几何图形,从而帮助学生更好地理解题意和解决问题。

例如,解决“过圆O外一点P作切线,过点P作另一条直线割圆于A、B两点,连接OP 并延长交圆于C点,求证:∠OAC=∠OBC”的问题时,我们可以通过画图,在圆上标出切线和割线,将几何图形与数学概念相互联系来解决问题。

2. 三角函数在初中数学的三角函数章节中,学生需要学习正弦、余弦、正切等三角函数的基本概念和运用。

例如,在解决“证明:sin2A+cos2A=1”的问题时,我们可以画出一个以A为顶点的直角三角形,将正弦、余弦与三角形的边相互对应,从而帮助学生理解三角函数的定义和性质。

3. 平面向量例如,在解决“ABCD为平行四边形,设向量AB=a,向量AD=b,求向量AC的坐标表示”的问题时,我们可以画出平行四边形ABCD的几何图形,并通过图形将向量的定义和运算法则转化为数学表示式。

4. 二次函数例如,在解决“已知二次函数y=x²+px+q的图像过点(1,3),且在x轴上的零点为-2和3,求p、q”的问题时,我们可以通过画出二次函数的图像,并通过图像求出零点和顶点,进而求出p、q的值。

结语数形结合思想在初中数学的教学中具有重要的应用价值,可以帮助学生更好地理解数学知识,提高解题能力和思维能力。

教师在教学中应该注重将数学概念与几何图形相互联系,设计具体、形象的教学案例,引导学生积极思考、用图解题,从而达到提高教学质量和学生学习水平的目的。

数形结合思想方法在高中数学教学与解题中的应用

数形结合思想方法在高中数学教学与解题中的应用

数形结合思想方法在高中数学教学与解题中的应用1. 引言1.1 概述数形结合思想方法是一种通过将数学与几何图形相结合的方式来解决数学问题的方法。

在高中数学教学与解题中,数形结合思想方法被广泛运用,对学生的数学思维能力和解题能力有着显著的提升作用。

本文将从理论基础、教学应用、解题实际操作、优势局限性和案例分析等方面对数形结合思想方法进行详细介绍和分析,旨在探讨这种方法在高中数学教学和解题中的实际应用效果及其潜在局限性。

