第二章随机变量及其分布函数

合集下载

第二章 随机变量及其分布(第2讲)

第二章  随机变量及其分布(第2讲)
分布函数还具有相当好的性质,有利于用数 学分析方法来处理;
引入随机变量和分布函数,在随机现象与数 学分析之间搭起了桥梁。
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
连续型随机变量(random variables of continuous type)
四、几种重要的连续型分布 均匀分1. 布均的匀实分际布背景是: 并概f ( x率且)随=与取⎪⎩⎪⎨⎧机0b这值−1变a个在量小(其x ∈X它区a取[a,,间bb值)] 的在中是 记长区一 为任度个间意成概X(小正~率aU区比密,[ab间度。,)b上内]函,的数.
利用分布函数与概率密度函数之间的关系,可以求得服从均匀 分布的随机变量 X 的分布函数
f
(x)
=
⎪⎧ ⎨
1 3
,
⎪⎩0 ,
0≤ x≤3 其它
∫ ∫ 所求概率 P{0 ≤ X ≤ 2}=
2 f (x )dx =
0
2 0
1 3
dx
=
2 3
四、几种重要的连续型分布
2.指数分布
定义: 若随机变量X的概率密度函数
X
~
f
(
x)
=
⎧λ

e−λ
x
⎩0
x>0 x≤0
称 X 服从参数为λ的指数分布,记为X~E(λ) (λ>0),
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
§2.2节学习的分布律对于非离散型型随 机变量失效

概率论课件第二章

概率论课件第二章
第二章 随机变量及其分布 §2.1 随机变量
例1. 抛硬币试验中S {H,T}, 样本点H与T不是数量。
例2. 测试灯泡寿命试验, S={e}={t|t≥0},样本点本身 是数量。
定义 : 设随机试验E的样本空间是S,若 X : S R为单值实范数,则称X为随机变量 (random variable, 简记为r.v.) 。

2. 特例: (1,) 是参数为的指数分布. (=1) 3. 伽玛函数的性质: (i) (+1)= ();
1 (iii)( ) . 2
(ii) 对于正整数n, (n+1)=n!;
§5. 随机变量的函数的分布
一、 X为离散型r.v. 例1.设X具有以下的分布律,求Y=(X-1)2分布律: X -1 0 1 2 pk 0.2 0.3 0.1 0.4
(二) 贝努利试验
(二项分布)
定 义 : 设 试 验E只 有 两 个 可 能 结 果 A与 A , 且 P( A ) p ( 0 p 1), 将 试 验E独 立 重 复 地 进 行 n次 , 这 样 的 试 验 称 为 贝 努 利 试 验.
设X是n重贝努利试验中事件A发生的次数, 则X 是一个随机变量, 于是
§4. 连续型随机变量及其概率密度
F(x) , 存在非负函 1.定义 : 对于r.v.X的分布函数 数f(x) , 使对于任意的实数 x, 有
则称X为连续型r.v.f(x)称为X概率密度函数, 简称概率密度. 连续型r.v.的分布函数是连续函数.
F(x ) f(t)dt

x
2.概率密度 f(x)的性质:
25
标准正态分布的上分位点:
设X ~ N(0,1), 若z 满足条件

随机变量及其分布

随机变量及其分布
• 定义1如果对于随机变量X及其分布函数F(x),存在非负可积函数 • f(x),使得对于任意实数x有
• 则称X为连续型随机变量,其中函数f(x)称为X的概率密度函数,简称 概率密度或者密度函数.
• 下面给出概率密度函数f(x)的性质: • (1)f(x)≥0 • (2)由分布函数的性质易得
下一页 返回
• 二、离散型随机变量的分布函数
• 设离散型随机变量X的分布律为:
上一页 下一页 返回
2. 3随机变量的分布函数
• 其中 • 则随机变量X的分布函数仿照例1可得
• 如图2一1所示,F(x)为阶梯函数,分段区间为半闭半开区间,并且右 连续
上一页 返回
2. 4连续型随机变量及其概率密度
• 一、连续型随机变量及其概率分布
上一页 返回
2. 2离散型随机变量及其分布律
• 一、离散型随机变量
• 在某些试验中(例如 2. 1中的例1,例2,例3),随机变量的取值是有 • 限个或者无穷可列个.这一类随机变量通常称为离散型随机变量,下
面我们给出离散型随机变量的精确定义: • 定义1若随机变量X的所有可能取值为x1,x2,…,xn…,并且其 • 对应的概率分别为p1, p2,…,p n,…,即
• 注:实值单值函数指的是每一个。仅存在唯一一个实数X (ω)与之对应, 其中X (ω)是一个关干样本点的函数,值域为实数集.
• 随机变量可以根据它的取值分为离散型随机变量与非离散型随机变量, • 其中非离散型随机变量又可以进一步分为连续型随机变量与混合型随
机变量.在本书中我们主要学习的是离散型与连续型随机变量.
• 则称X为离散型随机变量,并且式(2.均称为随机变量X的概率分布, 又称分布律或分布列.
下一页 返回

