数形结合思想在解题中应用
数形结合思想在高考解题中的应用

数形结合思想在高考解题中的应用数形结合不仅是一种重要的解题方法,也是一种的思维方法。
它在中学数学教学中占有重要的地位,也是历年高考重点考察的内容之一。
在运用数形结合解题时要注意以下两点:(1)“形”中觅“数”:根据形的直观性来寻求数量关系,将几何问题代数化,以数助形,使问题得到解决;(2)“数”中构“形”:根据代数问题具有的几何特征,进而发现数与形之间的关系,从而使代数问题几何化,使问题得到解决。
下面通过一些典型例题来说明数形结合思想在解题中的运用。
题型一、集合问题例1.已知集合A={}{}|23,|14x x B x x x -≤≤=<->或,则集合A B = ____________________.解析:利用数轴表示,可得{}|21A B x x =-≤<-评注:本题考查集合的基本运算,属容易题。
题型二、函数问题 例2.点P (x,y )在直线430x y +=上,且x,y 满足147x y -≤-≤,则P 到坐标原点距离的取值范围是__________________.解析:如图,直线430x y +=分别与直线14,7x y x y -=--=的交点为12(6,8),(3,4)P P --易知12||10,||5OP OP ==,故||OP 的取值范围为[]0,10评注:考查两点间的距离公式及分析、解决问题的能力。
注意虽然12||10,||5OP OP ==,但||OP 的取值范围不是[]5,10。
题型三、三角问题例3函数()2)f x x π=≤≤的值域是_______________. 解析:原式可化为y ==1)x ≠ 由数形结合思想得1cos 1sin x x-+可理解为动点(sin ,cos )x x 与定点(1,1)连线斜率的取值范围,。
可求取值范围是[]0,+∞,由此可求得1)x ≠的值域为[1,0)-,当sin 1x =时,()0f x =,所以值域是[]1,0-。
数形结合思想方法在数学解题教学中应用

数形结合的思想方法在数学解题教学中的应用摘要:数形结合作为重要的数学思想方法,在数学解题中起着举足轻重的作用。
本文介绍了数形结合的思想方法在函数、几何、方程与不等式、数列、集合等方面的应用,为进一步提高学生的解题能力抛砖引玉。
关键词:数形结合思想方法解题1、问题的提出数学问题的解决是数学教学中的一个重要部分,尤其是解题能力的培养,成为数学教学中不可缺少的一部分。
解决数学问题的方法有很多,其中数形结合的思想方法是中学数学教学中常用的一种解题方法,教师更应该很好的掌握和研究这一思想方法,为培养学生的解题能力打下坚实的基础。
中学数学研究的对象可分为两大部分,一部分是数,一部分是形。
如何将数与形有机的结合起来,是学好数学的关键。
数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质等;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质等。
数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关系的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到完美的解答。
2、数形结合解题教学中应注意的几个方面在运用数形结合的思想方法分析和解决问题时,藏汉双语数学教师要注意以下五点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数联想其形,以形建立数之间的关系式,做好数形转化;第三是正确确定参数的取值范围,切忌忽视隐含条件;第四要挖掘数学概念的内涵和外延,防止发生扩大内涵、缩小外延或缩小内涵、扩大外延的错误;第五要注意代数性质与几何性质的转换应该是等价的,否则会出现漏洞。
浅谈“数形结合”思想在数学解题中的应用

浅谈“数形结合”思想在数学解题中的应用——从2003年全国数学高考题看数学解题中的“数形结合”思想数学是研究现实世界的空间形式和数学关系的一门学科。
数学思想是现实世界的空间形式和数量关系反映到人的意识之中,经过思维而产生的结果,是对数学事实与理论的本质认识。
数学思想是数学学科的精髓,是素质教育的要求,是数学素养的重要内容,是获取知识、发展思维能力的重要工具,同时也是数学解题中的良方。
