第二章-1分布函数

合集下载

高等数学2.2 随机变量的分布函数

高等数学2.2 随机变量的分布函数
x
x
lim [a1 F1 ( x) + a2 F2 ( x)] = a1 F1 () + a2 F2 ( )
= a1 + a2 = 1
于是 a1F1(x) + a2F2(x) 满足分布函数的所有性质, 从而 a1F1(x) + a2F2(x) 也是分布函数 .
作 业
习 题 二
F(x) =
图形如右图: 分布函数是一个阶梯函数, 在x=i (i=1,2,3,4)处发生间断, 其跳跃度恰好是 pk =P{X =k} (k =1,2,3,4)
F(x)
1 0.8 0.6 0.4 0.2
0
1
2
3
4
x
二、分布函数的性质:
1、定理2.3: 设 F(x)是任一随机变量 X 的分布函数, 则有
第二章 随机变量及其概率分布
2. 2 随机变量的分布函数
一、分布函数的概念:
1、定义2.7: 设 X 是一个随机变量, 对于任一实数 x, 定义 F(x) =P{X≤x}, 的分布函数 . 注 若 F(x) 是 X 的分布函数, 则 P{a<X≤b} = F(b)-F(a) 对(-∞, ∞) 内的任意实数 a , b (a ≤ b ) 均成立 .
-∞< x <∞, 称F(x) 为随机变量 X
例2.6某人投篮, 命中率为0.7 , 规则是: 投中或投了 4次后就停止投篮, 设X表示“此人投篮次数” , 求X 的分布函数 . 解 由题意可知X的可能值为 1, 2 , 3 , 4 , 概率分别为
P X = 1 = 0.7 ,
P X = 3 = 0.3 0.3 0.7 = 0.063 ,
注 F () = lim F ( x) , F () = lim F ( x) ;

概率论第二章习题讲解

概率论第二章习题讲解
j
( )
j
i
i
二. 二维连续随机变量的边缘分布 x +∞ F X ( x ) = F ( x , +∞ ) = ∫ dx ∫ f ( x , y )dy ∞ ∞ d +∞ f X (x ) = FX (x )= ∫ ∞ f ( x , y )dy dx y +∞ FY ( y ) = F (+ ∞ , y ) = ∫ dy ∫ f ( x , y )dx ∞ ∞ +∞ d fY ( y ) = FY ( y ) = ∫ ∞ f ( x , y )dx dy 一. 离散型随机变量的独立性 p xi , y j = pX ( xi ) pY y j 二. 连续随机变量的独立性
+∞ ∞

f (z y( x , y )dy
2. 平方和的分布
n
FZ ( z ) =
∫∫ f ( x , y )dxdy
x2 + y2 < z
n
3.(独立的随机变量) 3.(独立的随机变量)最大值与最小值的分布
Fmax ( z ) = ∏ Fi ( z ),
i =1
p 1 q[ x ] F ( x ) = P ( X ≤ x ) = ∑ pq m 1 = = 1 q [ x ] = 1 (1 p)[ x ] 1 q m =1 其中,[x]为 x 的整数部分. 其中, 为 的整数部分.
8
(
)
当 x ≥ 1 时,
4 自动生产线在调整以后出现废品的概率为 p (0<p<1), 生产过程中出现废品时立即重新调整, 生产过程中出现废品时立即重新调整 求在两次调整之间生产的合格品数的概率分布. 求在两次调整之间生产的合格品数的概率分布 设随机变量X表示自动生产线 解 设随机变量 表示自动生产线 : 在两次调整之间生产的合格品数, 在两次调整之间生产的合格品数, 的所以可能取值:0,1,2,…,n,…. 则X的所以可能取值 的所以可能取值

《概率论与数理统计》课件-第2章随机变量及其分布 (1)

