数形结合思想在解题中的应用
浅谈“数形结合”思想在数学解题中的应用

浅谈“数形结合”思想在数学解题中的应用——从2003年全国数学高考题看数学解题中的“数形结合”思想数学是研究现实世界的空间形式和数学关系的一门学科。
数学思想是现实世界的空间形式和数量关系反映到人的意识之中,经过思维而产生的结果,是对数学事实与理论的本质认识。
数学思想是数学学科的精髓,是素质教育的要求,是数学素养的重要内容,是获取知识、发展思维能力的重要工具,同时也是数学解题中的良方。
“数”和“形”是数学研究的两个基本的对象。
是在数学解题中,通过建立坐标系,使数和形互相渗透,互相转化,以“数解形”与以“形助数”的思想方法得到极佳的效果,寻求解题中的技巧和捷径。
这就是数学思维中所谓的“数形结合”思想。
“数形结合”思想是高中数学众多数学思想中最重要的,也是最基本的思想之一,它在高中数学中有着广泛的应用,是解决许多数学问题的有效思想。
数和形是数学研究客观物体的两个方面,数侧重研究物体数量方面,具有精确性;形侧重研究物体形的方面,具有直观性。
数和形互相联系,可用数来反映空间形式,也可用形来说明数量关系,“数形结合”就是将两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题。
以“数解形”是从特殊到一般,从直观到抽象的发展过程,以“形助数”是利用图形的直观帮助探求解题思路。
通过已知条件和探求目标联想甚至是构造出一个恰当的图形,可利用图形探索解题思路,甚至有时能估计出结果。
历年来,数学高考中都十分重视考查学生对数形结合思想的运用。
2003年数学高考试题中对运用这种方法的考查体现得十分突出。
如试题中第1题、第2题、第3题、第5题、第6题、第8题、第11题、第12题、第15题、第16题、第17题、第18题、第19题、第20题、第21题等,都可以借助这种思想方法求解,在整个试题中占分值达108分。
可见必须充分重视“数形结合”方法的运用。
一、“数形结合”思想在函数解题中的应用函数是高中数学的重要内容之一,通过坐标系把“数”和“形”结合起来,利用函数图像研究函数的性质,由函数的解析式画出其几何图形,由此相互依托,可以解决许多问题。
数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用数形结合思想是指在解决数学问题时,通过将数学概念与几何图形相互结合,相互转化和应用的思考方法。
在初中数学的教学中,数形结合思想被广泛地应用。
本文将从初中数学的各个章节对其应用进行探讨。
1. 直线与圆在初中数学的直线与圆章节中,学生需要掌握直线与圆之间的基本关系,如切线、割线等,并学习如何运用这些关系解决问题。
数形结合思想在这一章节的应用体现在,通过将直线与圆相互结合,将抽象的数学概念转化为具体的几何图形,从而帮助学生更好地理解题意和解决问题。
例如,解决“过圆O外一点P作切线,过点P作另一条直线割圆于A、B两点,连接OP 并延长交圆于C点,求证:∠OAC=∠OBC”的问题时,我们可以通过画图,在圆上标出切线和割线,将几何图形与数学概念相互联系来解决问题。
2. 三角函数在初中数学的三角函数章节中,学生需要学习正弦、余弦、正切等三角函数的基本概念和运用。
例如,在解决“证明:sin2A+cos2A=1”的问题时,我们可以画出一个以A为顶点的直角三角形,将正弦、余弦与三角形的边相互对应,从而帮助学生理解三角函数的定义和性质。
3. 平面向量例如,在解决“ABCD为平行四边形,设向量AB=a,向量AD=b,求向量AC的坐标表示”的问题时,我们可以画出平行四边形ABCD的几何图形,并通过图形将向量的定义和运算法则转化为数学表示式。
4. 二次函数例如,在解决“已知二次函数y=x²+px+q的图像过点(1,3),且在x轴上的零点为-2和3,求p、q”的问题时,我们可以通过画出二次函数的图像,并通过图像求出零点和顶点,进而求出p、q的值。
结语数形结合思想在初中数学的教学中具有重要的应用价值,可以帮助学生更好地理解数学知识,提高解题能力和思维能力。
教师在教学中应该注重将数学概念与几何图形相互联系,设计具体、形象的教学案例,引导学生积极思考、用图解题,从而达到提高教学质量和学生学习水平的目的。