第二章随机变量及其概率分布(概率论)

第二章随机变量及其概率分布(概率论)

当 x ≥ 1 时,F ( x) = P( X ≤ x) =P( X = 0) + P( X = 1) =1 ⎧0 x < 0
所以 F ( x) = ⎪⎨0.3 0 ≤ x < 1. ⎪⎩1 1 ≤ x
⎧0 x < 0 分布函数为 F ( x) = ⎪⎨0.3 0 ≤ x < 1
⎪⎩1 1 ≤ x
分布函数图形如下
F(x) 1 0.3
x 01
3
例 设X的概率分布律如下,求X的分布函数. X012 P 0.4 0.35 0.25

⎧0
x<0
F
(
x)
=
⎪⎪ ⎨

0.4 0.75
0≤ x<1 1≤ x<2
⎪⎩ 1
x≥2
由此可见
(1)离散型随机变量的分布函数是分段函数,分 段区间是由X的取值点划分成的左闭右开区间; (2)函数值从0到1逐段递增,图形上表现为阶梯 形跳跃递增; (3)函数值跳跃高度是X取值区间中新增加点的 对应概率值.
z 泊松在数学方面贡献很多。最突出的是1837 年在提出泊松分布。
z 除泊松分布外,还有许多数学名词是以他的 名字命名的,如泊松积分、泊松求和公式、 泊松方程、泊松定理。
当一个随机事件,以固定的平均瞬时速率 λ随机独立地出现时,那么这个事件在单 位时间(面积或体积)内出现的次数或个数 就近似地服从泊松分布。
解: 依题意, X可取值 0, 1, 2, 3.
设 Ai ={第i个路口遇红灯}, i=1,2,3
路口3
路口2
P(X=0)= P(A1)=1/2,
路口1
X=该汽车首次停下时通过的路口的个数. 设 Ai={第i个路口遇红灯}, i=1,2,3

概率统计 第二章 随机变量及其分布

概率统计 第二章 随机变量及其分布

引入适当的随机变量描述下列事件: 例1:引入适当的随机变量描述下列事件: 个球随机地放入三个格子中, ①将3个球随机地放入三个格子中,事件 A={有 个空格} B={有 个空格} A={有1个空格},B={有2个空格}, C={全有球 全有球} C={全有球}。 进行5次试验, D={试验成功一次 试验成功一次} ②进行5次试验,事件 D={试验成功一次}, F={试验至少成功一次 试验至少成功一次} G={至多成功 至多成功3 F={试验至少成功一次},G={至多成功3次}
例2
xi ∈( a ,b )

P( X = xi )
设随机变量X的分布律为 设随机变量X
0 1 2 3 4 5 6 0.1 0.15 0.2 0.3 0.12 0.1 0.03
试求: 试求:
P( X ≤ 4), P (2 ≤ X ≤ 5), P ( X ≠ 3)
0.72 0.7
F ( x) = P{ X ≤ x} =
k : xk ≤ x
∑p
k
离散型随机变量的分布函数是阶梯函数, 离散型随机变量的分布函数是阶梯函数 分布函数的跳跃点对应离散型随机变量的 可能取值点,跳跃高度对应随机变量取对应 可能取值点 跳跃高度对应随机变量取对应 值的概率;反之 反之,如果某随机变量的分布函数 值的概率 反之 如果某随机变量的分布函数 是阶梯函数,则该随机变量必为离散型 则该随机变量必为离散型. 是阶梯函数 则该随机变量必为离散型
X
x
易知,对任意实数a, 易知,对任意实数 b (a<b), P {a<X≤b}=P{X≤b}-P{X≤a}= F(b)-F(a) ≤ = ≤ - ≤ = -
P( X > a) = 1 − F (a)