《概率论与数理统计》课件-第2章随机变量及其分布 (1)
则称X服从参数为λ的泊松分布, 记为 X ~ P() .
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
泊松分布的应用
“稠密性”问题(一段时间内,电话交换中心接到的呼叫次 数,公共汽车车站候车的乘客数,售票窗口买票的人数, 原子放射的粒子数,保险公司在一定时期内被索赔的次 数等)都服从泊松分布.
随机变量的分布函数
1.定义: 设X为一随机变量, x为任意实数, 称函数 F(x)=P{X≤x}为X的分布函数.
注: ① F(x)是一普通函数, 其定义域为 ,; ② F x的值为事件X x的概率; ③ F x可以完全地描述随机变量取值的规律性.
例如: Pa X b PX b PX a
连续型随机变量及概率密度函数
1.定义: 设X ~ F(x), 若存在一个非负可积的函数 f (x),
使 x R, 有
F ( x)
PX
x
x
f
(t)dt
,
则称X为连续型随机变量, f (x) 称为X的概率密度函数或
分布密度函数.
2.几何意义:
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
二、随机变量的概念
定义: 设试验E的样本空间为 , 若对于每个样本
点 , 均有一个实数 X ()与之对应, 这样就得
到一个定义在 上的单值函数 X X () , 称X为随
机变量.
X
样本空间
实数
注: ① 随机变量是一个定义在样本空间上的实函数, 它取值的随机性是由样本点的随机性引起的;
x 1
x0
0 x x
不是 (不满足规范性)

第二章随机变量及其分布函数

第二章随机变量及其分布函数

28
例2.2.9 设在时间t分钟内通过某交叉路口的汽车 数服从参数与t成正比的泊松分布. 已知在一分钟内 没有汽车通过的概率为0.2,求在2分钟内多于一辆 车通过的概率.
S={红色、白色} ?
将 S 数量化
非数量 可采用下列方法
X ()
红色 白色
S
1 0R
3
即有 X (红色)=1 , X (白色)=0.
1, 红色, X () 0, 白色.
这样便将非数量的 S={红色,白色} 数量化了.
4
实例2 抛掷骰子,观察出现的点数.
则有
S={1,2,3,4,5,6} 样本点本身就是数量 X () 恒等变换
20
泊松分布是一个非常常用的分布律,它常与 单位时间、单位面积等上的计数过程相联系. 例如一小时内来到某百货公司中顾客数、单位 时间内某电话交换机接到的呼唤次数和布匹 上单位面积的疵点数等随机现象都可以用泊
松分布来描述. 附表 2 给出了不同 值对应的
泊松分布函数的值.
21
泊松分布的取值规律
记 P(k; ) k e ,则
P
1 2
X
5
2
P(X
1 X
2)
P(X 1) P(X 2) 5
9
12
例 2.2.2 一只口袋中有 m 只白球, n m 只黑球.连 续无放回地从这口袋中取球,直到取出黑球为止.设 此时取出了 X 只白球,求 X 的分布律.
解 X 的可能取值为 0,1,2,, m ,且事件{X i}意 味着总共取了 i+1 次球,其中最后一次取的是黑球而 前面 i 次取得都是白球.
或 X ~ Bn, p.
二项分布的背景是伯努利试验:如果每次试验中事 件A发生的概率均为p,则在n重伯努利试验中A发生 的次数服从参数为n,p的二项分布。

第二章随机变量及其概率分布(概率论)

第二章随机变量及其概率分布(概率论)

当 x ≥ 1 时,F ( x) = P( X ≤ x) =P( X = 0) + P( X = 1) =1 ⎧0 x < 0
所以 F ( x) = ⎪⎨0.3 0 ≤ x < 1. ⎪⎩1 1 ≤ x
⎧0 x < 0 分布函数为 F ( x) = ⎪⎨0.3 0 ≤ x < 1
⎪⎩1 1 ≤ x
分布函数图形如下
F(x) 1 0.3
x 01
3
例 设X的概率分布律如下,求X的分布函数. X012 P 0.4 0.35 0.25

⎧0
x<0
F
(
x)
=
⎪⎪ ⎨

0.4 0.75
0≤ x<1 1≤ x<2
⎪⎩ 1
x≥2
由此可见
(1)离散型随机变量的分布函数是分段函数,分 段区间是由X的取值点划分成的左闭右开区间; (2)函数值从0到1逐段递增,图形上表现为阶梯 形跳跃递增; (3)函数值跳跃高度是X取值区间中新增加点的 对应概率值.
z 泊松在数学方面贡献很多。最突出的是1837 年在提出泊松分布。
z 除泊松分布外,还有许多数学名词是以他的 名字命名的,如泊松积分、泊松求和公式、 泊松方程、泊松定理。
当一个随机事件,以固定的平均瞬时速率 λ随机独立地出现时,那么这个事件在单 位时间(面积或体积)内出现的次数或个数 就近似地服从泊松分布。
解: 依题意, X可取值 0, 1, 2, 3.
设 Ai ={第i个路口遇红灯}, i=1,2,3
路口3
路口2
P(X=0)= P(A1)=1/2,
路口1
X=该汽车首次停下时通过的路口的个数. 设 Ai={第i个路口遇红灯}, i=1,2,3