“数”和“形”是数学研究的两个基本的对象。
是在数学解题中,通过建立坐标系,使数和形互相渗透,互相转化,以“数解形”与以“形助数”的思想方法得到极佳的效果,寻求解题中的技巧和捷径。
这就是数学思维中所谓的“数形结合”思想。
“数形结合”思想是高中数学众多数学思想中最重要的,也是最基本的思想之一,它在高中数学中有着广泛的应用,是解决许多数学问题的有效思想。
数和形是数学研究客观物体的两个方面,数侧重研究物体数量方面,具有精确性;形侧重研究物体形的方面,具有直观性。
数和形互相联系,可用数来反映空间形式,也可用形来说明数量关系,“数形结合”就是将两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题。
以“数解形”是从特殊到一般,从直观到抽象的发展过程,以“形助数”是利用图形的直观帮助探求解题思路。
通过已知条件和探求目标联想甚至是构造出一个恰当的图形,可利用图形探索解题思路,甚至有时能估计出结果。
历年来,数学高考中都十分重视考查学生对数形结合思想的运用。
2003年数学高考试题中对运用这种方法的考查体现得十分突出。
如试题中第1题、第2题、第3题、第5题、第6题、第8题、第11题、第12题、第15题、第16题、第17题、第18题、第19题、第20题、第21题等,都可以借助这种思想方法求解,在整个试题中占分值达108分。
可见必须充分重视“数形结合”方法的运用。
一、“数形结合”思想在函数解题中的应用函数是高中数学的重要内容之一,通过坐标系把“数”和“形”结合起来,利用函数图像研究函数的性质,由函数的解析式画出其几何图形,由此相互依托,可以解决许多问题。
数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用数形结合思想是指在解决数学问题时,通过将数学概念与几何图形相互结合,相互转化和应用的思考方法。
在初中数学的教学中,数形结合思想被广泛地应用。
本文将从初中数学的各个章节对其应用进行探讨。
1. 直线与圆在初中数学的直线与圆章节中,学生需要掌握直线与圆之间的基本关系,如切线、割线等,并学习如何运用这些关系解决问题。
数形结合思想在这一章节的应用体现在,通过将直线与圆相互结合,将抽象的数学概念转化为具体的几何图形,从而帮助学生更好地理解题意和解决问题。
例如,解决“过圆O外一点P作切线,过点P作另一条直线割圆于A、B两点,连接OP 并延长交圆于C点,求证:∠OAC=∠OBC”的问题时,我们可以通过画图,在圆上标出切线和割线,将几何图形与数学概念相互联系来解决问题。
2. 三角函数在初中数学的三角函数章节中,学生需要学习正弦、余弦、正切等三角函数的基本概念和运用。
例如,在解决“证明:sin2A+cos2A=1”的问题时,我们可以画出一个以A为顶点的直角三角形,将正弦、余弦与三角形的边相互对应,从而帮助学生理解三角函数的定义和性质。
3. 平面向量例如,在解决“ABCD为平行四边形,设向量AB=a,向量AD=b,求向量AC的坐标表示”的问题时,我们可以画出平行四边形ABCD的几何图形,并通过图形将向量的定义和运算法则转化为数学表示式。
4. 二次函数例如,在解决“已知二次函数y=x²+px+q的图像过点(1,3),且在x轴上的零点为-2和3,求p、q”的问题时,我们可以通过画出二次函数的图像,并通过图像求出零点和顶点,进而求出p、q的值。
结语数形结合思想在初中数学的教学中具有重要的应用价值,可以帮助学生更好地理解数学知识,提高解题能力和思维能力。
教师在教学中应该注重将数学概念与几何图形相互联系,设计具体、形象的教学案例,引导学生积极思考、用图解题,从而达到提高教学质量和学生学习水平的目的。
数形结合思想方法在高中数学教学与解题中的应用

数形结合思想方法在高中数学教学与解题中的应用1. 引言1.1 概述数形结合思想方法是一种通过将数学与几何图形相结合的方式来解决数学问题的方法。
在高中数学教学与解题中,数形结合思想方法被广泛运用,对学生的数学思维能力和解题能力有着显著的提升作用。
本文将从理论基础、教学应用、解题实际操作、优势局限性和案例分析等方面对数形结合思想方法进行详细介绍和分析,旨在探讨这种方法在高中数学教学和解题中的实际应用效果及其潜在局限性。