《概率论》第2章§3随机变量的分布函数

《概率论》第2章§3随机变量的分布函数

面积成正比,且射击都能中靶,记 表示弹X 着
X
点与圆心的距离.求 的分布X函数.
显然当 x 时0 ,{X 故x} , 称这样的随机变量
F(x) P{X x} 0 为连续型随机变量
若 0 x 由2题, 意有 P{0 X为 常x}数 kx2 , k
Q P{0 X 2} k22 1 k 1/ 4
O
第二章
随机1 变量2及其分3布x
§3 随机变量的分布函数 3/5
r.v X的分布函数
F(x) P{X x } , x
F ( x)是单调不减函数
0 F(x) 1且
F () lim F(xx)10x,2 F() lim F(x) 1
F
(
x)
x Q {X
右连续函数即F ( x1 )
x1} {X P{X
x x2 } x1 }

x
时F
(
x
0)
lim
tx
F(t)P{XF
(x)x当2} x
F(x2) 时
{X x性} 质
是分布函数的本质{特X 征x} S
满r.v足的性分质布函PP{{数XX 必 xx满的}}关关足F于于(性x)质必xx 右左是连连某续续r.v的分布函数
第二章 随机变量及其分布
F(0x)当x0Px{X20,, xP时x}{X2P{存xXF0}在(0x}) P{0,令X
x}
x2 4
即 X的则若分x布由函2F, 题数(xF意)为(处有xf)F处(Ft()(x连x){)xPX续12{002/tPEX4,,,,,(N故,0xxS0x其xD})fx(t它0tx201S})d,,怎故2t第2,0,样二章理F随解(tO机1)这y变(t一量F1(x及)结0其2,t论分3布?2)x

第二章 随机变量及其分布

来表示。
2. 二项分布的推导过程与说明
3. 举例( 例2,例3,例4 )
C. 泊松分布
1. 定义:如果随机变量X的概率密度如下:
P(X k)
λ k k!
e
λ
,
k =0,1,2,… ( >0) ,
(2.4)
则称X服从参数为 的泊松分布,记作:
X ~ ()
2. 说明
3. 举例
返回目录
§3 随机变量的分布函数
P{X=4}=0.218 P{X=5}=0.175 P{X=6}=0.109 P{X=7}=0.055
P{X=k} < 0.001 , 当 k ≥ 11时
P{ X=8 }=0.022 P{ X=9 }=0.007 P{X=10}=0.02
例3:
某人进行射击,设每次射击的命中率为0.02,独立射 击400次,试求至少击中两次的概率。
解:以p表示每组信号灯禁止汽车通过的概率,
X所有可能取值为0,1,2,3,4。得X的分布律 为:P{X= k}= (1-p)k p , k=0,1,2,3, P{X= 4}= (1-p)4。用表格表示如下:
X
01
2
34
pk
p (1-p) p (1-p)2 p (1-p)3 p (1-p)4
代入p=1/2可得结果,可验证此结果满足分布 律两性质。
• 而有的实验结果与数值无直接关系,我们可 以把它映射为数值来表示,如:硬币抛掷中出 现正面用“0”来表示,出现反面用“1”来表示。
例1:在一袋中装有编号分别为1,2,3的3只球,
在袋中任取一只球,放回,再取一只球,记录它 们的编号。考察两只球的编号之和。则实验的样 本空间S={e}={(i,j)} i,j=1,2,3。 i,j分别为第一,第 二次取到球的号码。 以X表示两球号码之 和,得到样本空间 的每一个样本点e, X都有一值与之对 应,如图2-1。

概率论与数理统计第2章随机变量及其分布


1 4
)0
(
3 4
)10
C110
(
1 4
)(
3 4
)9
0.756.
(2)因为
P{X
6}
C160
(
1)6 4
(
3 4
)4
0.016
,
即单靠猜测答对 6 道题的可能性是 0.016,概率很小,所
以由实际推断原理可推测,此学生是有答题能力的.
二项分布 b(n, p) 和 (0 1) 分布 b(1, p ) 还有一层密切关
P{X 4} P(A1 A2 ) P(A1)P(A2 ) 0.48 ,
P{X 6} P(A1A2 ) P(A1)P(A2 ) 0.08 , P{X 10} P(A1A2 ) P(A1)P(A2 ) 0.32 , 即 X 的分布律为
X 0 4 6 10
P 0.12 0.48 0.08 0.32
点 e, X 都有一个数与之对应. X 是定义在样本空间 S 上的
一个实值单值函数,它的定义域是样本空间 S ,值域是实数
集合 {0,1,2},使用函数记号将 X写成
0, e TT , X=X (e) 1, e HT 或TH ,
2, e HH.