分布函数-

分布函数-

分布函数概述分布函数是概率论和数理统计中的一个重要概念。

它描述了随机变量取某个值时,其概率是多少。

在实际应用中,我们经常需要求出随机变量的概率分布函数,以便通过它来计算一些重要指标,比如均值、方差等。

在概率论中,分布函数是指随机变量取某个值的概率累积值,即随机变量小于等于某个值的概率,它通常被表示为F(x)。

分布函数的定义随机变量X的累积分布函数F(x)定义为:F(x) = P(X <= x)其中,X是一个随机变量,x是实数。

F(x)表示的是随机变量小于等于x的概率。

根据定义,可以得到以下性质:1. F(x)是单调不降的。

2. F(x)的值域是[0,1]。

3. F(x)具有右连续性,即:lim F(x) = F(x+)x--> x+其中,F(x+)表示x的右极限。

分布函数的性质除了上述基本性质外,分布函数还具有以下重要性质:1. F(x)在x处的导数就是随机变量X在x时的概率密度函数f(x)。

即:F'(x) = f(x)2. 当x趋近于负无穷时,分布函数逼近于0;当x趋近于正无穷时,分布函数逼近于1。

3. 如果子集A包含在子集B中,则F(A)<=F(B)。

分布函数的分类分布函数按照性质和应用范围可以分为以下几类:1. 连续型分布函数如果随机变量X的取值属于某个区间上,那么X的分布函数为:$F(x)=\\int\\limits_{-\\infty}^{x} f(u)du$其中,f(x)是X的概率密度函数。

连续性分布函数通常表示为一个可导的曲线,而概率密度函数通常表示为函数图形下的面积。

常见的连续型分布函数有:(1) 均匀分布函数此型分布函数指随机变量在[a,b]之间取值相等的概率分布。

(2) 正态分布函数这是应用最广泛的分布函数之一。

正态分布函数由数学家德国心理学家阿多夫·奥古斯特·斯蒂度特在公元1805年提出。

它的图形呈现出一个钟形曲线。

2. 离散型分布函数如果随机变量只能取离散值,那么它的分布函数如下:$F(x)=P(X\\leq x)=\\sum\\limits_{x_i\\leq x}^{} p(x_i)$其中,p(x_i)表示随机变量X取到x_i时的概率。

第二章 随机变量及其分布第一节 随机变量及其分布函数讲解

2
Copyright © 2006 NJUFE
正态分布的概率计算公式:设 ~N (, 2 ),
P( a) (
a

); x2 ) ( x1 );
P( x1 x2 ) (
c P( c) 1 ( ); c c P( c) 2 ( ) ( ); c c P( c) ( ) ( ) 1.
P ( a b) F (b) F ( a )
f ( x)dx;
a
b
若f(x)在x0处连续,则F ( x0 ) f ( x0 )。
连续型随机变量与离散型随机变量的区别: 1) 连续型随机变量没有分布律; 2) 连续型随机变量取个别值的概率为零,即
P( x0 ) 0,x0 (, )。
二、随机变量的分布函数及其基本性质
定义2.2 (教材 p 47)

是随机变量,x 是任意实数,称函数 F ( x) P( x), x 为 的分布函数。
对于任意两实数
x1,x2, x1 x2,有
P( x1 x2 ) P( x2 ) P( x1 ) F ( x2 ) F ( x1 )
5. 几何分布 定义2.6( 若离散型随机变量

的分布律为
P( k ) p(1 p)k 1,k 1 , 2, 0 p 1
则称 服从参数为p的几何分布。 第三节、连续型随机变量 一、连续型随机变量的概念 定义2.7(教材 51) 设F(x) 为随机变量 使对一切实数x,都有
pk P( xk ), k 1 , 2,
为 的分布律(概率分布)。