通过对数形结合思想方法的深入研究,可以为未来数学教学和研究提供新的思路和方法,促进学生对数学的深入理解和应用能力的提高。
【概述】1.2 研究背景随着科技的不断发展和社会的快速进步,教育也在不断改革和创新。
高中数学作为学生必修科目之一,承担着培养学生逻辑思维能力和数学素养的重要使命。
在传统的数学教学中,很多学生常常感到枯燥和无趣,难以理解和掌握抽象的概念和定理。
有必要寻找一种更加生动、直观且实用的教学方法来激发学生学习数学的兴趣和动力。
1.3 研究意义数范围等。
【研究意义】内容如下:研究数形结合思想方法在高中数学教学与解题中的应用具有重要的实际意义。
数学教学是培养学生逻辑思维能力和问题解决能力的重要途径,而数形结合思想方法能够帮助学生更好地理解数学知识,提高他们的数学学习兴趣和学习效果。
数形结合思想方法在解题中的应用能够帮助学生更加深入地理解问题的本质,提高他们的问题解决能力和创新思维水平。
研究数形结合思想方法的优势和局限性,有助于教师更好地指导学生应用该方法解决问题,并且能够帮助教育部门和相关机构调整和改进数学教学计划,推动数学教育的发展和进步。
深入研究数形结合思想方法在高中数学教学与解题中的应用,对于提高我国数学教育质量,培养优秀数学人才,具有重要的现实意义和战略意义。
2. 正文2.1 数形结合思想方法的理论基础数,具体格式等。
数形结合思想方法的理论基础主要包括几何与代数的融合和数学建模的理论支持。
数形结合思想在初中数学中的解题应用

数形结合思想在初中数学中的解题应用初中数学是学生转变学习方式的重要阶段,其中数形结合思想在解题过程中发挥着重要的作用。
数形结合思想是指通过几何形状和图形来解决数学问题,它能够帮助学生更好地理解抽象的数学概念,提高解题的效率和准确性。
本文将探讨数形结合思想在初中数学中的具体应用。
一、面积与周长的关系数形结合思想常常被用来解决与面积和周长相关的问题。
例如,给定一个矩形的周长为24厘米,问它的面积最大是多少?通过数形结合思想,我们可以设矩形的长为x厘米,宽为(24-x)/2厘米,然后利用矩形的面积公式(长乘以宽)求解。
这个例子清晰地展示了数形结合思想在解决面积和周长问题时的运用。
二、图形的相似性质数形结合思想还可以帮助我们研究图形的相似性质。
例如,两个三角形的高相等,我们能否得出它们的底的比例相等?通过数形结合思想,我们可以构建出两个相似的三角形,然后根据相似三角形的性质得出结论。
这个例子展示了数形结合思想在研究图形相似性质时的应用。
三、立体图形的体积计算除了平面图形,数形结合思想也可用于解决立体图形的体积计算问题。
例如,给定一个长方体的体积为216立方厘米,问其边长是多少?通过数形结合思想,我们可以设长方体的边长为x厘米,然后利用长方体的体积公式(长乘以宽乘以高)求解。
这个例子展示了数形结合思想在立体图形体积计算中的运用。
四、数据的统计分析数形结合思想还可用于数据的统计分析。
例如,在一组数据中,标准差较大是否意味着数据的波动性较大?通过数形结合思想,我们可以构建出一个以数据点为顶点的折线图,然后根据折线图的形状和曲线的趋势进行统计分析。
这个例子展示了数形结合思想在数据的分析和解读中的应用。
总结起来,数形结合思想在初中数学中具有广泛的应用。
它能够帮助学生更好地理解数学概念,提高解题的效率和准确性。
通过数形结合思想,学生可以在解决面积与周长的关系、图形的相似性质、立体图形的体积计算以及数据的统计分析等方面取得更好的成绩。
数形结合思想在解题中的应用

数形结合思想在解题中的应用2012年秋季学期,广西将进入高中新课程改革,新课程理念逐渐深入人心;学习新理念,转变旧观念正成为高中教师重要的课题.数学课程改革的重心是发展学生的广泛的数学能力,注重数学思想、方法的教学渗透,培养学生形成良好的数学素质.数形结合是高中数学中重要的思想方法,通过数形结合可沟通数与形的内在联系,把代数语言的精确刻画与几何图形的直观描述有机地结合起来,使复杂问题简单化,抽象问题具体化,能使高中数学中许多复杂问题迎刃而解,收到事半功倍的效果.【例1】解不等式x+2>x.解法一:原不等式可化为x≥0x+2≥0x+2≥x2或x<0x+2≥0,解得0≤x<2或-2≤x<0,∴原不等式的解集为{x|-2≤x<2}.解法二:设y1=x+2,y2=x,在同一坐标系中作出这两个函数的图象(如图1),则不等式x+2>x的解就是y1=x+2的图象在y2=x的上方的那一段对应的横坐标,即不等式的解集为{x|xa≤x<xb},其中xa=-2,解方程x+2=x得xb=2.