通过对数形结合思想方法的深入研究,可以为未来数学教学和研究提供新的思路和方法,促进学生对数学的深入理解和应用能力的提高。

【概述】1.2 研究背景随着科技的不断发展和社会的快速进步,教育也在不断改革和创新。

高中数学作为学生必修科目之一,承担着培养学生逻辑思维能力和数学素养的重要使命。

在传统的数学教学中,很多学生常常感到枯燥和无趣,难以理解和掌握抽象的概念和定理。

有必要寻找一种更加生动、直观且实用的教学方法来激发学生学习数学的兴趣和动力。

1.3 研究意义数范围等。

【研究意义】内容如下:研究数形结合思想方法在高中数学教学与解题中的应用具有重要的实际意义。

数学教学是培养学生逻辑思维能力和问题解决能力的重要途径,而数形结合思想方法能够帮助学生更好地理解数学知识,提高他们的数学学习兴趣和学习效果。

数形结合思想方法在解题中的应用能够帮助学生更加深入地理解问题的本质,提高他们的问题解决能力和创新思维水平。

研究数形结合思想方法的优势和局限性,有助于教师更好地指导学生应用该方法解决问题,并且能够帮助教育部门和相关机构调整和改进数学教学计划,推动数学教育的发展和进步。

深入研究数形结合思想方法在高中数学教学与解题中的应用,对于提高我国数学教育质量,培养优秀数学人才,具有重要的现实意义和战略意义。

2. 正文2.1 数形结合思想方法的理论基础数,具体格式等。

数形结合思想方法的理论基础主要包括几何与代数的融合和数学建模的理论支持。

数形结合百般好——数形结合思想在解题中的应用

数形结合百般好——数形结合思想在解题中的应用

用 计 算 的方 法 , 要 解 决 的 形 的 问 题 转 化 为 对 数 量 关 系 的 把
标 系 这一 舞 台来 进 行 着 数 与 形 最 完 美 的结 合 .
例 2 已 知 一 次 函 数 Y=h +b的 图 像 经 过 (一1 m) 。 , ( 1 两 点 , m >1 则 , 满 足 的 条 件 是 ( m。 ) 且 , 6应
读 题 一 边 用 图示 或 图 表 来 直 观 地 表 示 其 中 的 量 , 可 方 便 就
地 发 现 等 量 关 系 , 而解 决 问题 . 从
4 .利 用 几 何 定 理 、 型 来 反 映 数 量 关 系 模

是 指 把 代 数 的 精 确 刻 画 与 几 何 的 形 象 直 观 相 统 一 , 抽 象 将 思 维 与 形 象 直 观 相 结 合 的 一 种 思 想 方 法 . 学 家 华 罗 庚 教 数
三角 形 的三边 关 系 , 口+ C的 最小 值 就 是线 段 B P P C的 长. 长 延 B , c 作 c 上 B , AB C 中 , c = B c 2= A过 E E 在 E B E + E


用 形 来 反 映 数 量 关 系
1 .数

数 轴 是初 中数 学 教 材 中 数 形 结 合 的 第 一 个 实 例 , 充 它 分发 挥 了数 的准 确 、 的 直 观. 的 建 立 , 仅 使 直 线 上 的 形 它 不 点 与 实数 间建 立 了 一 一 对 应 关 系 , 揭 示 了数 形 之 间 的 内 还 在联 系 , 实 数 的 许 多 性 质 可 由数 轴 上 相 应 点 的 位 置 关 系 使 得 到形 象 生 动 的说 明 , 为 以 后 学 习 相 反 数 、 对 值 、 理 也 绝 有

49.数形结合思想在解题中的应用(王景超)

49.数形结合思想在解题中的应用(王景超)

解析: 已 知 可 联 想 到 长 方 体 的 对 角 线 与 过 同 一 由
点的三条棱所成的角 的关 系. , , a ( 7可 以看做是长方 3
体 的一 条对 角 线 与 过 这 条 对 角 线 一 端 的 三 条 棱 所 成 的 角 . 样 通 过 构 造 长 方 体 模 型 , 使 问题 迎 刃 而解 . 这 可 构 造 如 图 5所 示 的 长 方 体 ABC - B, , D A, , C D,
求得 y 。 一万 +- 二6 ; . 一6 y 、 十棍 图3 r 已知点( , ) 二 , 满足的一 平面区域 , 罕 。 十b 的 最值 问 求 牛 . y
霎 嘿 毕1 } l l 赢 潜似 ; ! ) } ff! v , 甲' , 是 就 塑
设 艺 DAC “a 匕 B , , A, , , , , AC =召 乙 AC =y AD=a AB , =b A =( 连结 D , , C , , A, 一 C , C , ,易知 csa c s3 csy . B A, o ' ot ot + ( + =1
_丫' ,_ 。 丫 ' b+。 _ a +扩 t ana
譬鳗
N =何的关键是要能够把 “ 气‘ 有机结合起来 , 形 数‘ _ 实现 形中有 J‘
戮 瞥
成功是寻海人经过长途跋 涉后 看到 大海时的那份欣喜 。 — 贵州盘县第二 中学高三(o 班 l) 陈 刚
中 举 生 数 理 化
解 析 : F( ) ( ). ( ) 由 已知 得 F( ) 征 : 设 二 -f 二 g 二 , 二特 0 二 是 奇 函 数 ; 1F( ) ② 当 二 时 , x >0所 以 二 时 , ( ) <0 尸< ) , <。 F 二 为增 函数 ; ③ ( ) f 一3 g 一3 二0 F 一3 = ( )・ ( ) 二F( ) 3. 根 据 FC ) x 的性 质 大 致 画 出 F( ) 图 象 , 图 4 观 察 二 的 如 . 一3U 3 故选 D ( ) 0 ・ 知 不 等 式 F( ) O的 解 集 是 ( xG 一二 , ) , ,