概率论与数理统计-第二章-随机变量及其分布函数ppt课件


表格: X
x1 x2
pk
p1 p2
概率分布图:
1P
xn
pn
0.5
x4 x3
x1
x2
X
.
由概率的性质易知离散型随机变量的分布列
pk
满足下列特征性质:
k 1
① pk 0(k 1,2,) [非负性]

pk 1 [规范性]用于确定待定参数
k 1
③ F( x) P( X x) P(X xi ). xi x
1. 2
.
【例2】设随机变量X的分布函数为
aex b, x 0
F(x)
0,
x0
解: 因为 F(x) 在 x=0 点右连续
求: 常数 a 和 b。
所以 lim F ( x) lim (ae x b) a b 0
x0
x0
又因为 F () lim (ae x b) b 1 x
1、两点分布 或(0 - 1)分布
two-point distribution
定义1 设离散型随机变量X的分布列为
X0 1 pk 1 p p
其中 0<p<1
则称 X 服从(0 - 1)分布,记作 X ~(0 - 1)分布
F(x)
(0 - 1)分布的分布函数
0 , x0 F ( x) 1 p, 0 x 1
X = “三次试验中 A 发生的次数”,
{ X 2} A1A2 A3 A1A2 A3 A1A2 A3 P{X 2} P(A1A2 A3 A1A2 A3 A1A2 A3 )
P(A1A2 A3 ) P(A1A2 A3 ) P(A1A2A3 ) P(A1)P(A2)P(A3) P(A1)P(A2)P(A3) P(A1)P(A2 )P(A3 ) C32 p2(1 p)32

概率论第二章随机变量以其分布第3节随机变量的分布函数

F () 1, 知 1 P{ X 2}
2 (a b) (2 a) 3 2a b 2 , 3
且 a b 1.
由此解得 a 1 , b 5 . 66
27
因此有
0,
1 ,
F
(
x
)
6 1
,
2
1,
从而 X 的分布律为
X 1
1
P
6
x 1, 1 x 1,
1 x 2, x 2.
分别观察离散型、连续型分布函数的图象,可以看 出,分布函数 F(x) 具有以下基本性质:
10 F (x) 是一个不减的函数.F(x)
即当x2 x1时, 1 F(x2 ) F(x1).
01 2 3
x
返回主目录
证明 由 x1 x2 { X x1} { X x2 },
得 P{X x1} P{X x2}, 又 F ( x1) P{X x1}, F ( x2 ) P{X x2}, 故 F ( x1) F ( x2 ).
(3) 若 x 2 , 则 {X x} 是必然事件,于是
F(x) P{X x} 1.
返回主目录
§3 随机变量的分布函数
0,
F ( x)
x2 4
,
1,
x 0, 0 x 2,
x 2.
F(x) 1
01 2 3
x
返回主目录
§3 随机变量的分布函数
3. 分 布 函 数 的 性 质
x
x
o
x
同样,当 x 增大时 P{ X x}的值也不会减小,而
X (, x), 当 x 时, X 必然落在 (,)内.
o
x
16
§3 随机变量的分布函数
30 F(x 0) F(x), 即 F(x)是右连续的.