数形结合思想在解题中的应用

数形结合思想在解题中的应用主讲人:黄冈中学高级教师汤彩仙一、复习策略1.数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法.它可以使抽象的问题具体化,复杂的问题简单化.―数缺形时少直观,形少数时难入微‖,利用数形结合的思想方法可以深刻揭示数学问题的本质.2.数形结合的思想方法在高考中占有非常重要的地位,考纲指出―数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查‖,灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能.3.―对数学思想方法的考查是对数学知识在更高层次的抽象和概括的考查,考查时要与数学知识相结合‖,用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础.4.函数的图像、方程的曲线、集合的文氏图或数轴表示等,是―以形示数‖,而解析几何的方程、斜率、距离公式,向量的坐标表示则是―以数助形‖,还有导数更是数形结合的产物,这些都为我们提供了―数形结合‖的知识平台.5.在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题.用好数形结合的方法,能起到事半功倍的效果,―数形结合千般好,数形分离万事休‖.二、典例分析例1.(07全国II) 在某项测量中,测量结果服从正态分布.若在内取值的概率为0.4,则在内取值的概率为.解:在某项测量中,测量结果服从正态分布N(1,2)(>0),正态分布图象的对称轴为x=1,在(0,1)内取值的概率为0.4,可知,随机变量ξ在(1,2)内取值的概率与在(0,1)内取值的概率相同,也为0.4,这样随机变量ξ在(0,2)内取值的概率为0.8.例2.(2007湖南)函数的图象和函数的图象的交点个数是()A.4B.3C.2D.1解:由图像易知交点共有3个.选B.例3.A. 1个B. 2个C. 3个D. 1个或2个或3个解:出两个函数图象,易知两图象只有两个交点,故方程有2个实根,选(B).例4.曲线y=1+(-2≤x≤2)与直线y=r(x-2)+4有两个交点时,实数r的取值范围___________.解析:方程y=1+的曲线为半圆,y=r(x-2)+4为过(2,4)的直线.答案:(]例5.分析:.例6.求函数的最大值.解:由定义知1-x2≥0且2+x≠0,∴-1≤x≤1,故可设x=cosθ,θ∈[0,π],则有可看作是动点M(cosθ,sinθ)(θ∈[0,π])与定点A(-2,0)连线的斜率,而动点M的轨迹方程,θ∈[0,π],即x2+y2=1(y∈[0,1])是半圆.设切线为AT,T为切点,|OT|=1,|OA|=2.≤.∴,∴0≤kAM即函数的值域为[0,],故最大值为.点评:(1)有些代数式经变形后具备特定的几何意义,此时可考虑运用数形结合求解,如:比值——可考虑与斜率联系;根式——可考虑与距离联系;二元一次式——可考虑与直线的截距相联系.(2)本题也可如下转化:令Y=,X=2+x,则(X+2)2+Y2=1(Y≥0),求的最大值,即求半圆(X-1)2+Y2=1(Y≥0)上的点与原点连线斜率的最大值,易知.变式1解法一(代数法):,....解法二(几何法):........变式2分析:转化出一元二次函数求最值;倘若对式子平方处理,将会把问题复杂化,因此该题用常规解法显得比较困难,考虑到式中有两个根号,故可采用两步换元.解:.第一象限的部分(包括端点)有公共点,(如图).相切于第一象限时,u取最大值....例7.已知A(1,1)为椭圆=1内一点,F1为椭圆左焦点,P为椭圆上一动点.则|PF1|+|PA|的最大值为__________,最小值为_____________。
数形结合百般好——数形结合思想在解题中的应用

用 计 算 的方 法 , 要 解 决 的 形 的 问 题 转 化 为 对 数 量 关 系 的 把
标 系 这一 舞 台来 进 行 着 数 与 形 最 完 美 的结 合 .