∴原不等式的解集为{x|-2≤x<2}.评析:比较上述两种解法,可以看到用图形直观地反映数量关系,解决问题简洁明了.【例2】设f(x)=x2-2ax+2-a,当x∈[-1,+∞]时,f(x)>a恒成立,求实数a的取值范围.解法一:f(x)>a在x∈[-1,+∞)上恒成立等价于x2-2ax+2-a >0在x∈[-1,+∞)上恒成立.设函数g(x)=x2-2ax+2-a,其图象在x∈[-1,+∞)时位于x轴上方有两种情况(如图2、图3所示).(1)δ=4a2-4(2-a)<0,解得-2<a<1;(2)δ=4a2-(2-a)≥0a<-1g(-1)=a+3>0,解得-3<a≤-2.故实数a的取值范围是(-3,1).解法二:由f(x)>a得x2+2>a(2x+1),设h(x)=x2+2,t(x)=a(2x+1),在同一坐标系中这两个函数的图象如图4所示,直线l1与抛物线相切,的对应值为1,直线l2经过点(- 12,0) 和点(-1,3),a的对应值为-3,符合题意的直线t(x)=a(2x+1)恒过点(-12,0)且位于l1与l2之间,故实数a的取值范围是(-3,1).图5【例3】已知:椭圆x29+y24=1 与抛物线y=x2+m有四个不同的交点,求实数m的取值范围.错解:在同一坐标系中作出椭圆和抛物线的图象(如图5),根据图象可得:m<-2-m<3,解得-9<m<-2.评析:图形的直观性给解决问题提供了很大的帮助,但离开了严格的数学推理,往往受图形直观错觉的影响得出错误的结论.图6正解:联立椭圆和抛物线的方程,得x29+y24 =1y=x2+m ,消去y,整理得9x4+(18m+4)x2+9m2-36=0,令t=x2,得9t2+(18m+4)t+9m2-36=0.设f(t)=9t2+(18m+4)t+9m2-36,根据题意知方程f(t)=0在(0,+∞)上有两个不相等的实数根(如图6),即得δ=(18m+4)2-36(9m2-36)>0,-18m+418 >0,f(0)=9m2-36>0解得-829<m<-2 .评析:这是一个关于图形交点的问题,求解过程却是从分析方程的根的情况入手,而在讨论方程f(t)=0在(0,+∞)上有两个不相等的实数根时,又需要利用二次函数的图象特征,这样数和形的密切结合、相互补充,使问题得到了圆满的解决.(责任编辑黄春香)。
数形结合思想在中学数学中的解题应用

数形结合思想在中学数学中的解题应用数与形是数学的两大支柱,它们是对立的,也是统一的。
数形结合,其实质是将抽象的数学语言与直观图形结合起来,使抽象思维和形象思维结合起来,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观。
教师要尽量发掘数与形的本质联系,促使学生善于运用数形结合的思想方法去分析问题、解决问题,从而提高学生的数学能力。
下面结合具体实例谈谈数形结合思想在解题中的应用:1.函数中的数形结合思想例1:已知:点(-1,y1)(-3,y2)(2,y3)在y=3x2+6x+2的图象上,则: y1、y2、y3 的大小关系为()a.y1>y2>y3b.y2>y1>y3c.y2> >y1d.y3>y2>y1分析:由y=3x2+6x+2=3(x+1)2-1画出图象1,由图象可以看出:抛物线的对称轴为直线x=-1即:x=-1时,y有最小值,故排除a、b,由图象可以看出:x=2时y3的值,比x=-3时y2的值大,故选c.例2:二次函数 y=ax2+bx+c的图象的顶点在第三象限,且不经过第四象限,则此抛物线开口向,c的取值范围,b的取值范围,b2-4ac的取值范围。
解:由题意画出图象,如图:从而判断:a>0,c≥0∴对称轴:x=- 0图象与x轴有两个交点:∴△>0即b2-4ac>0例3:如图3,已知二次函数y=ax2+bx+c(a≠0)的图象过点c (0,),与x轴交于两点a(x1,0)、b(x2,0)(x2>x1),且x1+x2=4,x1x2=-5.求(1)a、b两点的坐标;(2)求二次函数的解析式和顶点p的坐标;(3)若一次函数y=kx+m的图象的顶点p,把△pab分成两个部分,其中一部分的面积不大于△pab面积的,求m的取值范围。