概率论与数理统计第二章--随机变量及其分布


第十四页,编辑于星期二:四点 四十二分。
由于 X的取值点 3,4,5,6将R分成五个区间,
因此我们分段讨论可得,
?0,
x ? 3,
F( x )
F (x) ? ????00..02,5,
3 ? x ? 4, 4 ? x ? 5,
1
0.5
?0.5, 5 ? x ? 6,
0.2
?
0.05
??1,
x ? 6.
且每台设备在一天内发生故障的概率都是
0.01. 为保证设备正常工作,需要配备适量 的维修人员.假设一台设备的故障可由一人 来处理,且每人每天也仅能处理一台设备. 试分别在以下两种情况下求该公司设备发生 故障而当天无人修理的概率。 (1)三名修理工每人负责包修 60台 (2)三名修理工共同负责 180台
则称 X服从参数为 p的两点 (或0-1)分布.
第十九页,编辑于星期二:四点 四十二分。
?二项分布
例4. 设射手每一次击中目标的概率为 p,现连 续射击n次,求击中次数 X 的概率分布 .
若随机变量X的概率分布为
Pn (k)
?
P
(
X
?
k)?C
k
n
p
k
(1
?
p)n?k ,
k ? 0,1,? , n
其中 0< p<1,称X服从参数为n和 p的二项分布,
第二十一页,编辑于星期二:四点 四十二分。
?泊松分布
若随机变量 X的概率分布为
P( X ? k) ?e? ? ? k , k?0,1,2,? ? ,
k!
其中λ>0为常数,则称X服从参数为λ的泊松
分布,简记为 X ~ P (? )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P(a ≤ X ≤ b) = F(b) − F(a − 0) P(a < X < b) = F(b − 0) − F(a) P(a ≤ X < b) = F(b − 0) − F(a − 0)
概率论
二、分布函数的性质 (1) F( x) 在(− ∞,+∞) 上是一个不减函数 ,
即对 ∀ x1 , x2 ∈(− ∞,+∞) 且 x1 < x2 , 都有 F( x1 ) ≤ F( x2 ) ;
概率论
F(x)的分布函数图
y
1பைடு நூலகம்
22 35 34 35
0
1
2
x
例4 在区间 [0,a] 上任意投掷一个质点,以 , 上任意投掷一个质点, X 表示这个质点的坐标 . 设这个质点落在 [0, a]中意 中意 小区间内的概率与这个小区间的长度成正比, 小区间内的概率与这个小区间的长度成正比,试求 X 的分布函数 的分布函数. 的分布函数, 解 设 F(x) 为 X 的分布函数, 当 x < 0 时,F(x) = P(X
x→x0
如果一个函数具有上述性质,则一定是某个 如果一个函数具有上述性质,则一定是某个r.v X 的分布函数 也就是说,性质 的分布函数. 也就是说,性质(1)--(3)是鉴别一个函 是鉴别一个函 的分布函数的充分必要条件. 数是否是某 r.v 的分布函数的充分必要条件
概率论
例1 设有函数 F(x)
0 = lim F( x) = lim ( A+ Barctgx) = A− B x→−∞ x→−∞ 2
π
π
概率论
解方程组
π A− 2 B = 0 π A+ B = 1 2
得解
1 1 A= , B= . 2 π
概率论
只是次品, 在其 例3 设在 15 只同类型零件中有 2 只是次品, 中取三次,每次任取一只,作不放回抽样, 中取三次,每次任取一只,作不放回抽样,以 X 表示取出次品的只数, ) X 的分布函数, 表示取出次品的只数, (1) ( 求 的分布函数, (2)画出分布函数的图形。 )画出分布函数的图形。
概率论
F( x) = P( X ≤ x), − ∞ < x < ∞
注 意: (1) F(x) 是r.v X 取值不大于 x 的概率,其取值是确定的 的概率,其取值是确定的.
分布函数是一个普通的函数, 分布函数是一个普通的函数, 正是通过它, 正是通过它,我们可以用高等数 学的工具来研究随机变量. 学的工具来研究随机变量
当 当
x<0 时,{ X
22 F(x) = P{X≤x} = P{X = 0} = 35 )[ ) x 0 x1 2 x X X
当 1 ≤x < 2 时,
0 ≤x < 1 时,
≤x } = φ, 故
F(x) =0
概率论
34 F(x) = P{X = 0} + P{X = 1} = 35

x ≥2 时,
F(+∞) = lim F( x) = 0
x→+∞
不满足性质(2), 可见F(x)也不能是 的分布函数 也不能是 不满足性质 , 可见 也不能是r.v 的分布函数.
概率论
都是分布函数, 练习 F1(x)和F2(x)都是分布函数,为使 1F1(x) –C2F2(x)是 和 都是分布函数 为使C 是 分布函数, 和 应取下列哪组值 应取下列哪组值( 分布函数,C1和C2应取下列哪组值( )。
概率论
x) ≤ =0
0
a
当 x > a 时,F(x) =1 x a 当 0 ≤ ≤ 时, P(0 ≤X ≤x) = kx
(k为常数 ) ka=1,k =1/a 由于 P(0 ≤X ≤a) = 1 ⇒ ,
F(x) = P(X ≤ = P(X<0) + P(0 ≤X ≤x) =x / a x)
概率论