例2.2 测试灯泡的寿命.

样本空间是 S {t | t 0}.每一个灯泡的实际使用寿命可
(2)若一人答对 6 道题,则推测他是猜对的还是有答 题能力.
解 设 X 表示该学生靠猜测答对的题数,则
X
~
b(10,
1) 4
.
(1) X 的分布律为
P{X
k}
C1k0
(
1)k 4
(
3 4

概率论与数理统计第二章



1 ,max= 2

4. 渐近线 以X轴为渐进线
5. 曲线的变化规律
设X~ N ( , ) ,
2
X的分布函数是
1 F ( x) 2

x
(t ) 2 22Fra bibliotekedt , x
标准正态分布
0, 1 的正态分布称为标准正态分布.
若随机变量X的概率分布为: P(X=1)=p,0<p<1 P(X=0)=1-p=q 则称X服从参数为p的两点分布.
二项分布
例4 设射手每一次击中目标的概率为p,现连续 射击n次,求恰好击中次数X 的概率分布.
若随机变量X的概率分布为
Pn (k ) P( X k)C p (1 p)
k n k
3. F(x+0)=F(x)
例1:设随机变量X的分布函数为
a be x , x 0 F ( x) x0 0 ,
求常数a, b及概率 P( X 2)
2.2
离散型随机变量的概率分布
定义1 :设xk(k=1,2, …)是离散型随机变量X 所取的一切可能值,pk是X取 xk值的概率,称
0
1 8
1
a
2
2a
Pk
(1)求常数a ; (2) P( X 1), P(2 X 0), P( X 2)
例2 在五件产品中有两件次品,从中任取出两 件。用随机变量X表示其中的次品数,求X的分 布律和分布函数.
X
P
0
0.3
1
0.6
2
0.1
1.0 0.9
0 0.3 F ( x) 0.9 1.0
均匀分布

第二章 随机变量及其分布第一节 随机变量及其分布函数讲解

2
Copyright © 2006 NJUFE
正态分布的概率计算公式:设 ~N (, 2 ),
P( a) (
a

); x2 ) ( x1 );
P( x1 x2 ) (
c P( c) 1 ( ); c c P( c) 2 ( ) ( ); c c P( c) ( ) ( ) 1.
P ( a b) F (b) F ( a )
f ( x)dx;
a
b
若f(x)在x0处连续,则F ( x0 ) f ( x0 )。
连续型随机变量与离散型随机变量的区别: 1) 连续型随机变量没有分布律; 2) 连续型随机变量取个别值的概率为零,即
P( x0 ) 0,x0 (, )。
二、随机变量的分布函数及其基本性质
定义2.2 (教材 p 47)

是随机变量,x 是任意实数,称函数 F ( x) P( x), x 为 的分布函数。
对于任意两实数
x1,x2, x1 x2,有
P( x1 x2 ) P( x2 ) P( x1 ) F ( x2 ) F ( x1 )
5. 几何分布 定义2.6( 若离散型随机变量

的分布律为
P( k ) p(1 p)k 1,k 1 , 2, 0 p 1
则称 服从参数为p的几何分布。 第三节、连续型随机变量 一、连续型随机变量的概念 定义2.7(教材 51) 设F(x) 为随机变量 使对一切实数x,都有
pk P( xk ), k 1 , 2,
为 的分布律(概率分布)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