解:(1)∵x1+x2=4x1·x2=-5且x1<x2∴x1=5,x2=-1.∴a、b两点的坐标是a(5,0),b(-1,0)(2)由a(5,0),b(-1,0),c(0,),求得y=- (x-2)2+3.∴顶点p的坐标为(2,3);(3)由图象可知,当直线过点p(2,3)且过点m(1,0)或n (3,0)时,就把△pab分成两部分,其中一个三角形的面积是△pab的面积的 .①过n(3,0),p(2,3)的一次函数解析式为y=-3x+9;过点a(5,0),p(2,3)的一次函数解析式为y=-x+5.又一次函数y=kx+m,当x=0时,y=m,此一次函数图象与y轴的交点的纵坐标为m,观察图形变化,可得m的取值范围是5<m≤9.②过b(-1,0),p(2,3)的一次函数解析式为y=x+1;过点m (1,0),p(2,3)一次函数解析式为y=3x-3,观察图形变化,得m的取值范围是-3≤m<1.∴m的取值范围是-3≤m<1或5<m≤9.2.求最值问题:例.已知正实数x,求y= + 的最小值.分析:可以把 + 整理为 + ,即看作是坐标系中一动点(x,0)到两点(0,2)和(2,1)的距离之和,于是本问题转化为求最短距离问题.解:y= + ,令p=(x,0)、a(0,2)和b(2,1),则y=pa+pb.作b点关于x轴的对称点b’(2,-1),则y的最小值为ab’= = .3.利用方程解决几何问题例:本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取a、b、c三根木柱,使得a、b之间的距离与a、c之间的距离相等,并测得bc长为240米,a到bc的距离为5米,如图1所示.请你帮他们求出滴水湖的半径.[解析]如图2,设圆心为点o,连结ob、oa,oa交线段bc于点d.因为ab=ac,所以ab= bc,∴oa⊥bc,且bd=dc= bc=120.由题意,知da=5.设ob=x米.在rt△bdo中,因为ob2=od2+bd2,所以x2=(x-5)2+120.得x=1442.5 .所以,滴水湖的半径为1442.5米.数形结合思想在对于培养和发展学生的空间观念和数感方面有很大的启发作用,利用数形结合思想进行解题可以使的有些复杂问题简单化,抽象问题具体化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数形结合思想在解题中的应用
摘要:数形结合思想是中学数学中最重要和最常见的数学思想方法之一,数与形是中学数学研究的两类基本对象,相互独立,又互相渗透。
尤其在坐标系建立以后数与形的结合更加紧密。
从数中去认识图形,从形中去认识数。
数缺形少直观,形少数难入微。
高中数学的一些代数问题,通过研究其几何性质,能使抽象的数量关系在图形上直观地表达出来,使问题变得简单。
关键词:数形结合数学思想解题与应用
所谓数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数式的含义又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题途径,使问题得以解决。
它包含“以形助数”和“以数辅形”两个方面。
著名数学家华罗庚先生说过“数形结合百般好,隔离分家万事休”。
高中数学的一些代数问题,通过研究其关系、性质,能使抽象的数量关系在图形上直观地表达出来,使问题变得简单。
而构造图形的关键在于敏锐的观察和合理的联想,巧用构造图形不仅可以提升学生数形互用解题的水平,而且还能培养他们不循常规、不拘常法、不落俗套的创新思维和探求精神。
纵观近几年的高考试题,巧妙地运用数形结合的思想方法解决一些抽象的数学问题可起到事半功倍的效果。
数形结合的思想方法应用是非常广泛的,在考试乃至平常的教学中常见的如解方程和解
不等式问题,求函数的值域、最值问题,求复数和三角函数问题等。
运用数形结合思想不仅直观、易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。
所以要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
下面通过几个例题的分析给予解评。
例1.某班有50名学生报名参加a、b两项比赛,参加a项的30人,参加b项的有33人,且a、b都不参加的同学比a、b都参加的同学的三分之一多一人。
问:只参加a不参加b的学生有多少?