数形结合思想在中学数学中的解题应用

数形结合思想在中学数学中的解题应用

数形结合思想在中学数学中的解题应用数与形是数学的两大支柱,它们是对立的,也是统一的。

数形结合,其实质是将抽象的数学语言与直观图形结合起来,使抽象思维和形象思维结合起来,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观。

教师要尽量发掘数与形的本质联系,促使学生善于运用数形结合的思想方法去分析问题、解决问题,从而提高学生的数学能力。

下面结合具体实例谈谈数形结合思想在解题中的应用:1.函数中的数形结合思想例1:已知:点(-1,y1)(-3,y2)(2,y3)在y=3x2+6x+2的图象上,则: y1、y2、y3 的大小关系为()a.y1>y2>y3b.y2>y1>y3c.y2> >y1d.y3>y2>y1分析:由y=3x2+6x+2=3(x+1)2-1画出图象1,由图象可以看出:抛物线的对称轴为直线x=-1即:x=-1时,y有最小值,故排除a、b,由图象可以看出:x=2时y3的值,比x=-3时y2的值大,故选c.例2:二次函数 y=ax2+bx+c的图象的顶点在第三象限,且不经过第四象限,则此抛物线开口向,c的取值范围,b的取值范围,b2-4ac的取值范围。

解:由题意画出图象,如图:从而判断:a>0,c≥0∴对称轴:x=- 0图象与x轴有两个交点:∴△>0即b2-4ac>0例3:如图3,已知二次函数y=ax2+bx+c(a≠0)的图象过点c (0,),与x轴交于两点a(x1,0)、b(x2,0)(x2>x1),且x1+x2=4,x1x2=-5.求(1)a、b两点的坐标;(2)求二次函数的解析式和顶点p的坐标;(3)若一次函数y=kx+m的图象的顶点p,把△pab分成两个部分,其中一部分的面积不大于△pab面积的,求m的取值范围。

解:(1)∵x1+x2=4x1·x2=-5且x1<x2∴x1=5,x2=-1.∴a、b两点的坐标是a(5,0),b(-1,0)(2)由a(5,0),b(-1,0),c(0,),求得y=- (x-2)2+3.∴顶点p的坐标为(2,3);(3)由图象可知,当直线过点p(2,3)且过点m(1,0)或n (3,0)时,就把△pab分成两部分,其中一个三角形的面积是△pab的面积的 .①过n(3,0),p(2,3)的一次函数解析式为y=-3x+9;过点a(5,0),p(2,3)的一次函数解析式为y=-x+5.又一次函数y=kx+m,当x=0时,y=m,此一次函数图象与y轴的交点的纵坐标为m,观察图形变化,可得m的取值范围是5<m≤9.②过b(-1,0),p(2,3)的一次函数解析式为y=x+1;过点m (1,0),p(2,3)一次函数解析式为y=3x-3,观察图形变化,得m的取值范围是-3≤m<1.∴m的取值范围是-3≤m<1或5<m≤9.2.求最值问题:例.已知正实数x,求y= + 的最小值.分析:可以把 + 整理为 + ,即看作是坐标系中一动点(x,0)到两点(0,2)和(2,1)的距离之和,于是本问题转化为求最短距离问题.解:y= + ,令p=(x,0)、a(0,2)和b(2,1),则y=pa+pb.作b点关于x轴的对称点b’(2,-1),则y的最小值为ab’= = .3.利用方程解决几何问题例:本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取a、b、c三根木柱,使得a、b之间的距离与a、c之间的距离相等,并测得bc长为240米,a到bc的距离为5米,如图1所示.请你帮他们求出滴水湖的半径.[解析]如图2,设圆心为点o,连结ob、oa,oa交线段bc于点d.因为ab=ac,所以ab= bc,∴oa⊥bc,且bd=dc= bc=120.由题意,知da=5.设ob=x米.在rt△bdo中,因为ob2=od2+bd2,所以x2=(x-5)2+120.得x=1442.5 .所以,滴水湖的半径为1442.5米.数形结合思想在对于培养和发展学生的空间观念和数感方面有很大的启发作用,利用数形结合思想进行解题可以使的有些复杂问题简单化,抽象问题具体化。