28
例2.2.9 设在时间t分钟内通过某交叉路口的汽车 数服从参数与t成正比的泊松分布. 已知在一分钟内 没有汽车通过的概率为0.2,求在2分钟内多于一辆 车通过的概率.
S={红色、白色} ?
将 S 数量化
非数量 可采用下列方法
X ()
红色 白色
S
1 0R
3
即有 X (红色)=1 , X (白色)=0.
1, 红色, X () 0, 白色.
这样便将非数量的 S={红色,白色} 数量化了.
4
实例2 抛掷骰子,观察出现的点数.
则有
S={1,2,3,4,5,6} 样本点本身就是数量 X () 恒等变换
20
泊松分布是一个非常常用的分布律,它常与 单位时间、单位面积等上的计数过程相联系. 例如一小时内来到某百货公司中顾客数、单位 时间内某电话交换机接到的呼唤次数和布匹 上单位面积的疵点数等随机现象都可以用泊
松分布来描述. 附表 2 给出了不同 值对应的
泊松分布函数的值.
21
泊松分布的取值规律
记 P(k; ) k e ,则
P
1 2
X
5
2
P(X
1 X
2)
P(X 1) P(X 2) 5
9
12
例 2.2.2 一只口袋中有 m 只白球, n m 只黑球.连 续无放回地从这口袋中取球,直到取出黑球为止.设 此时取出了 X 只白球,求 X 的分布律.
解 X 的可能取值为 0,1,2,, m ,且事件{X i}意 味着总共取了 i+1 次球,其中最后一次取的是黑球而 前面 i 次取得都是白球.
或 X ~ Bn, p.
二项分布的背景是伯努利试验:如果每次试验中事 件A发生的概率均为p,则在n重伯努利试验中A发生 的次数服从参数为n,p的二项分布。
15
0-1分布或两点分布
若X的分布律为
P{X k} pk (1 p)1k , k 0,1
或者
X0
1
P 1 p
p
则称随机变量X服从参数为p的0-1分布或两点分布.
注:当n=1时的二项分布B(1,p)称为0-1分布。
16
例 2.2.4 投掷一个均匀骰子 n 次,求 (1) 恰好得到 一个 6 点的概率;(2) 至少得到一个 6 点的概率;(3) 为了以 0.5 的概率保证至少得到一个 6 点,则至少要 投掷几次?
解 设 X 表示掷一个均匀骰子 n 次出现 6 点的次
P X k k e k 0,1,2,
k!
其中参数 0 ,则称随机变量 X 服从参数为 的
泊松分布,记作 X ~ P .
实例:1)普鲁士骑兵每年被马踢死的人数服
从参数为0.61的泊松分布;2)1500年到1932年之
间每年发生战争的次数(规模超过50000人)服从
参数为0.69的泊松分布。
X (1) 1, X (2) 2, X (3) 3, X (4) 4, X (5) 5, X (6) 6,
且有 P{ X i} 1 , (i 1,2,3,4,5,6).
6
5
定 义 2.1.1 设 随 机 试 验 的 样 本 空 间 是 S , 如 果 X X () 是定义在样本空间 S 上的实值函数,即对于每
以 X 表示第一个人维护的20台机器中同一时刻发 生故障的台数,则 X~B(20,0.01).
于是,第一个人来不及维修的概率为
P{X 2} 1 P{X 0} P{X 1}
1 (0.99)20 20(0.01)(0.99)19 0.0169
27
设A为“四个人中至少有一个人来不及维修”这 一事件,则有
解 设需配备N人,记同一时刻发生故障的设备台数
为X,则 X~B(300,0.01).所需解决的问题是确定最小的N,
使得
P{X N} 0.01
查表知,满足上式
由泊松定理 ( np 3) ,有 最小的N是8.因此,为
P{X N} 3k e3 0.01
k N 1 k !
达到上述要求,至少 需配备8个工人.
np 大小适中时,可以用下列近似公式:
n
k
pk (1
p)nk
k
k!
e
泊松定理表明,当n很大(一般不小于20) p很小
(一般不大于0.05) 时,二项分布可近似的用泊松分 布来表示.这实际上也就表明了大量试验中稀有事 件发生的次数可以用泊松分布来描述.
24
续例2.2.6 现在我们运用泊松定理来做近似计算, 由于此时
13
例 2.2.3 掷一个不均匀的硬币,出现正面的概率
为 p 0 p 1,设 X 为投掷到正反面均出现为止时
所需掷的次数,求 X 的分布律.
解 X 的可能取值为 2,3,, n,,记 Ai 表示掷第 i 次 硬币时出现正面,则事件 A1, A2, , An , 相互独立,且