分析:此类问题若只进行空洞的分析,很难找到我们所需的等量关系,甚至易出现多解和漏解情形。
想反,我们若能直观将各部分人数用韦恩图展示出来,问题将迎刃而解。
设两项比赛都参加的同学组成集合a∩b,并设其中有x个元素,则各部分人数分布如图所示。
由题意
知:(30-x)+(33-x)+(x/3)+1=50,∴x=21
∴30-x=9,即只参加a的不参加b的有9人。
例2.设x∈[,],求证:cosx-cotx≥-1。
分析:由、1联想等腰直角三角形,不仿构造一个等腰直角三角形来研究。
作rt△abc,令∠c=90°,ac=1,在ac上取一点d,记∠cdb=x,则bd=cosx,cd=cotx,ad=1-cotx,利用ad+db≥ab=,可得cosx-cotx ≥-1,等号仅在x=时成立。
例3.已知不等式≥x(a>0)的解集为{x m≤x≤n},且m-n,则a
的值等于
____________。
分析:令y=,y=x在同一坐标系内画出这两个函数的图象。
由解集为{x|m≤x≤n},得m=-2a,由m-n=3a,得n=a
于是得到两个图象的交点坐标为(a,a)
代入=x中,得方程=a,解得a=3
例4.已知0a.1个 b.2个
c.3个
d.1个或2个或3个
分析:方程左边是指数结构右边是对数结构,先不管加了绝对值所带来的难度,就方程形式而言没有常规的代数方法可解。
联想到数形结合,判断方程的根的个数就是判断图象的y=与y=logax交点个数,画出两个函数图象,易知两图象只有两个交点,故方程有2个实根,选b。
例5.如果实数x,y满(x-2)2+y2,=3则的最大值为()
a. b.c.d.
分析:等式(x-2)2+y2=3有明显的几何意义,它表坐标平面上的一个圆,圆心为(2,0),半径r=(如图),而=则表示圆上的点(x,y)与坐标原点(0,0)的连线的斜率,如此一来,该问题可转化为如下几何问题:动点a在以(2,0)为圆心,以为半径的圆上移动,求直线oa的斜率的最大值,由图可见,当点a在第一象限,且与圆相切时,oa的斜率最大,经简单计算,得最大值为tan60°=
例6.已知x、y满足+=1,求y-3x的最大值与最小值。
分析:对于二元函数y-3x在限定条件+=1下,求最值问题,常采用构造直线的截距的方法来求之。
令y-3x=b,原问题转化为:y=3x+b在椭圆+=1上求一点,使过该点的直线斜率为3,且在y轴上的截距最大或最小,由图形知,当直线y=3x+b与椭圆+=1相切时,有最大截距与最小截距。
y=3x+b+=1?圯169x2+96bx+16b2-400=0
由δ=0,得b=±3,故y-3x的最大值为13,最小值为-13。
例7.若集合
m=(x,y)|x=3cosθ(01),求loga(uv)的最大值和最小值。
解:令x=logau,y=logav则已知式可化为(x-1)2+(y-1)2=4(x≥0,y≥0)再设t=loga(uv)=x+y(x≥0,y≥0),由图可见,则当线段
y=-x+t(x≥0,y≥0)与圆弧(x-1)2+(y-1)2=4(x≥0,y≥0)相切时,截距t取最大值tmax=2+2(如图3中cd位置);当线段端点是圆弧端点时,t取最小值tmin=1+(如图中ab位置)。
因此loga(uv)的最大值是2+2,最小值是1+。