数形结合思想在解题中的应用

数形结合思想在解题中的应用

数形结合思想在解题中的应用(一)教学目标:1.利用图形来处理方程及函数问题和不等式问题,求函数的值域,最值等问题时能运用数形结合思想,避免复杂的计算与推理,在解题时能提高效率。

2.增养学生问题转化的意识。

重点:“以形助数”,培养学生在解题过程中运用数形结合的意识。

难点:问题的转化。

利用多媒体形象地展示图形在解题中的应用,克服解题中的困难.数形结合作为一种重要的数学思想,历年来一直是高考考查的重点之一.这种思想体现在解题中,就是指在处理数学问题时,能够将抽象的数学语言与直观的几何图象有机结合起来思索,促使抽象思维和形象思维的和谐复合,通过对规范图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到简捷解决.本节课着重研究在函数与不等式问题中,在求函数的值域、最值问题时,运用数形结合的思想,使某些问题直观化、生动化、能够变抽象思维为形象思维,达到发现解题途径,避免复杂的计算和推理,简化解题过程的目的。

一、基础训练:1.方程lgx = sinx 的实根的个数为 [ ] A. 1个 B. 2个 C. 3个D. 4个解:画出y = lgx 和y = sinx 在同一坐标系中的图象,两图象有3个交点,选C.2.函数y = a |x|与y = x + a 的图象恰有两个公共点,则实数a 的取值范围是[ ] A .(1,+∞)B .(- 1,1)C .(- ∞,- 1]∪[1,+∞)D .(- ∞,- 1)∪(1,+∞)解:画出y = a |x|与y = x + a 的图象,两图象有两个交点的情形如下:情形1:⎩⎨⎧a > 0a > 1 => a > 1 情形2:⎩⎨⎧a < 0a < - 1 => a < - 1 选D3.不等式x + 2 > x 的解集是______________. 解法一:(常规解法)教师:杨如钢2007-4-23原不等式等价于(Ⅰ)⎩⎪⎨⎪⎧x ≥ 0x + 2≥0x + 2 > x2,或(Ⅱ)⎩⎨⎧x < 0x + 2≥0,解(Ⅰ)得0≤x < 2;解(Ⅱ)得- 2≤x < 0.综上可知,原不等式的解集为{x|- 2≤x < 0}∪{x|0≤x < 2}= {x|- 2≤x < 2} 解法二:(数形结合解法) 令y 1 = x + 2,y 2 = x ,则不等式x + 2 > x 的解就对应于:函数y 1 = x + 2的图象在y 2 = x 上方的图象的部分在x 轴上的射影.如图,不等式的解集为{x|x A < x < x B },由x + 2 = x 得x B = 2,而x A = - 2,∴不等式的解集是{x| - 2≤x < 2}.变题:不等式x + 2 > kx 的解集为M ,且M ⊆{x| - 2≤x < 2},则k ∈____________. 答案:[1,+∞)4.函数y = sinx + 2cosx - 2的值域为_______________.解法一:(代数法)由y =sinx + 2cosx - 2得ycosx – 2y = sinx + 2,∴sinx – ycosx = - 2y – 2,∴y 2 + 1sin(x + φ) = - 2y – 2, ∴sin(x + φ) = - 2y – 2y 2 + 1,而|sin(x + φ)|≤1, ∴|- 2y – 2y 2 + 1|≤1,解不等式得- 4 - 73≤y ≤- 4 + 73,∴函数的值域为[- 4 - 73,- 4 + 73].