F ( x2 ) − F ( x1 ) = P{ x1 < X ≤ x2} ≥ 0
概率论
(2) F(−∞) = lim F ( x) = 0
F(+∞) = lim F ( x) = 1
x→+∞
x→−∞
o X
(3) F(x) 右连续,即 右连续,
x
x
F( x + 0) = lim F( x) = F( x0 ) +
概率论
随机变量的分布函数
随机变量分布函数的定义 分布函数的性质
概率论
一、分布函数的定义
设 X 是一个 r.v,称 ,
F( x) = P( X ≤ x) (−∞ < x < +∞)
为 X 的分布函数 , 记作 F (x) .
] o X X x
x
看作数轴上随机点的坐标, 如果将 X 看作数轴上随机点的坐标,那么分 布函数 F(x) 的值就表示 X落在区间 (−∞, x] 内的 概率.
x 0.5(1 − e − x ), C) F ( x ) = 0,
x
x>0 x≤0
2
π
D) F ( x ) = ∫− ∞ f ( t )dt ,其中 ∫− ∞ f ( t )dt = 1
由 解: F(x)的性质 0 ≤ F( x) ≤ 1 F(x) 不减
+∞
F(−∞) = 0
F(+∞) = 1
0, x < 0 x F( x) = , 0 ≤ x ≤ a a x>a 1,
这就是在区间 [0,a]上服从均匀分布的随机变量 , 上服从均匀分布的随机变量 的分布函数. 的分布函数
概率论
三、布置作业
1. 《概率统计》练习册 习题 概率统计》 习题6; 2.《概率统计》P59:3,5,6; 《概率统计》 3.《概率论与数理统计》(浙大第四版) 《概率论与数理统计》 浙大第四版) P57:19,20(1);
F(x) 右连续
以及 f ( x) ≥ 0 得 B 正确
概率论
例2 设随机变量 X 的分布函数为
F( x) = A+ Barctgx
(− ∞ < x < +∞)
试求常数A 试求常数A、B。
解: 由分布函数的性质, 由分布函数的性质,我们有
1 = lim F( x) = lim ( A+ Barctgx) = A+ B x→+∞ x→+∞ 2

F(x) = P(X ≤ x)
X的所有可能取值为: = 0,1,2 的所有可能取值为: 的所有可能取值为 X 3 22 C13 P{X = 0} = 3 = 35 C15 2 1 C13C2 12 P{X = 1} = 3 = C15 35
1 2 C13C2 1 P{X = 2}= 3 = C15 35
概率论
P(a < X ≤ b) = F(b) − F(a)
P( X > a) = 1 − P( X ≤ a) = 1 − F(a)
P( X = a) = lim P(a − ε < X ≤ a) = lim[F(a) − F(a − ε )] = F(a) − F(a − 0)
ε →0 ε →0
请 填 空
sin x 0 ≤ x ≤ π F( x) = 0 其它
试说明F(x)能否是某个 的分布函数 能否是某个r.v 的分布函数. 试说明 能否是某个 解 上下降, 注意到函数 F(x)在 [π / 2 , π ] 上下降, 在 不满足性质(1), 不能是分布函数. 不满足性质 ,故F(x)不能是分布函数 不能是分布函数 或者
概率论
(2) 对任意实数 x1<x2,随机点落在区间 x1 , x2 ]内的 随机点落在区间( 内的 概率为: 概率为:
P{ x1 < X ≤ x2 } = P{X ≤ x2 } − P{ X ≤ x1} = F( x2 ) − F( x1 ).
] x2 因此,只要知道了随机变量X的分布函数 的分布函数, 因此,只要知道了随机变量 的分布函数, 它 的统计特性就可以得到全面的描述. 的统计特性就可以得到全面的描述 ( ] ( x1
F(x) = P{X=0} + P{X=1} + P{X=2}= 1
0
1
[
x2x x X X
)[
概率论

x<0 0, 22 35, 0 ≤ x < 1 F( x) = 34 , 1≤ x < 2 35 1, x≥2
下面我们从图形上来看一下. 下面我们从图形上来看一下
注意右连续
= 3 2 = 1 2
(A) C
1
C
2

(B ) C1
2 = 3
C2
1 = − 3
2
(C ) C 1 = −
3 2
C2 =
1 2
(D ) C1 =
2 3
C
=
1 3
x→+∞
lim [C1F1 ( x) − C2F2 ( x)] = C1 − C2 = 1
概率论
3)下列函数中,可作为某一随机变量的 下列函数中, B 分布函数是 1 1 1 A) F ( x ) = 1 + 2 B) F ( x ) = + arctan x
相关文档
最新文档