例 2 已 知 一 次 函 数 Y=h +b的 图 像 经 过 (一1 m) 。 , ( 1 两 点 , m >1 则 , 满 足 的 条 件 是 ( m。 ) 且 , 6应
读 题 一 边 用 图示 或 图 表 来 直 观 地 表 示 其 中 的 量 , 可 方 便 就
地 发 现 等 量 关 系 , 而解 决 问题 . 从
4 .利 用 几 何 定 理 、 型 来 反 映 数 量 关 系 模
。
是 指 把 代 数 的 精 确 刻 画 与 几 何 的 形 象 直 观 相 统 一 , 抽 象 将 思 维 与 形 象 直 观 相 结 合 的 一 种 思 想 方 法 . 学 家 华 罗 庚 教 数
三角 形 的三边 关 系 , 口+ C的 最小 值 就 是线 段 B P P C的 长. 长 延 B , c 作 c 上 B , AB C 中 , c = B c 2= A过 E E 在 E B E + E
:
、
用 形 来 反 映 数 量 关 系
1 .数
轴
数 轴 是初 中数 学 教 材 中 数 形 结 合 的 第 一 个 实 例 , 充 它 分发 挥 了数 的准 确 、 的 直 观. 的 建 立 , 仅 使 直 线 上 的 形 它 不 点 与 实数 间建 立 了 一 一 对 应 关 系 , 揭 示 了数 形 之 间 的 内 还 在联 系 , 实 数 的 许 多 性 质 可 由数 轴 上 相 应 点 的 位 置 关 系 使 得 到形 象 生 动 的说 明 , 为 以 后 学 习 相 反 数 、 对 值 、 理 也 绝 有
数形结合思想在解题中的应用

数形结合思想在解题中的应用2012年秋季学期,广西将进入高中新课程改革,新课程理念逐渐深入人心;学习新理念,转变旧观念正成为高中教师重要的课题.数学课程改革的重心是发展学生的广泛的数学能力,注重数学思想、方法的教学渗透,培养学生形成良好的数学素质.数形结合是高中数学中重要的思想方法,通过数形结合可沟通数与形的内在联系,把代数语言的精确刻画与几何图形的直观描述有机地结合起来,使复杂问题简单化,抽象问题具体化,能使高中数学中许多复杂问题迎刃而解,收到事半功倍的效果.【例1】解不等式x+2>x.解法一:原不等式可化为x≥0x+2≥0x+2≥x2或x<0x+2≥0,解得0≤x<2或-2≤x<0,∴原不等式的解集为{x|-2≤x<2}.解法二:设y1=x+2,y2=x,在同一坐标系中作出这两个函数的图象(如图1),则不等式x+2>x的解就是y1=x+2的图象在y2=x的上方的那一段对应的横坐标,即不等式的解集为{x|xa≤x<xb},其中xa=-2,解方程x+2=x得xb=2.∴原不等式的解集为{x|-2≤x<2}.评析:比较上述两种解法,可以看到用图形直观地反映数量关系,解决问题简洁明了.【例2】设f(x)=x2-2ax+2-a,当x∈[-1,+∞]时,f(x)>a恒成立,求实数a的取值范围.解法一:f(x)>a在x∈[-1,+∞)上恒成立等价于x2-2ax+2-a >0在x∈[-1,+∞)上恒成立.设函数g(x)=x2-2ax+2-a,其图象在x∈[-1,+∞)时位于x轴上方有两种情况(如图2、图3所示).(1)δ=4a2-4(2-a)<0,解得-2<a<1;(2)δ=4a2-(2-a)≥0a<-1g(-1)=a+3>0,解得-3<a≤-2.故实数a的取值范围是(-3,1).解法二:由f(x)>a得x2+2>a(2x+1),设h(x)=x2+2,t(x)=a(2x+1),在同一坐标系中这两个函数的图象如图4所示,直线l1与抛物线相切,的对应值为1,直线l2经过点(- 12,0) 和点(-1,3),a的对应值为-3,符合题意的直线t(x)=a(2x+1)恒过点(-12,0)且位于l1与l2之间,故实数a的取值范围是(-3,1).图5【例3】已知:椭圆x29+y24=1 与抛物线y=x2+m有四个不同的交点,求实数m的取值范围.错解:在同一坐标系中作出椭圆和抛物线的图象(如图5),根据图象可得:m<-2-m<3,解得-9<m<-2.评析:图形的直观性给解决问题提供了很大的帮助,但离开了严格的数学推理,往往受图形直观错觉的影响得出错误的结论.图6正解:联立椭圆和抛物线的方程,得x29+y24 =1y=x2+m ,消去y,整理得9x4+(18m+4)x2+9m2-36=0,令t=x2,得9t2+(18m+4)t+9m2-36=0.设f(t)=9t2+(18m+4)t+9m2-36,根据题意知方程f(t)=0在(0,+∞)上有两个不相等的实数根(如图6),即得δ=(18m+4)2-36(9m2-36)>0,-18m+418 >0,f(0)=9m2-36>0解得-829<m<-2 .评析:这是一个关于图形交点的问题,求解过程却是从分析方程的根的情况入手,而在讨论方程f(t)=0在(0,+∞)上有两个不相等的实数根时,又需要利用二次函数的图象特征,这样数和形的密切结合、相互补充,使问题得到了圆满的解决.(责任编辑黄春香)。