所以
X n A1 An1 An A1 An1 An
26
例2.2.8 设有80台同类型设备,各台工作是相互独 立的,发生故障的概率都是0.01,且一台机器的故障能 由一个人处理.考虑两种配备维修工人的方法,其一是 由4人维修,每人负责20台;其二是由3人共同维修80台. 试比较这两种方法在设备发生故障时不能及时维修 的概率的大小.
解 先考虑第一种方法
解 设至少应做 n 次试验, X 表示 n 次试验中取得
成功的次数,则 X ~ bn,0.4 .因为
P(X 1) 1 P(X 0) 1 0.6n 0.95
所以
n ln 0.05 5.86
ln 0.6
即至少应做6次试验.
18
例2.2.6 某人进行射击,设每次击中的概率均为 0.02,独立射击400次,试求至少击中两次的概率。
第二章 随机变量及其分布函数
1
第一节 随机变量
概率论是从数量上来研究随机现象内在 规律性的,为了更方便有力的研究随机现象, 就要用数学分析的方法来研究,因此为了便 于数学上的推导和计算,就需将任意的随机 事件数量化.当把一些非数量表示的随机事 件用数字来表示时,就建立起了随机变量的 概念.
2
实例1 在一装有红球、白球的袋中任摸一个 球,观察摸出球的颜色.
n 400, p 0.02, 故 np 8 ,于是
因此
P{X 0} e8, P{X 1} 8e8 P{X 2} 1 e8 8e8 0.997
该例题表明,即使是一个命中率很低的射手,在大 量的射击中至少击中两次或两次以上概率还是很大
的.因此在大数次的试验中,不能忽略小概率事件.
P(A) P{X 2} 0.0169
再考虑第二种方法
以 Y 表示3个人共同维护的80台机器中同一时刻发 生故障的台数,则 Y~B(80,0.01).于是他们来不及维修的
概率为( np 0.8)
P{Y 4}
(0.8)k e0.8 0.00908 P( A)
k4 k !
按第二种方法 效率更高!
k!
P(k;) P(k 1;) k
于是,若 不是正整数,则当 k []时,P(k;) 随 k 递增;当 k []时,P(k;) 随 k 递减;当 k [] 时 P(k;) 达到最大值.
若 是正整数,则当 k 时, P(k;) P(k 1;) , 即 P(k;) 在 k 和 k 1处取得最大值.
数,则 X ~ bn,1/ 6 .
(1)
P( X
1)
n
1
1 6
5 6
n1
n 5n1 6n
(2) P() 欲使
1 5 n 1 6 2
必须
n ln 2 3.8 ln 6 ln 5
所以至少要投掷4次.
17
例 2.2.5 一种生物试验的费用比较昂贵,而每次 试验取得成功的概率为 0.4. 如果试验者希望以 0.95 的概率至少取得一次成功,则至少应做几次试验?
量,它的所有可能取值是 0,,因此它是一个连续
型随机变量. 7
用随机变量表示随机事件
例如,若我们用 X 表示某台电视机的寿命,并且 规定寿命超过 10000 个小时的电视机为合格品,则该 电视机为合格品这一事件就可以表示为 {X 10000};又如,由两个人负责维修 10 台机器, 设 X 为同时出故障的机器数,则机器出故障而来不及 维修这一事件可以表示为{X 2} ;再如,设 X,Y 分别表示甲乙两队在一场篮球对抗赛中的各自的得 分,则甲获胜这一事件可以表示为{X Y};等等.
P( X n) p n1q pqn1
即X的分布律为
X
2
3
P 2 p1 p p2q pq2
…… ……
n p n1q pq n1
……
……
14
2.2.2 二项分布
定义2.2.2 如果随机变量X的分布律为
PX
k
n
k
pk
1
p nk
k 0,1,2,, n
则称 X 服从参数为 n,p 的二项分布,记作 X ~ bn, p
22
泊松定理
定理 2.2.1 ( 泊松定理) 假设在 n 重贝努里试 验中,随着试验次数 n 无限增大,而事件出现的
概率 pn 无限缩小,且当 n 时有 npn ,

n
lim
n
k
pnk (1
pn )nk
k e
k!
23
泊松定理的含义
由于泊松定理是在 npn 条件下得到的,所以在
计算二项分布有关概率时,当 n 很大, p 很小,而
否成为某个随机变量的分布律的充分必要条件.
11
例 2.2.1 已知随机变量 X 的分布律是
PX
k
c
2 3
k
,k
1, 2,3,
求 (1) 常数 c ;(2)
相关文档
最新文档