解法二(几何法):y = sinx + 2cosx - 2的形式类似于斜率公式k = y 2 - y 1x 2 - x 1,∴y =sinx + 2cosx - 2表示过两点P 0(2,- 2)及P(cosx ,sinx)的直线的斜率,由于点P 在单位圆x 2 + y 2 = 1上(如图),显然A P k 0≤y ≤B p k 0,设过P 0的圆的切线方程为y + 2 = k(x – 2), 则有|2k + 2|k 2 + 1= 1,解得k = - 4±73,即A P k 0=- 4 - 73,B p k 0= - 4 + 73∴- 4 - 73≤y ≤- 4 + 73,∴函数的值域为[- 4 - 73,- 4 + 73]5.过圆M :(x -1)2+(y -1)2=1外一点P 向此圆作两条切线,当这两切线互相垂直时,动点P 的轨迹方程是_____________.解:如图,设切点为A 、B ,连结MA 、MB 、PM ,则MA ⊥AP ,MB ⊥PB ,又AP ⊥PB ,且|PA|=|PB|,那么MBPA 是正方形,从而|PM| = 2|MA| = 2.设动点P(x ,y),则(x -1)2+(y-1)2=2,这就是所求的轨迹方程. 二、例题:例1.若关于x 的方程x 2 + 2kx + 3k = 0的两根都在-1和3之间,求k 的取值范围. 解:解法一:令f (x) = x 2 + 2kx + 3k ,其图象与x 轴交点的横坐标就是方程f (x) = 0的解,由y = f(x)的图象可知,要使两根都在-1和3之间,只需⎩⎨⎧f (-1) > 0f (3) > 0- 1 < - k < 34k 2- 12k ≥0,∴k ∈(- 1,0].解法二:设函数f (x) = x 2,g(x) = -2k(x +32),问题转化为两函数图象的两个交点的横坐标必须在- 1和3之间.画出两函数图象(如图),而PA 、PB 的斜率相等,都是2,∴0≤- 2k < 2,即k ∈(- 1,0] 例2.定圆C :(x – 3) 2 + (y – 3) 2 = (52) 2上有动点P ,它关于定点A(7,0)的对称点为Q ,点P 绕圆心C 依逆时针方向旋转120°后到达点R ,求线段RQ 长度的最大值和最小值.[分析]本题一般解法是,设点P(3 + 52cosα,2 + 52sinα),然后求出点Q 、R 的坐标,最后用两点间距离公式,求出|RQ|的最值.但这种解法运算量较大,还易出错.观察图,在△PRQ 中,欲求|RQ|,因A 是PQ 的中点,易想起三角形的中位线. 解: 取PR 的中点B ,连结BA ,则|RQ|=2|AB|.又B 是弦RP 的中点,连CB ,则CB ⊥RP ,∠BCP = 12∠PCR = 60°,∴|BC| = 12|CP| = 54.∴点B 的轨迹是以C 为圆心,54为半径的圆.这时求|QR|的最值,转化为求点A 与所作圆上点的距离的最值.过C 、A 作直线,交所作圆于B 1、B 2两点,则由平面几何知,|AB|的最大值为|AB 2| = |AC| + |CB 2| = (7 - 3) 2 + (0 - 3) 2 + 54 = 254,|AB|的最小值为|AB 1| =|AC| - |CB 1| = 5 - 54 = 154.故|QR|的最大值、最小值分别是252和152.例3. 求函数u = 2t + 4 + 6 - t 的最值.[分析]由于等式右端根号内同为t 的一次式,故作简单换元,设2t + 4 = m ,无法转化为一元二次函数求最值;倘若对式子平方处理,将会把问题复杂化,因此该题用常规解法显得比较困难,考虑到式中有两个根号,故可采用两步换元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数形结合思想在解题中的应用