49.数形结合思想在解题中的应用(王景超)

解析: 已 知 可 联 想 到 长 方 体 的 对 角 线 与 过 同 一 由
点的三条棱所成的角 的关 系. , , a ( 7可 以看做是长方 3
体 的一 条对 角 线 与 过 这 条 对 角 线 一 端 的 三 条 棱 所 成 的 角 . 样 通 过 构 造 长 方 体 模 型 , 使 问题 迎 刃 而解 . 这 可 构 造 如 图 5所 示 的 长 方 体 ABC - B, , D A, , C D,
求得 y 。 一万 +- 二6 ; . 一6 y 、 十棍 图3 r 已知点( , ) 二 , 满足的一 平面区域 , 罕 。 十b 的 最值 问 求 牛 . y
霎 嘿 毕1 } l l 赢 潜似 ; ! ) } ff! v , 甲' , 是 就 塑
设 艺 DAC “a 匕 B , , A, , , , , AC =召 乙 AC =y AD=a AB , =b A =( 连结 D , , C , , A, 一 C , C , ,易知 csa c s3 csy . B A, o ' ot ot + ( + =1
_丫' ,_ 。 丫 ' b+。 _ a +扩 t ana
譬鳗
N =何的关键是要能够把 “ 气‘ 有机结合起来 , 形 数‘ _ 实现 形中有 J‘
戮 瞥
成功是寻海人经过长途跋 涉后 看到 大海时的那份欣喜 。 — 贵州盘县第二 中学高三(o 班 l) 陈 刚
中 举 生 数 理 化
解 析 : F( ) ( ). ( ) 由 已知 得 F( ) 征 : 设 二 -f 二 g 二 , 二特 0 二 是 奇 函 数 ; 1F( ) ② 当 二 时 , x >0所 以 二 时 , ( ) <0 尸< ) , <。 F 二 为增 函数 ; ③ ( ) f 一3 g 一3 二0 F 一3 = ( )・ ( ) 二F( ) 3. 根 据 FC ) x 的性 质 大 致 画 出 F( ) 图 象 , 图 4 观 察 二 的 如 . 一3U 3 故选 D ( ) 0 ・ 知 不 等 式 F( ) O的 解 集 是 ( xG 一二 , ) , ,
数形结合思想在中学数学中的解题应用

数形结合思想在中学数学中的解题应用数与形是数学的两大支柱,它们是对立的,也是统一的。
数形结合,其实质是将抽象的数学语言与直观图形结合起来,使抽象思维和形象思维结合起来,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观。
教师要尽量发掘数与形的本质联系,促使学生善于运用数形结合的思想方法去分析问题、解决问题,从而提高学生的数学能力。
下面结合具体实例谈谈数形结合思想在解题中的应用:1.函数中的数形结合思想例1:已知:点(-1,y1)(-3,y2)(2,y3)在y=3x2+6x+2的图象上,则: y1、y2、y3 的大小关系为()a.y1>y2>y3b.y2>y1>y3c.y2> >y1d.y3>y2>y1分析:由y=3x2+6x+2=3(x+1)2-1画出图象1,由图象可以看出:抛物线的对称轴为直线x=-1即:x=-1时,y有最小值,故排除a、b,由图象可以看出:x=2时y3的值,比x=-3时y2的值大,故选c.例2:二次函数 y=ax2+bx+c的图象的顶点在第三象限,且不经过第四象限,则此抛物线开口向,c的取值范围,b的取值范围,b2-4ac的取值范围。
解:由题意画出图象,如图:从而判断:a>0,c≥0∴对称轴:x=- 0图象与x轴有两个交点:∴△>0即b2-4ac>0例3:如图3,已知二次函数y=ax2+bx+c(a≠0)的图象过点c (0,),与x轴交于两点a(x1,0)、b(x2,0)(x2>x1),且x1+x2=4,x1x2=-5.求(1)a、b两点的坐标;(2)求二次函数的解析式和顶点p的坐标;(3)若一次函数y=kx+m的图象的顶点p,把△pab分成两个部分,其中一部分的面积不大于△pab面积的,求m的取值范围。
解:(1)∵x1+x2=4x1·x2=-5且x1<x2∴x1=5,x2=-1.∴a、b两点的坐标是a(5,0),b(-1,0)(2)由a(5,0),b(-1,0),c(0,),求得y=- (x-2)2+3.∴顶点p的坐标为(2,3);(3)由图象可知,当直线过点p(2,3)且过点m(1,0)或n (3,0)时,就把△pab分成两部分,其中一个三角形的面积是△pab的面积的 .①过n(3,0),p(2,3)的一次函数解析式为y=-3x+9;过点a(5,0),p(2,3)的一次函数解析式为y=-x+5.又一次函数y=kx+m,当x=0时,y=m,此一次函数图象与y轴的交点的纵坐标为m,观察图形变化,可得m的取值范围是5<m≤9.②过b(-1,0),p(2,3)的一次函数解析式为y=x+1;过点m (1,0),p(2,3)一次函数解析式为y=3x-3,观察图形变化,得m的取值范围是-3≤m<1.∴m的取值范围是-3≤m<1或5<m≤9.2.求最值问题:例.已知正实数x,求y= + 的最小值.分析:可以把 + 整理为 + ,即看作是坐标系中一动点(x,0)到两点(0,2)和(2,1)的距离之和,于是本问题转化为求最短距离问题.解:y= + ,令p=(x,0)、a(0,2)和b(2,1),则y=pa+pb.作b点关于x轴的对称点b’(2,-1),则y的最小值为ab’= = .3.利用方程解决几何问题例:本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取a、b、c三根木柱,使得a、b之间的距离与a、c之间的距离相等,并测得bc长为240米,a到bc的距离为5米,如图1所示.请你帮他们求出滴水湖的半径.[解析]如图2,设圆心为点o,连结ob、oa,oa交线段bc于点d.因为ab=ac,所以ab= bc,∴oa⊥bc,且bd=dc= bc=120.由题意,知da=5.设ob=x米.在rt△bdo中,因为ob2=od2+bd2,所以x2=(x-5)2+120.得x=1442.5 .所以,滴水湖的半径为1442.5米.数形结合思想在对于培养和发展学生的空间观念和数感方面有很大的启发作用,利用数形结合思想进行解题可以使的有些复杂问题简单化,抽象问题具体化。
数形结合思想在解题中的应用

数形结合思想在解题中的应用(一)教学目标:1.利用图形来处理方程及函数问题和不等式问题,求函数的值域,最值等问题时能运用数形结合思想,避免复杂的计算与推理,在解题时能提高效率。
2.增养学生问题转化的意识。
重点:“以形助数”,培养学生在解题过程中运用数形结合的意识。
难点:问题的转化。
利用多媒体形象地展示图形在解题中的应用,克服解题中的困难.数形结合作为一种重要的数学思想,历年来一直是高考考查的重点之一.这种思想体现在解题中,就是指在处理数学问题时,能够将抽象的数学语言与直观的几何图象有机结合起来思索,促使抽象思维和形象思维的和谐复合,通过对规范图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到简捷解决.本节课着重研究在函数与不等式问题中,在求函数的值域、最值问题时,运用数形结合的思想,使某些问题直观化、生动化、能够变抽象思维为形象思维,达到发现解题途径,避免复杂的计算和推理,简化解题过程的目的。
一、基础训练:1.方程lgx = sinx 的实根的个数为 [ ] A. 1个 B. 2个 C. 3个D. 4个解:画出y = lgx 和y = sinx 在同一坐标系中的图象,两图象有3个交点,选C.2.函数y = a |x|与y = x + a 的图象恰有两个公共点,则实数a 的取值范围是[ ] A .(1,+∞)B .(- 1,1)C .(- ∞,- 1]∪[1,+∞)D .(- ∞,- 1)∪(1,+∞)解:画出y = a |x|与y = x + a 的图象,两图象有两个交点的情形如下:情形1:⎩⎨⎧a > 0a > 1 => a > 1 情形2:⎩⎨⎧a < 0a < - 1 => a < - 1 选D3.不等式x + 2 > x 的解集是______________. 解法一:(常规解法)教师:杨如钢2007-4-23原不等式等价于(Ⅰ)⎩⎪⎨⎪⎧x ≥ 0x + 2≥0x + 2 > x2,或(Ⅱ)⎩⎨⎧x < 0x + 2≥0,解(Ⅰ)得0≤x < 2;解(Ⅱ)得- 2≤x < 0.综上可知,原不等式的解集为{x|- 2≤x < 0}∪{x|0≤x < 2}= {x|- 2≤x < 2} 解法二:(数形结合解法) 令y 1 = x + 2,y 2 = x ,则不等式x + 2 > x 的解就对应于:函数y 1 = x + 2的图象在y 2 = x 上方的图象的部分在x 轴上的射影.如图,不等式的解集为{x|x A < x < x B },由x + 2 = x 得x B = 2,而x A = - 2,∴不等式的解集是{x| - 2≤x < 2}.变题:不等式x + 2 > kx 的解集为M ,且M ⊆{x| - 2≤x < 2},则k ∈____________. 答案:[1,+∞)4.函数y = sinx + 2cosx - 2的值域为_______________.