2012年秋季学期,广西将进入高中新课程改革,新课程理念逐渐深入人心;学习新理念,转变旧观念正成为高中教师重要的课题.数学课程改革的重心是发展学生的广泛的数学能力,注重数学思想、方法的教学渗透,培养学生形成良好的数学素质.数形结合是高中数学中重要的思想方法,通过数形结合可沟通数与形的内在联系,把代数语言的精确刻画与几何图形的直观描述有机地结合起来,使复杂问题简单化,抽象问题具体化,能使高中数学中许多复杂问题迎刃而解,收到事半功倍的效果.
【例1】解不等式x+2>x.
解法一:原不等式可化为x≥0x+2≥0x+2≥x2
或x<0x+2≥0
,解得0≤x<2或-2≤x<0,
∴原不等式的解集为{x|-2≤x<2}.
解法二:设y1=x+2,y2=x,在同一坐标系中作出这两个函数的图象(如图1),则不等式x+2>x的解就是y1=x+2的图象在y2=x的上方的那一段对应的横坐标,即不等式的解集为{x|xa≤x<xb},其中xa=-2,解方程x+2=x得xb=2.
∴原不等式的解集为{x|-2≤x<2}.
评析:比较上述两种解法,可以看到用图形直观地反映数量关系,解决问题简洁明了.
【例2】设f(x)=x2-2ax+2-a,当x∈[-1,+∞]时,f(x)>a
恒成立,求实数a的取值范围.
解法一:f(x)>a在x∈[-1,+∞)上恒成立等价于x2-2ax+2-a >0在x∈[-1,+∞)
上恒成立.设函数g(x)=x2-2ax+2-a,其图象在x∈[-1,+∞)时位于x轴上方有两种情况(如图2、图3所示).
(1)δ=4a2-4(2-a)<0,解得-2<a<1;
(2)δ=4a2-(2-a)≥0a<-1g(-1)=a+3>0
,解得-3<a≤-2.故实数a的取值范围是(-3,1).
解法二:由f(x)>a得x2+2>a(2x+1),设h(x)=x2+2,
t(x)=a(2x+1),在同一坐标系中这两个函数的图象如图4所示,直线l1与抛物线相切,的对应值为1,直线l2经过点(- 12,0) 和点(-1,3),a的对应值为-3,符合题意的直线
t(x)=a(2x+1)恒过点(-12,0)且位于l1与l2之间,故实数a的取值范围是(-3,1).
图5
【例3】已知:椭圆x29+y24=1 与抛物线y=x2+m有四个不同的交点,求实数m的取值范围.
错解:在同一坐标系中作出椭圆和抛物线的图象(如图5),根据图象可得:m<-2-m<3,解得-9<m<-2.
评析:图形的直观性给解决问题提供了很大的帮助,但离开了严格的数学推理,往往受图形直观错觉的影响得出错误的结论.
图6
正解:联立椭圆和抛物线的方程,得x29+y24 =1y=x2+m ,消去y,整理得9x4+(18m+4)x2+9m2-36=0,令t=x2,得
9t2+(18m+4)t+9m2-36=0.设f(t)=9t2+(18m+4)t+9m2-36,根据题意知方程f(t)=0在(0,+∞)上有两个不相等的实数根(如图6),即得δ=(18m+4)2-36(9m2-36)>0,-18m+418 >0,f(0)=9m2-36>0
解得-829<m<-2 .
评析:这是一个关于图形交点的问题,求解过程却是从分析方程的根的情况入手,而在讨论方程f(t)=0在(0,+∞)上有两个不相等的实数根时,又需要利用二次函数的图象特征,这样数和形的密切结合、相互补充,使问题得到了圆满的解决.
(责任编辑黄春香)。

相关文档
最新文档