解法一:(代数法)由y =sinx + 2cosx - 2得ycosx – 2y = sinx + 2,∴sinx – ycosx = - 2y – 2,∴y 2 + 1sin(x + φ) = - 2y – 2, ∴sin(x + φ) = - 2y – 2y 2 + 1,而|sin(x + φ)|≤1, ∴|- 2y – 2y 2 + 1|≤1,解不等式得- 4 - 73≤y ≤- 4 + 73,∴函数的值域为[- 4 - 73,- 4 + 73].解法二(几何法):y = sinx + 2cosx - 2的形式类似于斜率公式k = y 2 - y 1x 2 - x 1,∴y =sinx + 2cosx - 2表示过两点P 0(2,- 2)及P(cosx ,sinx)的直线的斜率,由于点P 在单位圆x 2 + y 2 = 1上(如图),显然A P k 0≤y ≤B p k 0,设过P 0的圆的切线方程为y + 2 = k(x – 2), 则有|2k + 2|k 2 + 1= 1,解得k = - 4±73,即A P k 0=- 4 - 73,B p k 0= - 4 + 73∴- 4 - 73≤y ≤- 4 + 73,∴函数的值域为[- 4 - 73,- 4 + 73]5.过圆M :(x -1)2+(y -1)2=1外一点P 向此圆作两条切线,当这两切线互相垂直时,动点P 的轨迹方程是_____________.解:如图,设切点为A 、B ,连结MA 、MB 、PM ,则MA ⊥AP ,MB ⊥PB ,又AP ⊥PB ,且|PA|=|PB|,那么MBPA 是正方形,从而|PM| = 2|MA| = 2.设动点P(x ,y),则(x -1)2+(y-1)2=2,这就是所求的轨迹方程. 二、例题:例1.若关于x 的方程x 2 + 2kx + 3k = 0的两根都在-1和3之间,求k 的取值范围. 解:解法一:令f (x) = x 2 + 2kx + 3k ,其图象与x 轴交点的横坐标就是方程f (x) = 0的解,由y = f(x)的图象可知,要使两根都在-1和3之间,只需⎩⎨⎧f (-1) > 0f (3) > 0- 1 < - k < 34k 2- 12k ≥0,∴k ∈(- 1,0].解法二:设函数f (x) = x 2,g(x) = -2k(x +32),问题转化为两函数图象的两个交点的横坐标必须在- 1和3之间.画出两函数图象(如图),而PA 、PB 的斜率相等,都是2,∴0≤- 2k < 2,即k ∈(- 1,0] 例2.定圆C :(x – 3) 2 + (y – 3) 2 = (52) 2上有动点P ,它关于定点A(7,0)的对称点为Q ,点P 绕圆心C 依逆时针方向旋转120°后到达点R ,求线段RQ 长度的最大值和最小值.[分析]本题一般解法是,设点P(3 + 52cosα,2 + 52sinα),然后求出点Q 、R 的坐标,最后用两点间距离公式,求出|RQ|的最值.但这种解法运算量较大,还易出错.观察图,在△PRQ 中,欲求|RQ|,因A 是PQ 的中点,易想起三角形的中位线. 解: 取PR 的中点B ,连结BA ,则|RQ|=2|AB|.又B 是弦RP 的中点,连CB ,则CB ⊥RP ,∠BCP = 12∠PCR = 60°,∴|BC| = 12|CP| = 54.∴点B 的轨迹是以C 为圆心,54为半径的圆.这时求|QR|的最值,转化为求点A 与所作圆上点的距离的最值.过C 、A 作直线,交所作圆于B 1、B 2两点,则由平面几何知,|AB|的最大值为|AB 2| = |AC| + |CB 2| = (7 - 3) 2 + (0 - 3) 2 + 54 = 254,|AB|的最小值为|AB 1| =|AC| - |CB 1| = 5 - 54 = 154.故|QR|的最大值、最小值分别是252和152.例3. 求函数u = 2t + 4 + 6 - t 的最值.[分析]由于等式右端根号内同为t 的一次式,故作简单换元,设2t + 4 = m ,无法转化为一元二次函数求最值;倘若对式子平方处理,将会把问题复杂化,因此该题用常规解法显得比较困难,考虑到式中有两个根号,故可采用两步换元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数形结合思想在解题中的应用数形结合思想在解题中的应用摘要数学是研究现实世界的空间形式和数量关系的学科,数和形是数学研究的两个重要方面,在研究过程中,一方面,许多数量关系的抽象概念和解析式,若赋予几何意义,往往变得非常的直观形象,另一方面,一些图形的属性又可以通过数量关系的研究使得图形的性质更丰富、更精确、更深刻,这种“数”与“形”的信息转换,相互渗透,不仅可以使一些题目的解决简捷明快,同时还可以大大开拓我们的解题思路,为研究和探求数学问题开辟了一条重要的途径。
数形结合包含“以形助数”和“以数助形”两个方面,在高中阶段用的较多的是以形助数。
数量关系如果能有效地结合图形,往往会使抽象问题直观化,复杂问题简单化,巧妙地应用数形结合的思想方法来处理一些抽象的数学问题,可起到事半功倍的效果,达到优化解题途径的目的,在选择题,填空题中,数形结合更能显示出其简捷的优越性。
关键词:数形结合思想方法应用解题第一章绪论数学是研究现实世界中空间形式与数量关系的一门学科,故数学的研究是围绕数和形展开的,而数形结合的实质在于数量关系决定着几何图形属性,几何图形的属性反映着数量关系[1]。
在现代数学研究中,数形结合既是一种常用的数学方法又是一种数学思想。
由此可见,在高中阶段,掌握并熟练运用这一思想是十分必要的。
本文针对数形结合思想的形成和演进,数形结合思想解题能力的培养,以及在高中数学解题中的应用范围和数形结合思想在解题中的实际应用做了浅显成述。
第二章数形结合思想的概述和历史演进2.1数形结合思想的概述数学的两个最古老、最普遍的研究对象是数、形,在某些条件的作用下,两者可以相互转化。
中学数学研究的对象可以分为数和形两大部分,数与形的联系则称作数形结合,它包含“以形助数”和“以数助形”两个方面[1]。
以形助数,即借助形的直观性来阐明数之间的关系;以数助形,即借助数的精确性来阐明形的某些属性。
2.2数形结合思想的历史演进随着时间的推移,数学得到了不断的拓展和充实,数学中最原始的研究对象数与形也在不断地变化,从最初因需要而产生数到欧几里德撰写的《几何原本》,再到从笛卡尔创立平面直角坐标系到近、现代数学研究,数形结合一直伴随其行。
在古希腊数学时期,毕达哥斯拉学派在研究数学时,就借助形来归纳数的性质,这便是早期的“数”与“形”结合的体现。
数轴的建立使人类对数与形的统一有了初步的认识,把实数与数轴上的点一一对应起来,数可视为点,点可当作数,点在直线上的位置关系可以数量化,而数的运算可以几何化。
1637年,笛卡尔在其《几何学》中,首次提出了点的坐标和变数的思想,并借助坐标系用含有数的代数方程来表示和研究曲线[2]。
笛卡尔把数轴(一维)扩展到平面直角坐标系,把有序数对)P与平面上的点x,(y一一对应起来,从而使得平面曲线的点集与二元方程组的解集一一对应起来。
于是就可以用代数方法来研究几何图形的性质,把几何研究转换成对应的代数的研究。
第三章 浅谈数形结合思想解题能力的培养“数”和“形”两者是紧密联系的。
我们在研究“数”的时候,往往要借助于“形”,而在探讨形”的性质时,又离不开“数”的支撑。
现阶段使用的教材,“代数”与“几何”融和为一门数学学科,更体现了“数”与“形”的结合,因此教师在教学中要做好“数”与“形”关系的揭示与转化,运用数形结合的方法,帮助学生类比、发掘,剖析其所具有的几何模型,这对于帮助学生深化思维,扩展知识,提高能力都有很大的帮助。
在教学过程中教师应有目的、有计划地进行数形结合思想的教学,使学生逐步有数形结合思想这一思想理念,并使之成为解决数学问题的工具。
3.1在教学过程中适时渗透数形结合思想在教学过程中要尽量摆脱对代数问题的抽象讨论。
更多地把代数里的东西用图形表示出来。
如相反数、绝对值的几何解释,乘法公式的面积法的验证等等,将较难、抽象的概念、定理具体化。
在几何图形的一些基本性质的教学时,多让学生动手量一量,自己发现图形中的数量关系,对一些特殊的几何图形,还可以赋值研究。
3.2通过典型例题的分析讲解突出数形结合思想的指导在教学过程中通过对例题的实际讲解,凸显出数形结合的优越性,使学生将这一思想由一种方法提升为一种系统的解题理论。
例1.二次函数c bx ax x f ++=2)(的图象大致如图1所示,试确定a 、b 、c 与a acb 42-的符号。
二次函数c bx ax x f ++=2)((a ≠0)中的a 、b 、c 决定函数的形状和位置,判别式∆的符号把抛物线与x 轴的位置关系和一元二次方程的根联系在一起,体现了数形结合的思想。
图1第四章数形结合思想的应用范围数形结合思想方法是数学教学内容的主线之一,在高中数学中,应用数形结合的思想,可以解决诸多的问题:4.1集合问题在集合运算中借助与数轴、维恩图来处理集合的交集、并集、补集等运算,从而是问题简单,运算快捷。
4.2函数问题借助图形研究函数的性质、最值等问题。
4.3方程与不等式问题处理方程时,把方程的问题看做两函数图形的交点问题;处理不等式时,从所给条件和结论出发,联系相关函数,着重分析其几何意义,从图形中找解题思路。
4.4三角函数问题三角函数的单调区间的确定,比较三角函数值的大小等问题,都借助于单位圆或三角函数体现来处理,数形结合思想是处理三角函数问题的有效的方法。
4.5数列问题数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看做是一个关于正整数n的函数。
用数形结合的思想解决数列问题是借助函数的图形进行直观的分析,从而把数列的有关问题转化为函数问题,从而进行解决。
4.6立体几何问题立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。
第五章 数形结合思想解题的实际应用5.1集合中的数形结合在集合问题中,对一些较抽象的问题,在解决时若借助数轴、维恩图或者图像等数形结合的思想方法,可以使问题直观化、形象化,从而快捷、准确地获得结论。
例2. 集合}065|{2≤+-=x x x M }31|{≤≤=x x N 则=N M I解析:通过解不等式可知,M 可以表示成}32|{≤≤=x x M ,此时在数轴上作出M 和N ,结果一目了然。
x023图25.2方程与函数中的数形结合函数的图形是函数关系的直观表现形式之一,他用“形”来刻画函数的变化规律[3]。
函数图象形象地显示了函数的性质,为研究数量关系提供了“形”的直观性,函数的图象和解析式是函数关系的主要表现形式,在解决函数问题时两者经常要相互转化,针对繁琐的问题时要充分发挥图象的直观作用,如求解函数的值域时。
可以针对某些代数式赋一定的几何意义[2]。
如求直线的斜率、线段的长度(两点间的距离)等,把求最值问题转化为几何问题,实现数形的转换。
方程)()(x g x f =的解的个数可以转化为函数)(x f y =与)(x g y =的图形的交点个数问题。
对求不等式)()(x g x f >的解集可以转化为函数)(x f y =的图形与函数)(x g y =的图形上方的那部分点的横坐标的集合[3]。
例3. 在平面直角坐标系中,求函数)2sin(π+=xy 0[⊂x ,]2π的图形与直线21=y 的交点个数。
解析: 在直角坐标系中作出函数)2sin(π+=x y 0[⊂x ,]2π与21=y 的图象,结果显而易见。
5.3数列中的数形结合在数列问题中,一些量可以当做以n 为变量的函数。
通常等差数列的通项n a 可以看成自然数n 的“一次函数”前n 项和n s 可以看成自然数n 的“二次函数”,等比数列的通项n a 可以看成n 的“指数函数”。
因此在解决数列问题时可借助相应的函数图象来解决。
例4.数列}{n a 是等差数列,j a i =,i a j = 则=+j i a a解析:假设j i<,m a a j i =+,在等差数列中,n a 关于n 的图象是一条直线上均匀排列的一群孤立的点,故三点),(j i A ,),,(i j B ),(m j i C + 共线,则BC AB k k =,即iim i j j i -=--,解得,0=m 即0=+j i a axm )图35.4不等式与极值中的数形结合对于不等式(不等式组)的求解和求代数极值的问题,都存在着图形背景,借助图形的直观性解题是寻求解题思路的一种重要方法,通过图形给问题以几何的描述,从数形结合中找出问题的逻辑关系,是问题迎刃而解。
例5. 不等式x x x >+-542的解集为解析:令54)(2+-=x x x f ,x x g =)(,在同一坐标系中作出)(),(x g x f 的图象如图4,令)()(x g x f =,即x x x =+-542,可求得45=x ,由图象可以看出不等式的解集为[-1,45]xy图4例 6. 求函数均为正实数)的最小值p n m p x n m x x f ,,()()(2222+-++=的最值。
解析:构造一长方体(如图5)1AC ,m D A n AA p AB ===111,,,M 为棱1AA 上的任意一点,且设,1x M A= 则,x n AM -= 于是在∆Rt 11D MA 中,22212111x m M A D A M D +=+=。
在∆Rt BAM 中,2222)(x n p AM AB BM -+=+=可见.)()(12222BM M D p x n m x x f +=+-++=)(x f 取得最小值,从长方体的侧面展开图可以看出,当且仅当1D 、M 、B 三点共线时,)(x f 有最小值,此时由几何关系不难求出nm mnx +=,故当n m mnx +=时,)(x f 有最小值。
即22222min )()()()(p n m p pm mn n p m mn x f ++=++-++=1MBDD AA图5第六章结论数形结合思想方法贯穿整个中学数学,它既是一种解题方法,又是一种数学思想,数形结合思想方法能够变抽象思维为形象思维,有助有在解题的过程当中把握问题的本质,其实质就是“数中思形,以形助数”,数与形之间的相互转化,它能使很多代数问题化繁为简,使我们能快速准确的获得结果。
因此对数形结合思想的掌握与运用,对于中学学生来说是有必要的。